Catherine E Housecroft

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6259245/publications.pdf

Version: 2024-02-01

541 papers

13,398 citations

²⁶⁶³⁰
56
h-index

80 g-index

557 all docs

557 docs citations

557 times ranked

8278 citing authors

#	Article	IF	CITATIONS
1	TADF: Enabling luminescent copper(<scp>i</scp>) coordination compounds for light-emitting electrochemical cells. Journal of Materials Chemistry C, 2022, 10, 4456-4482.	5.5	66
2	Solar energy conversion using first row d-block metal coordination compound sensitizers and redox mediators. Chemical Science, 2022, 13, 1225-1262.	7.4	35
3	Stars and stripes: hexatopic tris(3,2′:6′,3′′-terpyridine) ligands that unexpectedly form one-dimensiona coordination polymers. CrystEngComm, 2022, 24, 491-503.	al 2.6	2
4	The surprising effects of sulfur: achieving long excited-state lifetimes in heteroleptic copper(<scp>i</scp>) emitters. Journal of Materials Chemistry C, 2022, 10, 3089-3102.	5.5	10
5	Attraction in Action: Reduction of Water to Dihydrogen Using Surface-Functionalized TiO2 Nanoparticles. Nanomaterials, 2022, 12, 789.	4.1	2
6	Positive Cooperativity Induced by Interstrand Interactions in Silver(I) Complexes with α,α′â€Diimine Ligands. Chemistry - A European Journal, 2022, 28, .	3.3	3
7	Versatility within (4,4) networks assembled from 1,4-bis(n-alkyloxy)-2,5-bis(3,2â \in 2:6â \in 2,3â \in 2'-terpyridin-4â \in 2-yl)benzene and [Cu(hfacac)2] (HhfacacÂ=Â1,1,1,5,5,5-hexafluoropentane-2,4-dione). Polyhedron, 2022, 224, 116005.	2.2	4
8	Borane and Carbaborane Clusters Meet Coordination Polymers and Networks: In the Hole or in the Backbone?. Structure and Bonding, 2021 , , 1 .	1.0	0
9	Turning over on sticky balls: preparation and catalytic studies of surface-functionalized TiO ₂ nanoparticles. RSC Advances, 2021, 11, 5537-5547.	3.6	4
10	Manipulating the Conformation of 3,2′:6′,3″-Terpyridine in [Cu2(μ-OAc)4(3,2′:6′,3″-tpy)]n 1D-FC Chemistry, 2021, 3, 182-198.	Polymers.	8
11	Heteroleptic $[Cu(P^P)(N^N)][PF6]$ Complexes: Effects of Isomer Switching from 2,2 $\hat{a}\in^2$ -biquinoline to $1,1\hat{a}\in^2$ -biisoquinoline. Crystals, 2021, 11, 185.	2.2	5
12	Modeling Enhanced Performances by Optical Nanostructures in Water-Splitting Photoelectrodes. Journal of Physical Chemistry C, 2021, 125, 7010-7021.	3.1	3
13	1,4-Dibromo-2,5-bis(phenylalkoxy)benzene Derivatives: C–Brπ(arene) Versus C–HBr and BrBr Interactions in the Solid State. Crystals, 2021, 11, 325.	2.2	2
14	1,1′-Biisoquinolines—Neglected Ligands in the Heterocyclic Diimine Family That Provoke Stereochemical Reflections. Molecules, 2021, 26, 1584.	3.8	8
15	Coordination-Driven Monolayer-to-Bilayer Transition in Two-Dimensional Metal–Organic Networks. Journal of Physical Chemistry B, 2021, 125, 4204-4211.	2.6	1
16	Supramolecular Chemistry in the 3rd Millennium. Chemistry, 2021, 3, 509-510.	2.2	3
17	Isomers of Terpyridine as Ligands in Coordination Polymers and Networks Containing Zinc(II) and Cadmium(II). Molecules, 2021, 26, 3110.	3.8	12
18	Electrolyte Tuning in Iron(II)-Based Dye-Sensitized Solar Cells: Different Ionic Liquids and I2 Concentrations. Materials, 2021, 14, 3053.	2.9	12

#	Article	IF	CITATIONS
19	SCNAT Platform Chemistry. Chimia, 2021, 75, 559-560.	0.6	0
20	Isomeric $4,2\hat{a}\in^2$: $6\hat{a}\in^2$, $4\hat{a}\in^3$ - and $3,2\hat{a}\in^2$: $6\hat{a}\in^2$, $3\hat{a}\in^3$ -Terpyridines with Isomeric $4\hat{a}\in^2$ -Trifluoromethylphenyl Substitution the Assembly of Coordination Polymers with [Cu(hfacac)2] (Hhfacac =) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 6	ents: Effe 9 27 Td (He	cts exafluoropen
21	Memorial Issue Dedicated to Dr. Howard D. Flack: The Man behind the Flack Parameter. Chemistry, 2021, 3, 818-820.	2.2	0
22	Coordination Polymers and Metal-Organic Frameworks: Structures and Applicationsâ€"A Themed Issue in Honor of Professor Christoph Janiak on the Occasion of His 60th Birthday. Chemistry, 2021, 3, 831-833.	2.2	0
23	Coordination networks assembled from Co(NCS)2 and 4′-[4-(naphthalen-1-yl)phenyl]-3,2′:6′,3″-terpyri Role of lattice solvents. Polyhedron, 2021, 208, 115445.	dine: 2.2	1
24	Desymmetrizing Heteroleptic [Cu(P^P)(N^N)][PF6] Compounds: Effects on Structural and Photophysical Properties, and Solution Dynamic Behavior. Molecules, 2021, 26, 125.	3.8	9
25	The influence of alkyl chains on the performance of DSCs employing iron(<scp>ii</scp>) N-heterocyclic carbene sensitizers. Dalton Transactions, 2021, 50, 16961-16969.	3.3	7
26	Adapting (4,4) Networks through Substituent Effects and Conformationally Flexible 3,2':6',3―Terpyridines. Molecules, 2021, 26, 6337.	3.8	2
27	A counterion study of a series of $[Cu(P^P)(N^N)][A]$ compounds with bis(phosphane) and 6-methyl and 6,6â \in 2-dimethyl-substituted 2,2â \in 2-bipyridine ligands for light-emitting electrochemical cells. Dalton Transactions, 2021, 50, 17920-17934.	3.3	17
28	What Goes in Must Come out: The Story of Uric Acid. Chimia, 2021, 75, 891-893.	0.6	0
29	Brushing the surface: cascade reactions between immobilized nanoreactors. Nanoscale, 2020, 12, 1551-1562.	5.6	14
30	Porphyrin Containing Polymersomes with Enhanced ROS Generation Efficiency: In Vitro Evaluation. Macromolecular Bioscience, 2020, 20, e1900291.	4.1	5
31	Plant Toxins: Poison or Therapeutic?. Chimia, 2020, 74, 421.	0.6	O
32	â€~Simple' Oligopyridine Complexes – Sources of Unexpected Structural Diversity. Australian Journal of Chemistry, 2020, 73, 390.	0.9	12
33	Switching the Conformation of 3,2′:6′,3″-tpy Domains in 4′-(4-n-Alkyloxyphenyl)-3,2′:6′,3″-Ter Molecules, 2020, 25, 3162.	pyridines.	8
34	The terpyridine isomer game: from chelate to coordination network building block. Chemical Communications, 2020, 56, 10786-10794.	4.1	32
35	Straight Versus Branched Chain Substituents in 4′-(Butoxyphenyl)-3,2′:6′,3″-terpyridines: Effects on (4 Coordination Network Assemblies. Polymers, 2020, 12, 1823.	,4) 4.5	3
36	Halide Ion Embraces in Tris(2,2′-bipyridine)metal Complexes. Crystals, 2020, 10, 671.	2.2	6

#	Article	IF	CITATIONS
37	When Stereochemistry Raised Its Ugly Head in Coordination Chemistry—An Appreciation of Howard Flack. Chemistry, 2020, 2, 759-776.	2.2	7
38	Before Radicals Were Free – the Radical Particulier of de Morveau. Chemistry, 2020, 2, 293-304.	2.2	4
39	Chemical Bonding: The Journey from Miniature Hooks to Density Functional Theory. Molecules, 2020, 25, 2623.	3.8	11
40	The shiny side of copper: bringing copper(<scp>i</scp>) light-emitting electrochemical cells closer to application. RSC Advances, 2020, 10, 22631-22644.	3.6	18
41	Transferring photocatalytic CO ₂ reduction mediated by Cu(N^N)(P^P) ⁺ complexes from organic solvents into ionic liquid media. Green Chemistry, 2020, 22, 4541-4549.	9.0	12
42	Chimera Diimine Ligands in Emissive [Cu(P^P)(N^N)][PF6] Complexes. Inorganics, 2020, 8, 33.	2.7	6
43	Positional Isomerism in the N^N Ligand: How Much Difference Does a Methyl Group Make in [Cu(P^P)(N^N)]+ Complexes?. Molecules, 2020, 25, 2760.	3.8	8
44	Intra-Cation versus Inter-Cation π-Contacts in [Cu(P^P)(N^N)][PF6] Complexes. Crystals, 2020, 10, 1.	2.2	31
45	Schiff Base Ancillary Ligands in Bis(diimine) Copper(I) Dye-Sensitized Solar Cells. International Journal of Molecular Sciences, 2020, 21, 1735.	4.1	10
46	Remote Modification of Bidentate Phosphane Ligands Controlling the Photonic Properties in Their Complexes: Enhanced Performance of [Cu(RNâ€xantphos)(N ^ N)][PF 6] in Lightâ€Emitting Electrochemical Cells. Advanced Optical Materials, 2020, 8, 1901689.	7.3	12
47	The SALSAC approach: comparing the reactivity of solvent-dispersed nanoparticles with nanoparticulate surfaces. Nanoscale Advances, 2020, 2, 679-690.	4.6	6
48	Are Alkynyl Spacers in Ancillary Ligands in Heteroleptic Bis(diimine)copper(I) Dyes Beneficial for Dye Performance in Dye-Sensitized Solar Cells?. Molecules, 2020, 25, 1528.	3.8	15
49	The Role of Percent Volume Buried in the Characterization of Copper(I) Complexes for Lighting Purposes. Molecules, 2020, 25, 2647.	3.8	13
50	Single and Double-Stranded 1D-Coordination Polymers with 4′-(4-Alkyloxyphenyl)-3,2′:6′,3″-terpyridine and {Cu2(μ-OAc)4} or {Cu4(μ3-OH)2(μ-OAc)2(μ3-OAc)2(AcO-βO)2} Motifs. Polymers, 2020, 12, 318.	^{2S} 4.5	12
51	Extended π-Systems in Diimine Ligands in [Cu(P^P)(N^N)][PF6] Complexes: From 2,2′-Bipyridine to 2-(Pyridin-2-yl)Quinoline. Crystals, 2020, 10, 255.	2.2	20
52	How Reproducible are Electrochemical Impedance Spectroscopic Data for Dye-Sensitized Solar Cells?. Materials, 2020, 13, 1547.	2.9	6
53	Directing 2D-Coordination Networks: Combined Effects of a Conformationally Flexible $3,2\hat{a}\in^2:6\hat{a}\in^2,3\hat{a}\in^3$ -Terpyridine and Chain Length Variation in $4\hat{a}\in^2$ -(4-n-Alkyloxyphenyl) Substituents. Molecules, 20, 1663.	0203	8
54	Silicates, Aluminosilicates and Biogenic Silica. Chimia, 2020, 74, 1022-1023.	0.6	1

#	Article	IF	CITATIONS
55	Heteroleptic [Cu(P^P)(N^N)][PF6] Compounds with Isomeric Dibromo-1,10-Phenanthroline Ligands. Inorganics, 2020, 8, 4.	2.7	9
56	Ice and Beyond: Tetrahedral Building Blocks in Crystals. Chimia, 2020, 74, 735.	0.6	2
57	Ditopic and Tetratopic 4,2':6',4"-Terpyridines as Structural Motifs in 2D- and 3D-Coordination Assemblies. Chimia, 2019, 73, 462.	0.6	14
58	Competition in Coordination Assemblies: 1D-Coordination Polymer or 2D-Nets Based on Co(NCS)2 and $4\hat{a}\in^2$ -(4-methoxyphenyl)-3,2 $\hat{a}\in^2$:6 $\hat{a}\in^2$,3 $\hat{a}\in^3$ -terpyridine. Polymers, 2019, 11, 1224.	4.5	12
59	The central role of the d-block metals in the periodic table. Dalton Transactions, 2019, 48, 9405-9407.	3.3	2
60	The Early Years of 2,2'-Bipyridineâ€"A Ligand in Its Own Lifetime. Molecules, 2019, 24, 3951.	3.8	87
61	The Colour Violet: Chemistry or Physics?. Chimia, 2019, 73, 760-762.	0.6	О
62	Trinodal Self-Penetrating Nets from Reactions of 1,4-Bis(alkoxy)-2,5-bis(3,2':6',3''-terpyridin-4' Ligands with Cobalt(II) Thiocyanate. Crystals, 2019, 9, 529.	-yl)benzer 2:2	ne 6
63	Softening the Donor-Set: From [Cu(P^P)(N^N)][PF6] to [Cu(P^P)(N^S)][PF6]. Inorganics, 2019, 7, 11.	2.7	3
64	Phosphane tuning in heteroleptic $[Cu(N^N)(P^P)]$ (sup>+complexes for light-emitting electrochemical cells. Dalton Transactions, 2019, 48, 446-460.	3.3	44
65	Synthesis of Terpyridines: Simple Reactions—What Could Possibly Go Wrong?. Molecules, 2019, 24, 1799.	3.8	16
66	Comparing a porphyrin- and a coumarin-based dye adsorbed on NiO(001). Beilstein Journal of Nanotechnology, 2019, 10, 874-881.	2.8	4
67	[Cu(POP)(N^S)][PF ₆] and [Cu(xantphos)(N^S)][PF ₆] compounds with 2-(thiophen-2-yl)pyridines. RSC Advances, 2019, 9, 13646-13657.	3.6	11
68	Heteroatom substitution effects in spin crossover dinuclear complexes. Dalton Transactions, 2019, 48, 7337-7343.	3.3	5
69	Substituent Effects in the Crystal Packing of Derivatives of 4′-Phenyl-2,2′:6′,2″-Terpyridine. Crystals, 209, 110.)19 2.2	3
70	Hinged and Wide: A New P^P Ligand for Emissive [Cu(P^P)(N^N)][PF6] Complexes. Molecules, 2019, 24, 3934.	3.8	10
71	There Is a Future for N-Heterocyclic Carbene Iron(II) Dyes in Dye-Sensitized Solar Cells: Improving Performance through Changes in the Electrolyte. Materials, 2019, 12, 4181.	2.9	9
72	The Sting's the Thing. Chimia, 2019, 73, 1037-1038.	0.6	1

#	Article	IF	Citations
73	Non-immunological toxicological mechanisms of metamizole-associated neutropenia in HL60 cells. Biochemical Pharmacology, 2019, 163, 345-356.	4.4	14
74	Cuprophilia: Dye-sensitized solar cells with copper(I) dyes and copper(I)/(II) redox shuttles. Dyes and Pigments, 2018, 156, 410-416.	3.7	40
75	Copper(I) and silver(I) complexes of 9,9-dimethyl-4,5-bis(di-tert-butylphosphino)xanthene: photophysical properties and structural rigidity under pressure. Photochemical and Photobiological Sciences, 2018, 17, 375-385.	2.9	24
76	The influence of phosphonic acid protonation state on the efficiency of bis(diimine)copper(<scp>i</scp>) dye-sensitized solar cells. Sustainable Energy and Fuels, 2018, 2, 786-794.	4.9	11
77	CF ₃ Substitution of [Cu(P^P)(bpy)][PF ₆] Complexes: Effects on Photophysical Properties and Lightâ€Emitting Electrochemical Cell Performance. ChemPlusChem, 2018, 83, 217-229.	2.8	45
78	The Different Faces of $4\hat{a}\in^2$ -Pyrimidinyl-Functionalized $4,2\hat{a}\in^2$: $6\hat{a}\in^2$, $4\hat{a}\in^2$: $4\hat{a}\in^2$ -Terpyridines: Metal $\hat{a}\in^2$ -Organic Assemfrom Solution and on Au(111) and Cu(111) Surface Platforms. Journal of the American Chemical Society, 2018, 140, 2933-2939.	nblies 13.7	13
79	Self-assembly of heteroleptic dinuclear silver(i) complexes bridged by bis(diphenylphosphino)ethyne. Dalton Transactions, 2018, 47, 946-957.	3.3	5
80	Refining the anchor: Optimizing the performance of cyclometallated ruthenium(II) dyes in p-type dye sensitized solar cells. Polyhedron, 2018, 140, 122-128.	2.2	6
81	CF3 Substitution of [Cu(P^P)(bpy)][PF6] Complexes: Effects on Photophysical Properties and Light-Emitting Electrochemical Cell Performance. ChemPlusChem, 2018, 83, 143-143.	2.8	2
82	Tetratopic bis(4,2′:6′,4′′-terpyridine) and bis(3,2′:6′,3′′-terpyridine) Ligands as 4-Connectir 2D-Coordination Networks and 3D-Frameworks. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 414-427.	ng Nodes ir 3.7	n 17
83	Porphyrin-polymer nanocompartments: singlet oxygen generation and antimicrobial activity. Journal of Biological Inorganic Chemistry, 2018, 23, 109-122.	2.6	24
84	Electrolyte tuning in dye-sensitized solar cells with $\langle i \rangle N \langle i \rangle$ -heterocyclic carbene (NHC) iron(II) sensitizers. Beilstein Journal of Nanotechnology, 2018, 9, 3069-3078.	2.8	13
85	Sometimes the Same, Sometimes Different: Understanding Self-Assembly Algorithms in Coordination Networks. Polymers, 2018, 10, 1369.	4.5	5
86	Protecting the Eggs of a Praying Mantis: Natural Biomaterials. Chimia, 2018, 72, 819.	0.6	1
87	Carnivores' Teeth: Inorganic Materials in Action. Chimia, 2018, 72, 650-651.	0.6	1
88	Exploring the effect of the cyclometallating ligand in 2-(pyridine-2-yl)benzo[<i>d</i>)thiazole-containing iridium(<scp>iii</scp>) complexes for stable light-emitting electrochemical cells. Journal of Materials Chemistry C, 2018, 6, 12679-12688.	5.5	15
89	Where Are the tpy Embraces in [Zn{4′-(EtO)2OPC6H4tpy}2][CF3SO3]2?. Crystals, 2018, 8, 461.	2.2	2
90	Transoid-to-Cisoid Conformation Changes of Single Molecules on Surfaces Triggered by Metal Coordination. ACS Omega, 2018, 3, 12851-12856.	3.5	5

#	Article	IF	Citations
91	A Phosphonic Acid Anchoring Analogue of the Sensitizer P1 for p-Type Dye-Sensitized Solar Cells. Crystals, 2018, 8, 389.	2.2	12
92	Anchoring of a dye precursor on NiO(001) studied by non-contact atomic force microscopy. Beilstein Journal of Nanotechnology, 2018, 9, 242-249.	2.8	10
93	Luminescent copper(<scp>i</scp>) complexes with bisphosphane and halogen-substituted 2,2′-bipyridine ligands. Dalton Transactions, 2018, 47, 14263-14276.	3.3	63
94	[Cu(P^P)(N^N)][PF ₆] compounds with bis(phosphane) and 6-alkoxy, 6-alkylthio, 6-phenyloxy and 6-phenylthio-substituted 2,2′-bipyridine ligands for light-emitting electrochemical cells. Journal of Materials Chemistry C, 2018, 6, 8460-8471.	5.5	53
95	Effects of Introducing Methoxy Groups into the Ancillary Ligands in Bis(diimine) Copper(I) Dyes for Dye-Sensitized Solar Cells. Inorganics, 2018, 6, 40.	2.7	14
96	The Versatile SALSAC Approach to Heteroleptic Copper(I) Dye Assembly in Dye-Sensitized Solar Cells. Inorganics, 2018, 6, 57.	2.7	20
97	Geckos, Ceilings and van der Waals. Chimia, 2018, 72, 428.	0.6	0
98	Guest-Responsive Elastic Frustration "On–Off―Switching in Flexible, Two-Dimensional Spin Crossover Frameworks. Inorganic Chemistry, 2018, 57, 11068-11076.	4.0	25
99	Tolerating Toxins: Grasshoppers that Feast on Pyrrolizidine Alkaloids §. Chimia, 2018, 72, 156.	0.6	1
100	Homoleptic complexes of a porphyrinatozinc(ii)-2,2′:6′,2′′-terpyridine ligand. Photochemical and Photobiological Sciences, 2017, 16, 585-595.	2.9	0
101	Highly Stable Red-Light-Emitting Electrochemical Cells. Journal of the American Chemical Society, 2017, 139, 3237-3248.	13.7	95
102	Exploring simple ancillary ligands in copper-based dye-sensitized solar cells: effects of a heteroatom switch and of co-sensitization. Journal of Materials Chemistry A, 2017, 5, 4671-4685.	10.3	27
103	The effects of introducing sterically demanding aryl substituents in [Cu(N^N)(P^P)] ⁺ complexes. Dalton Transactions, 2017, 46, 6379-6391.	3.3	36
104	Sweetness and light: Sugar-functionalized CˆN and NˆN ligands in [Ir(CˆN)2(NˆN)]Cl complexes. Journal of Organometallic Chemistry, 2017, 849-850, 54-62.	1.8	0
105	Coordination behavior of 1-(3,2 \hat{a} \in 2:6 \hat{a} \in 2,3 \hat{a} \in 3-terpyridin-4 \hat{a} \in 2-yl)ferrocene: Structure and magnetic and electrochemical properties of a tetracopper dimetallomacrocycle. Polyhedron, 2017, 129, 71-76.	2.2	9
106	What a difference a tail makes: 2D → 2D parallel interpenetration of sheets to interpenetrated nbo networks using ditopic-4,2′:6′,4′′-terpyridine ligands. CrystEngComm, 2017, 19, 2894-2	90 ² 2.6	12
107	More hydra than Janus – Non-classical coordination modes in complexes of oligopyridine ligands. Coordination Chemistry Reviews, 2017, 350, 84-104.	18.8	45
108	The way to panchromatic copper(<scp>i</scp>)-based dye-sensitized solar cells: co-sensitization with the organic dye SQ2. Journal of Materials Chemistry A, 2017, 5, 13717-13729.	10.3	28

#	Article	IF	CITATIONS
109	Optimization of performance and long-term stability of p-type dye-sensitized solar cells with a cycloruthenated dye through electrolyte solvent tuning. Sustainable Energy and Fuels, 2017, 1, $626-635$.	4.9	12
110	Coordination Behaviour of 1-(4,2′:6′,4′′-terpyridin-4′-yl)ferrocene and 1-(3,2′:6′,3′′-terpyridin-4′-yl)ferrocene and 1-(3,2′:6′,3′-terpyridin-4′-yl)ferrocene and 1-(3,2′:6′,3′-terpyridin-4′-yl)ferrocene and 1-(3,2′:6′-terpyridin-4′-yl)ferrocene and 1-(3,2′:6′-terpyridin-4′-yl)ferrocene and 1-(3,2′-terpyridin-4′-yl)ferrocene and 1-(3,2′-terpyridin-4′-terpyridi	yridin-4â€	² -yl)ferrocen
111	Over the LEC rainbow: Colour and stability tuning of cyclometallated iridium(III) complexes in light-emitting electrochemical cells. Coordination Chemistry Reviews, 2017, 350, 155-177.	18.8	117
112	Design and Characterization of an Electrically Powered Single Molecule on Gold. ACS Nano, 2017, 11, 9930-9940.	14.6	44
113	Absolute ion hydration enthalpies and the role of volume within hydration thermodynamics. RSC Advances, 2017, 7, 27881-27894.	3.6	26
114	4,2':6',4― and 3,2':6',3―Terpyridines: The Conflict between Well-Defined Vectorial Properties a Serendipity in the Assembly of 1D-, 2D- and 3D-Architectures. Materials, 2017, 10, 728.	nd 2.9	9
115	Development of Cyclometallated Iridium(III) Complexes for Light-Emitting Electrochemical Cells. , 2017, , 167-202.		1
116	Structure and Magnetic Properties of the Spin Crossover Linear Trinuclear Complex [Fe3(furtrz)6(ptol)2(MeOH)4]·4(ptol)·4(MeOH) (furtrz: furanylidene-4H-1,2,4-triazol-4-amine ptol:) Tj ETQq0 0	Ozr g BT/O	v eø lock 10 T
117	Bisâ€Sulfone―and Bisâ€Sulfoxideâ€Spirobifluorenes: Polar Acceptor Hosts with Tunable Solubilities for Blueâ€Phosphorescent Lightâ€Emitting Devices. European Journal of Organic Chemistry, 2016, 2016, 2037-2047.	2.4	10
118	'Active Surfaces' as Possible Functional Systems in Detection and Chemical (Bio) Reactivity. Chimia, 2016, 70, 402.	0.6	1
119	4′-Functionalized 2,2′:6′,2″-terpyridines as the NˆN domain in [Ir(CˆN)2(NˆN)][PF6] complexes. Jo Organometallic Chemistry, 2016, 812, 272-279.	urnal of	11
120	Constructing chiral MOFs by functionalizing 4,2′:6′,4′′-terpyridine with long-chain alkoxy domains: rar examples of <i>neb</i> nets. CrystEngComm, 2016, 18, 4704-4707.	e 2.6	16
121	Improving performance of copper(I)-based dye sensitized solar cells through I3â^'/lâ^' electrolyte manipulation. Dyes and Pigments, 2016, 132, 72-78.	3.7	22
122	Regioisomerism in cationic sulfonyl-substituted [Ir(C^N) ₂ (N^N)] ⁺ complexes: its influence on photophysical properties and LEC performance. Dalton Transactions, 2016, 45, 11668-11681.	3.3	21
123	Cyanoacrylic- and (1-cyanovinyl)phosphonic acid anchoring ligands for application in copper-based dye-sensitized solar cells. RSC Advances, 2016, 6, 86220-86231.	3.6	11
124	Probing the mystery of Liesegang band formation: revealing the origin of self-organized dual-frequency micro and nanoparticle arrays. Soft Matter, 2016, 12, 8367-8374.	2.7	18
125	Modular synthesis of simple cycloruthenated complexes with state-of-the-art performance in p-type DSCs. Journal of Materials Chemistry C, 2016, 4, 9823-9833.	5.5	21
126	$[Ir(C^N) < sub > 2 < / sub > (N^N)] < sup > + < / sup > emitters containing a naphthalene unit within a linker between the two cyclometallating ligands. Dalton Transactions, 2016, 45, 16379-16392.$	3.3	7

#	Article	IF	CITATIONS
127	Understanding why replacing I ₃ ^{â^'} /I ^{â^'} by cobalt(<scp>ii</scp>)/(<scp>iii</scp>) electrolytes in bis(diimine)copper(<scp>i</scp>)-based dye-sensitized solar cells improves performance. Journal of Materials Chemistry A, 2016, 4, 12995-13004.	10.3	24
128	Peripheral halo-functionalization in $[Cu(N^N)(P^P)]$ < sup>+emitters: influence on the performances of light-emitting electrochemical cells. Dalton Transactions, 2016, 45, 15180-15192.	3.3	61
129	A double-stranded 1D-coordination polymer assembled using the tetravergent ligand 1,1′-bis(4,2′:6′,4″-terpyridin-4′-yl)ferrocene. Inorganic Chemistry Communication, 2016, 70, 118-12	.0 ^{3.9}	9
130	2,2′:6′,2′′-Terpyridine-functionalized redox-responsive hydrogels as a platform for multi responsive amphiphilic polymer membranes. RSC Advances, 2016, 6, 97921-97930.	3.6	11
131	Copper-based dye-sensitized solar cells with quasi-solid nano cellulose composite electrolytes. RSC Advances, 2016, 6, 56571-56579.	3.6	16
132	Shine bright or live long: substituent effects in $[Cu(N^N)(P^P)] < \sup + -based light-emitting electrochemical cells where N^N is a 6-substituted 2,2\hat{a} \in \mathbb{R}^2-bipyridine. Journal of Materials Chemistry C, 2016, 4, 3857-3871.$	5.5	83
133	Combining phosphonic acid-functionalized anchoring ligands with asymmetric ancillary ligands in bis(diimine)copper(<scp>i</scp>) dyes for dye-sensitized solar cells. RSC Advances, 2016, 6, 5205-5213.	3.6	22
134	Improved light absorbance does not lead to better DSC performance: studies on a ruthenium porphyrin–terpyridine conjugate. RSC Advances, 2016, 6, 15370-15381.	3.6	4
135	A self-assembled, multicomponent water oxidation device. Chemical Communications, 2016, 52, 2940-2943.	4.1	5
136	Dinuclear [Cu2(N^N)(P^P)2][PF6]2 complexes containing bridging 2,3,5,6-tetra(pyridin-2-yl)pyrazine or 2,4,6-tri(pyridin-2-yl)-1,3,5-triazine ligands. Polyhedron, 2016, 116, 3-11.	2.2	10
137	Positional isomerism makes a difference: phosphonic acid anchoring ligands with thienyl spacers in copper(<scp>i</scp>)-based dye-sensitized solar cells. Dalton Transactions, 2016, 45, 4659-4672.	3.3	29
138	Understanding the formation of aligned, linear arrays of Ag nanoparticles. RSC Advances, 2016, 6, 28388-28392.	3.6	8
139	Redox cycling of iridium(III) complexes gives versatile materials for photonics applications. Polyhedron, 2016, 106, 51-57.	2.2	4
140	2-Dimensional networks assembled using 4′-functionalized 4,2′:6′,4″-terpyridines and Co(NCS)2. Polyhedron, 2016, 103, 58-65.	2.2	16
141	Tuning peripheral π-stacking motifs in {Cr(tpy)2}3+ domains (tpy=2,2′:6′,2″-terpyridine). Inorganic Chemistry Communication, 2015, 53, 80-83.	3.9	10
142	Alkyl chain-functionalized hole-transporting domains in zinc(II) dye-sensitized solar cells. Dyes and Pigments, 2015, 116, 124-130.	3.7	7
143	Homoleptic and heteroleptic complexes of chromium(III) containing 4′-diphenylamino-2,2′:6′,2″-terpyr ligands. Polyhedron, 2015, 89, 182-188.	idine 2.2	17
144	â€~Surfaces-as-ligands, surfaces-as-complexes' strategies for copper(I) dye-sensitized solar cells. Dyes and Pigments, 2015, 115, 154-165.	3.7	28

#	Article	IF	Citations
145	Exceptionally long-lived light-emitting electrochemical cells: multiple intra-cation π-stacking interactions in [Ir(C^N) ₂ (N^N)][PF ₆] emitters. Chemical Science, 2015, 6, 2843-2852.	7.4	79
146	Programmed assembly of $4,2\hat{a}\in^2$: $6\hat{a}\in^2$, $4\hat{a}\in^2$ -terpyridine derivatives into porous, on-surface networks. Chemical Communications, 2015, 51, 12297-12300.	4.1	9
147	Hexafluoridophosphate partial hydrolysis leading to the one-dimensional coordination polymer $[{Cu(xantphos)(\hat{1}/4-PO2F2)}n]$. Inorganic Chemistry Communication, 2015, 58, 64-66.	3.9	6
148	Colour tuning by the ring roundabout: [Ir(C^N) ₂ (N^N)] ⁺ emitters with sulfonyl-substituted cyclometallating ligands. RSC Advances, 2015, 5, 42815-42827.	3.6	29
149	Incorporation of a FRET dye pair into mesoporous materials: a comparison of fluorescence spectra, FRET activity and dye accessibility. Analyst, The, 2015, 140, 5324-5334.	3. 5	20
150	Engineering 2Dâ†'2D parallel interpenetration using long alkoxy-chain substituents. Polyhedron, 2015, 92, 77-83.	2.2	20
151	Dye-sensitized solar cells with hole-stabilizing surfaces: "inorganic―versus "organic―strategies. RSC Advances, 2015, 5, 37906-37915.	3.6	10
152	[Cu(N^N)(P^P)] ⁺ complexes with 2,2â€ 2 :6â€ 2 ,2â€ 2 2ê€ 2 -terpyridine ligands as the N^N domain. Dalton Transactions, 2015, 44, 7626-7633.	¹ 3.3	36
153	Carboranes as guests, counterions and linkers in coordination polymers and networks. Journal of Organometallic Chemistry, 2015, 798, 218-228.	1.8	40
154	Copper(<scp>i</scp>)-based dye-sensitized solar cells with sterically demanding anchoring ligands: bigger is not always better. RSC Advances, 2015, 5, 48516-48525.	3.6	29
155	Manipulating connecting nodes through remote alkoxy chain variation in coordination networks with $4\hat{a}\in^2$ -alkoxy-4, $2\hat{a}\in^2$: $6\hat{a}\in^2$, $4\hat{a}\in^2\hat{a}\in^2$ -terpyridine linkers. CrystEngComm, 2015, 17, 6483-6492.	2.6	14
156	The beneficial effects of trifluoromethyl-substituents on the photoconversion efficiency of copper(<scp>i</scp>) dyes in dye-sensitized solar cells. RSC Advances, 2015, 5, 58694-58703.	3.6	26
157	Heteroleptic copper(<scp>i</scp>) sensitizers with one versus two hole-transporting units in functionalized 2,9-dimethyl-1,10-phenanthroline ancillary ligands. RSC Advances, 2015, 5, 69430-69440.	3.6	15
158	The emergence of copper(<scp>i</scp>)-based dye sensitized solar cells. Chemical Society Reviews, 2015, 44, 8386-8398.	38.1	200
159	Divergent 4,2′:6′,4′′- and 3,2′:6′,3′′-terpyridines as linkers in 2- and 3-dimensional architect CrystEngComm, 2015, 17, 7461-7468.	iures. 2.6	47
160	A 3-dimensional {4 ² ·8 ⁴ } lvt net built from a ditopic bis(3,2′:6′,3″-terpyridine) tecton bearing long alkyl tails. CrystEngComm, 2015, 17, 2070-2073.	2.6	25
161	Heteroleptic chromium(III) tris(diimine) [Cr(N^N)2(N′^N′)]3+ complexes. Inorganic Chemistry Communication, 2015, 51, 75-77.	3.9	10
162	Sticking and patching: tuning and anchoring cyclometallated ruthenium(<scp>ii</scp>) complexes. Dalton Transactions, 2015, 44, 1557-1570.	3.3	26

#	Article	IF	CITATIONS
163	Concentration effects on the performance of bis(diimine) copper(I) dyes in dye-sensitized solar cells. Dyes and Pigments, 2015, 113, 447-450.	3.7	16
164	Phosphonate-functionalized heteroleptic ruthenium(II) bis(2,2′:6′,2″-terpyridine) complexes. Canadian Journal of Chemistry, 2014, 92, 724-730.	1.1	6
165	Kenneth Wade (1932 – 2014). Angewandte Chemie - International Edition, 2014, 53, 5742-5743.	13.8	1
166	Assembling chiral salan–copper(II) complexes into a 2D-network with carboxylic acid functionalization. Inorganic Chemistry Communication, 2014, 43, 51-55.	3.9	4
167	Chloride ion impact on materials for light-emitting electrochemical cells. Dalton Transactions, 2014, 43, 1961-1964.	3.3	41
168	Influence of a co-adsorbent on the performance of bis(diimine) copper(i)-based dye-sensitized solar cells. RSC Advances, 2014, 4, 62728-62736.	3.6	24
169	Halos show the path to perfection: peripheral iodo-substituents improve the efficiencies of bis(diimine)copper(<scp>i</scp>) dyes in DSCs. RSC Advances, 2014, 4, 48712-48723.	3.6	43
170	Greasy tails switch 1D-coordination [{Zn ₂ (OAc) ₄ (4′-(4-ROC ₆ H ₄)-4,2′:6′,4′′-tpy)}< <p>polymers to discrete [Zn₂(OAc)₄(4′-(4-ROC₆H₄)-4,2′:6′,4′′-tpy)₆</p>	2.6	39
171	complexes. CrystEngComm, 2014, 16, 9915-9929. 2D â†' 2D Parallel interpenetration of (4,4) sheets constructed from a ditopic bis(4,2′:6′,4′′-terpyridine CrystEngComm, 2014, 16, 3494-3497.	^{e)} 2.6	28
172	Spin crossover intermediate plateau stabilization in a flexible 2-D Hofmann-type coordination polymer. Chemical Communications, 2014, 50, 3838-3840.	4.1	80
173	Red emitting [Ir(C^N) ₂ (N^N)] ⁺ complexes employing bidentate 2,2′:6′,2â€²à€²-terpyridine ligands for light-emitting electrochemical cells. Dalton Transactions, 2014, 43, 4653-4667.	3.3	40
174	Assembling model tris(bipyridine)ruthenium(<scp>ii</scp>) photosensitizers into ordered monolayers in the presence of the polyoxometallate anion [Co ₄ (H ₂ O) ₂ (α-PW ₉ O ₃₄) ₂] _{RSC Advances, 2014, 4, 11766-11775.}	10a° <td>p\$4.</td>	p\$4.
175	Thienylpyridine-based cyclometallated iridium(<scp>iii</scp>) complexes and their use in solid state light-emitting electrochemical cells. Dalton Transactions, 2014, 43, 738-750.	3.3	35
176	Coumarin meets fluorescein: a Förster resonance energy transfer enhanced optical ammonia gas sensor. Analyst, The, 2014, 139, 4335-4342.	3.5	41
177	Factors controlling the photoresponse of copper(i) diimine dyes containing hole-transporting dendrons in dye-sensitized solar cells: substituent and solvent effects. RSC Advances, 2014, 4, 34801-34815.	3.6	28
178	The surprising lability of bis(2,2′:6′,2′′-terpyridine)chromium(<scp>iii</scp>) complexes. Dalton Transactions, 2014, 43, 7227-7235.	3.3	38
179	Metallohexacycles containing 4′-aryl-4,2′:6′,4′′-terpyridines: conformational preferences and fullere capture. CrystEngComm, 2014, 16, 328-338.	ene 2.6	21
180	Environmental control in the assembly of metallomacrocycles and one-dimensional polymers with 4,2′:6′:4′′-terpyridine linkers and zinc(ii) nodes. CrystEngComm, 2014, 16, 8691-8699.	2.6	17

#	Article	IF	CITATIONS
181	4,2′:6′,4′′-Terpyridines: diverging and diverse building blocks in coordination polymers and metallomacrocycles. Dalton Transactions, 2014, 43, 6594-6604.	3.3	89
182	Green-emitting iridium(<scp>iii</scp>) complexes containing sulfanyl- or sulfone-functionalized cyclometallating 2-phenylpyridine ligands. Dalton Transactions, 2014, 43, 5343-5356.	3.3	36
183	Bright and stable light-emitting electrochemical cells based on an intramolecularly π-stacked, 2-naphthyl-substituted iridium complex. Journal of Materials Chemistry C, 2014, 2, 7047-7055.	5.5	38
184	Using Scanning Electrochemical Microscopy to Examine Copper(I) Sensitizers for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16912-16918.	3.1	12
185	Chiral tetranuclear and dinuclear copper(<scp>ii</scp>) complexes for TEMPO-mediated aerobic oxidation of alcohols: are four metal centres better than two?. Dalton Transactions, 2014, 43, 12313.	3.3	27
186	Assembling coordination ladders with $4\hat{a}\in^2$ -(4-methoxyphenyl)-4, $2\hat{a}\in^2$: $6\hat{a}\in^2$, $4\hat{a}\in^3$ -terpyridine as rails and rungs. Inorganic Chemistry Communication, 2014, 49, 41-43.	3.9	14
187	[Cu(bpy)(P^P)] ⁺ containing light-emitting electrochemical cells: improving performance through simple substitution. Dalton Transactions, 2014, 43, 16593-16596.	3.3	80
188	Development of scanning electrochemical microscopy (SECM) techniques for the optimization of dye sensitized solar cells. Electrochimica Acta, 2014, 119, 86-91.	5.2	13
189	4′-(Pyrimidin-5-yl)- and 4′-(2-methylpyrimidin-5-yl)-4,2′:6′,4″-terpyridines: Selective coordination to z through the 4,2′:6′,4″-terpyridine domain. Polyhedron, 2014, 81, 98-104.	zi <u>n</u> c(II)	15
190	To deprotect or not to deprotect: Phosphonate ester versus phosphonic acid anchor ligands in copper(I)-based dye-sensitized solar cells. Polyhedron, 2014, 82, 116-121.	2.2	23
191	Light harvesting with Earth abundant d-block metals: Development of sensitizers in dye-sensitized solar cells (DSCs). Coordination Chemistry Reviews, 2013, 257, 3089-3106.	18.8	162
192	Copper(i) dye-sensitized solar cells with [Co(bpy)3]2+/3+ electrolyte. Chemical Communications, 2013, 49, 7222.	4.1	52
193	A homage to Alfred Werner: Exploring the stereochemical complexity of cyclometallated [Ir(ppy)2XY]n+ complexes (Hppy=2-phenylpyridine). Polyhedron, 2013, 52, 530-537.	2.2	4
194	Molecular recognition between $4\hat{a}\in^2$ -(4-biphenylyl)-4, $2\hat{a}\in^2$: $6\hat{a}\in^2$, $4\hat{a}\in^3$ -terpyridine domains in the assembly of d9 a d10 metal ion-containing one-dimensional coordination polymers. Polyhedron, 2013, 60, 120-129.	ınd 2.2	30
195	Improving the photoresponse of copper(i) dyes in dye-sensitized solar cells by tuning ancillary and anchoring ligand modules. Dalton Transactions, 2013, 42, 12293.	3.3	78
196	Do perfluoroareneâçarene and C–HâçF interactions make a difference to the structures of 4,2′:6′,4′′-terpyridine-based coordination polymers?. CrystEngComm, 2013, 15, 10068.	2.6	25
197	Solution, structural and photophysical aspects of substituent effects in the N^N ligand in $[Ir(C^N)_2(N^N)]$ + complexes. Dalton Transactions, 2013, 42, 8086.	3.3	18
198	6-(Thien-2-yl)-2,2′-bipyridine: Presenting an N^N or N^N^S donor set to silver(I). Inorganic Chemistry Communication, 2013, 27, 159-162.	3.9	13

#	Article	IF	CITATIONS
199	Ligand-Based Charge-Transfer Luminescence in Ionic Cyclometalated Iridium(III) Complexes Bearing a Pyrene-Functionalized Bipyridine Ligand: A Joint Theoretical and Experimental Study. Inorganic Chemistry, 2013, 52, 885-897.	4.0	56
200	Coordination chemistry: the scientific legacy of Alfred Werner. Chemical Society Reviews, 2013, 42, 1429-1439.	38.1	83
201	Coordination polymers with 4′-(4-(anthracen-9-yl)phenyl)- and 4′-(4-(naphthalen-1-yl)phenyl)-4,2′:6′,4″-terpyridines: Mono-, di- and heptazinc(II) nodes. Polyhedron, 2 62, 260-267.	021.23,	15
202	Water-soluble bis(4′-[2,2,2-tris(hydroxymethyl)ethoxy]-2,2′:6′,2″-terpyridine)metal complexes. Polyheo 2013, 54, 110-118.	lron, 2.2	8
203	Monomer, dimer or cyclic helicate? Coordination diversity with hard–soft P,N-donor ligands. Dalton Transactions, 2013, 42, 4970.	3.3	16
204	Investigating the effects of supramolecularly caging ligands in [Ru(bpy)2L]2+ complexes. Polyhedron, 2013, 64, 38-44.	2.2	2
205	Hole-transport functionalized copper(i) dye sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 4500.	2.8	60
206	Tuning the photophysical properties of cationic iridium(<scp>iii</scp>) complexes containing cyclometallated 1-(2,4-difluorophenyl)-1H-pyrazole through functionalized 2,2′-bipyridineligands: blue but not blue enough. Dalton Transactions, 2013, 42, 1073-1087.	3.3	54
207	Bis($4\hat{a}\in^2$ -(4-pyridyl)-2, $2\hat{a}\in^2$: $6\hat{a}\in^2$, $2\hat{a}\in^2\hat{a}\in^2$ -terpyridine)ruthenium(ii) complexes and their N-alkylated derivatives in catalytic light-driven water oxidation. RSC Advances, 2013, 3, 20647.	3.6	18
208	Efficient Greenâ€Lightâ€Emitting Electrochemical Cells Based on Ionic Iridium Complexes with Sulfoneâ€Containing Cyclometalating Ligands. Chemistry - A European Journal, 2013, 19, 8597-8609.	3.3	56
209	Kelvin probe force microscopy of nanocrystalline TiO ₂ photoelectrodes. Beilstein Journal of Nanotechnology, 2013, 4, 418-428.	2.8	49
210	Bucky-blocks: templating a coordination network with C ₆₀ . CrystEngComm, 2012, 14, 1770-1774.	2.6	16
211	2,2′:6′,2′-Terpyridine substituted in the 4′-position by the solubilizing and sterically demanding tergeoup: a surprisingly new ligand. Dalton Transactions, 2012, 41, 2890.	z-butyl 3.3	9
212	Stereochemistry controlled by an asymmetric sulfur atom, and a rare example of a kryptoracemate. Dalton Transactions, 2012, 41, 10276.	3.3	6
213	Multinuclear zinc(II) complexes with $\{Zn6(\hat{1}/4-0)6(\hat{1}/43-0)2\}$ - and $\{Zn5(\hat{1}/4-0)3(\hat{1}/43-0)3\}$ -cluster cores. Polyhedro 2012, 44, 150-155.	n 2.2	17
214	Exploring copper(i)-based dye-sensitized solar cells: a complementary experimental and TD-DFT investigation. Dalton Transactions, 2012, 41, 14157.	3.3	67
215	Coordination polymers with divergent 4′-tert-butyl-4,2′:6′,4′′-terpyridine linkers: from aryl-aryl to ball-and-socket packing. CrystEngComm, 2012, 14, 446-452.	2.6	31
216	Gold-decorated 2,2′-bipyridine ligands with sterically demanding phosphanes. Journal of Organometallic Chemistry, 2012, 721-722, 49-52.	1.8	1

#	Article	IF	CITATIONS
217	The d10 route to dye-sensitized solar cells: step-wise assembly of zinc(ii) photosensitizers on TiO2 surfaces. Chemical Communications, 2012, 48, 5727.	4.1	34
218	Fine-Tuning of Photophysical and Electronic Properties of Materials for Photonic Devices Through Remote Functionalization. European Journal of Inorganic Chemistry, 2012, 2012, 3780-3788.	2.0	17
219	Cobalt(ii) coordination polymers with $4\hat{a}\in^2$ -substituted $4,2\hat{a}\in^2$: $6\hat{a}\in^2$, $4\hat{a}\in^2\hat{a}\in^2$ - and $3,2\hat{a}\in^2$: $6\hat{a}\in^2$, $3\hat{a}\in^2\hat{a}\in^2$ -terpyridir switch from planar to undulating chains and sheets. CrystEngComm, 2012, 14, 3554.	nes: engine 2.6	egring a
220	A matter of greasy tails: Interdigitation of alkyl chains in free and coordinated 4′-(4-dodecyloxyphenyl)-4,2′:6′,4″-terpyridines. Inorganic Chemistry Communication, 2012, 15, 113-13	16:9	12
221	[Fe(4′-PhStpy)2][PF6]2 (4′-PhStpy = 4′-phenylthio-2,2′:6′,2″-terpyridine): A centrosymmetric em Inorganic Chemistry Communication, 2012, 20, 180-183.	brace.	2
222	Iron(II) and ruthenium(II) complexes of 4′-amino-functionalised 2,2′:6′,2″-terpyridines. Polyhedron, 201 33, 267-272.	.2 _{2.2}	4
223	Softening the donor set for light-emitting electrochemical cells: $[lr(ppy)2(N^N)]+$, $[lr(ppy)2(P^P)]+$ and $[lr(ppy)2(P^S)]+$ salts. Polyhedron, 2012, 35, 154-160.	2.2	16
224	When is a metallopolymer not a metallopolymer? When it is a metallomacrocycle. Dalton Transactions, 2011, 40, 1524.	3.3	36
225	9-Anthracenyl-substitued pyridyl enones revisited: photoisomerism in ligands and silver(i) complexes. Dalton Transactions, 2011, 40, 12146.	3.3	9
226	Environmental control of solution speciation in cobalt(ii) 2,2′:6′,2′′-terpyridine complexes: anion and solvent dependence. Dalton Transactions, 2011, 40, 11441.	3.3	22
227	Water-soluble alkylated bis{4′-(4-pyridyl)-2,2′:6′,2′′-terpyridine}ruthenium(ii) complexes for use as photosensitizers in water oxidation: a complementary experimental and TD-DFT investigation. Dalton Transactions, 2011, 40, 5505.	3.3	10
228	Light-emitting electrochemical cells based on a supramolecularly-caged phenanthroline-based iridium complex. Chemical Communications, 2011, 47, 3207.	4.1	70
229	Copper(i) complexes for sustainable light-emitting electrochemical cells. Journal of Materials Chemistry, 2011, 21, 16108.	6.7	184
230	Zinc(ii) coordination polymers, metallohexacycles and metallocapsulesâ€"do we understand self-assembly in metallosupramolecular chemistry: algorithms or serendipity?. CrystEngComm, 2011, 13, 6864.	2.6	67
231	The intramolecular aryl embrace: from light emission to light absorption. Dalton Transactions, 2011, 40, 12584.	3.3	64
232	Photoactive building blocks for coordination complexes: Gilding 2,2′:6′,2″-terpyridine. Polyhedron, 2011, 30, 2704-2710.	2.2	22
233	Disulfide struts: Assembly motifs supporting a cuprocapsule. Inorganic Chemistry Communication, 2011, 14, 1703-1705.	3.9	6
234	Metallohosts with a Heart of Carbon. Journal of the American Chemical Society, 2011, 133, 10776-10779.	13.7	10

#	Article	IF	CITATIONS
235	Restricting the geometrical relaxation in four-coordinate copper(i) complexes using face-to-face and edge-to-face π-interactions. CrystEngComm, 2011, 13, 2742.	2.6	34
236	Stable and Efficient Solidâ€State Lightâ€Emitting Electrochemical Cells Based on a Series of Hydrophobic Iridium Complexes. Advanced Energy Materials, 2011, 1, 282-290.	19.5	84
237	Bioorganic and Bioinorganic Chemistry. Chimia, 2010, 64, 846.	0.6	3
238	Tuning Coordination Environments Through Ligand Redox Chemistry: the Thiol - Disulfide Reaction. Australian Journal of Chemistry, 2010, 63, 1334.	0.9	9
239	Supramolecular and Nanochemistry. Chimia, 2010, 64, 877-884.	0.6	0
240	Redox addressable ligands in copper(i) coordination chemistry: thione and oligosulfide-bridged 6-methyl-2,2′-bipyridines. CrystEngComm, 2010, 12, 2928.	2.6	6
241	A hexadentate Schiff base ligand which undergoes reversible, diastereoselective addition of methanol. Journal of Molecular Structure, 2010, 975, 367-371.	3.6	2
242	Diastereoselective Assembly of Helicates Incorporating a Hexadentate Chiral Scaffold. European Journal of Inorganic Chemistry, 2010, 2010, 2000-2011.	2.0	38
243	Efficient and Longâ€Living Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2010, 20, 1511-1520.	14.9	147
244	The mononuclear–dinuclear dance: Twisting the backbone in metalloligands operates a coordination switch. Inorganica Chimica Acta, 2010, 363, 4207-4213.	2.4	24
245	Fe-only hydrogenase active site mimics: Fe2(CO)6(\hat{l} ¼-ADT) (ADT=azadithiolate) clusters bearing pendant 2,2â \in ²:6â \in ²,2â \in ³-terpyridine domains and containing alkynylthienylene or alkynylphenylene spacers. Inorganic Chemistry Communication, 2010, 13, 457-460.	3.9	7
246	Aldehyde-decorated 2,2′-bipyridine and 2,2′:6′,2″-terpyridine ruthenium(II) complexes: Convenient scaffolds for supramolecular chemistry. Inorganic Chemistry Communication, 2010, 13, 70-73.	3.9	4
247	A strategy for controlling charge and conformation in $2,2\hat{a}\in^2$ -bipyridine complexes for use in photonic applications. Inorganic Chemistry Communication, 2010, 13, 74-76.	3.9	6
248	First example of a CLICK reaction of a coordinated 4′-azido-2,2′:6′,2″-terpyridine ligand. Inorganic Chemistry Communication, 2010, 13, 495-497.	3.9	17
249	Capturing copper(II) ions using {Cu(tpy)(bpy)} domains. Inorganic Chemistry Communication, 2010, 13, 683-685.	3.9	9
250	Clicking not cooking: Functionalization of 2,2′:6′,2″-terpyridines by diol–boric acid interactions. Inorganic Chemistry Communication, 2010, 13, 878-881.	3.9	3
251	Host–guest chemistry of a chiral Schiff base copper(ii) complex: can chiral information be transferred to the guest cation?. CrystEngComm, 2010, 12, 1764.	2.6	41
252	Assembling and dissembling zinc-containing coordination polymers of 4′-phenyl-4,2′:6′,4″-terpyridine. CrystEngComm, 2010, 12, 2146.	2.6	27

#	Article	IF	CITATIONS
253	Sheet, ladder or chain? Small substituents in 4′-phenyl-4,2′:6′,4″-terpyridines control dimensionality in cadmium(ii) coordination polymers. CrystEngComm, 2010, 12, 3733.	2.6	23
254	Insights into Photoinduced Electron Transfer Between [Ru(mptpy) ₂] _{4+ (mptpy) Tj ETQc Computational and Experimental Studies. Journal of Physical Chemistry A, 2010, 114, 6284-6297.}	0 0 0 rgB1 2.5	Overlock 1 27
255	Towards catenanes using $\ddot{l}\in$ -stacking interactions and their influence on the spin-state of a bis $(2,2\hat{a}\in^2:6\hat{a}\in^2,2\hat{a}\in^3$ -terpyridine)iron(ii) domain. Dalton Transactions, 2010, 39, 10739.	3.3	26
256	Not just size and shape: spherically symmetrical d5 and d10 metal ions give different coordination nets with $4,2a \in ^2$: $6a \in ^2$, $4a \in ^3$ -terpyridines. CrystEngComm, 2010, 12, 2139.	2.6	44
257	Half a grid is better than no grid: competition between 2,2′:6′,2′.terpyridine and 3,6-di(pyrid-2-yl)pyridazine for copper(ii). Dalton Transactions, 2010, 39, 2337.	3.3	19
258	Turning $\{M(tpy)2\}n+$ embraces and CHâ $^{\ddot{i}}\in$ interactions on and off in homoleptic cobalt(ii) and cobalt(iii) bis $(2,2\hat{a}\in^2:6\hat{a}\in^2,2\hat{a}\in^3$ -terpyridine) complexes. CrystEngComm, 2010, 12, 2949.	2.6	42
259	Intramolecular π-Stacking in a Phenylpyrazole-Based Iridium Complex and Its Use in Light-Emitting Electrochemical Cells. Journal of the American Chemical Society, 2010, 132, 5978-5980.	13.7	116
260	Dual-Emissive Photoluminescent Langmuirâ^Blodgett Films of Decatungstoeuropate and an Amphiphilic Iridium Complex. Langmuir, 2010, 26, 1316-1324.	3.5	26
261	Sticky complexes: carboxylic acid-functionalized N-phenylpyridin-2-ylmethanimine ligands as anchoring domains for copper and ruthenium dye-sensitized solar cells. Dalton Transactions, 2010, 39, 3585.	3.3	50
262	When five are six: the myth of five-coordinate copper(ii) in supramolecular chemistry. CrystEngComm, 2010, 12, 3163.	2.6	19
263	Mix and match: templating chiral Schiff base ligands to suit the needs of the metal ion. Dalton Transactions, 2010, 39, 5332.	3.3	18
264	Clicking hard-core sugar balls. Chemical Communications, 2010, 46, 1628.	4.1	14
265	Ï€-Stacking and hydrogen bonding direct diastereoselectivity in one-pot syntheses of octahedral iron(ii) complexes. Chemical Communications, 2010, 46, 3077.	4.1	27
266	Amalgamating metalloligands with coordination networks. Dalton Transactions, 2010, 39, 1941.	3.3	19
267	Same head, different scaffold: a plethora of structural motifs assembled from silver(i) and ditopic 2,2′-bipyridine ligands. CrystEngComm, 2010, 12, 3724.	2.6	12
268	Archetype Cationic Iridium Complexes and Their Use in Solidâ€State Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2009, 19, 3456-3463.	14.9	239
269	Allâ€Optical Integrated Logic Operations Based on Chemical Communication between Molecular Switches. Chemistry - A European Journal, 2009, 15, 178-185.	3.3	124
270	Metallomacrocycles with a Difference: Macrocyclic Complexes with Exocyclic Ruthenium(II) ontaining Domains. Chemistry - A European Journal, 2009, 15, 11746-11757.	3.3	16

#	Article	IF	CITATIONS
271	Structural and Photophysical Properties of (Phosphane)gold(I)â€Decorated 4,4′â€Diethynylâ€2,2′â€bipyrid Ligands. European Journal of Inorganic Chemistry, 2009, 2009, 4710-4717.	ine 2.0	11
272	Preparation and photophysical studies of copper(I) and ruthenium(II) complexes of 4,4′-bis(3,5-dimethoxyphenyl)-6,6′-dimethyl-2,2′-bipyridine. Inorganica Chimica Acta, 2009, 362, 1825-18	8 <i>3</i> 0.4	9
273	Substituent effects in homoleptic iron(II) and ruthenium(II) complexes of $4\hat{a} \in \mathbb{Z}^2$ -hydrazone derivatives of $2,2\hat{a} \in \mathbb{Z}^2$: $6\hat{a} \in \mathbb{Z}^2$, $2\hat{a} \in \mathbb{Z}^3$ -terpyridine. Polyhedron, 2009, 28, 3828-3838.	2.2	3
274	Ditopic, flexible hydrazone-based building blocks with pendant 2,2′:6′,2′′-terpyridine metal-binding domains. Inorganic Chemistry Communication, 2009, 12, 898-901.	3.9	7
275	In search of enantioselective catalysts for the Henry reaction: are two metal centres better than one?. New Journal of Chemistry, 2009, 33, 1064.	2.8	58
276	Phase-separated hydrogen-bonded chloride ion–water–oxonium ion sheets and protonated 4′-(4-bromophenyl)-2,2′:6′,2″-terpyridine stacks, and condensation products of 2-acetylpyridine and benzaldehydes revisited. CrystEngComm, 2009, 11, 1014.	2.6	13
277	Towards Sustainable Dyes for Dye-Sensitized Solar Cells. Chimia, 2009, 63, 205-207.	0.6	38
278	Conformationally-locked metallomacrocyclesâ€"prototypes for a novel type of axial chirality. New Journal of Chemistry, 2009, 33, 376.	2.8	24
279	Adding the second dimension with cadmium: two-dimensional sheets assembled from cadmium(ii) and 4′-phenyl-4,2′:6′,4′′-terpyridine and locked by π-stacked interactions. CrystEngComm, 2009, 11, 2.	.2 7 9.	34
280	Structural diversity in the reactions of 4′-(pyridyl)-2,2′:6′,2″-terpyridine ligands and bis{4′-(4-pyridyl)-2,2′:6′,2″-terpyridine}iron(II) with copper(II) salts. CrystEngComm, 2009, 11, 2406.	2.6	34
281	Hierarchical multicomponent assembly utilizing sequential metal–ligand and hydrogen-bonding interactions. CrystEngComm, 2009, 11, 657.	2.6	25
282	Copper(i) complexes of 6,6′-disubstituted 2,2′-bipyridine dicarboxylic acids: new complexes for incorporation into copper-based dye sensitized solar cells (DSCs). Dalton Transactions, 2009, , 6634.	3.3	84
283	Diversification of ligand families through ferroin–neocuproin metal-binding domain manipulation. Dalton Transactions, 2009, , 4918.	3.3	7
284	Two are not always better than one: ligand optimisation for long-living light-emitting electrochemical cells. Chemical Communications, 2009, , 2029.	4.1	78
285	Photochemical switching of luminescence and singlet oxygen generation by chemical signal communication. Chemical Communications, 2009, , 1484.	4.1	60
286	Enantioselective catalysts for the Henry reaction: fine-tuning the catalytic components. New Journal of Chemistry, 2009, 33, 2166.	2.8	40
287	Diastereoselective complex formation with a simple C2-symmetric hexadentate ligand based on a $1,1\hat{a}\in^2$ -binaphthalene scaffold. Dalton Transactions, 2009, , 8165.	3.3	18
288	Evaluation of polynuclear dendrons as photosensitizers for dye-sensitized solar cells. Energy and Environmental Science, 2009, 2, 299.	30.8	12

#	Article	IF	CITATIONS
289	Substituent Effects in the Solidâ€State Assembly of Silver(I) Complexes of 4â€Substituted 3,6â€Di(2â€pyridyl)pyridazines. European Journal of Inorganic Chemistry, 2008, 2008, 3540-3548.	2.0	17
290	4â€Substituted and 4,5â€Disubstituted 3,6â€Di(2â€pyridyl)pyridazines: Ligands for Supramolecular Assemblies. European Journal of Organic Chemistry, 2008, 2008, 1597-1607.	2.4	24
291	The Introduction of Asymmetry into Alkylâ€Decorated Fréchetâ€Type Dendrons. European Journal of Organic Chemistry, 2008, 2008, 2644-2651.	2.4	6
292	4′â€Hydrazone Derivatives of 2,2′:6′,2"â€Terpyridine: Protonation and Substituent Effects. European Jour of Organic Chemistry, 2008, 2008, 3569-3581.	rnal 2.4	13
293	Quantification of singleâ€stranded nucleic acid and oligonucleotide interactions with metal ions by affinity capillary electrophoresis – Part II. Electrophoresis, 2008, 29, 3342-3348.	2.4	8
294	Longâ€Living Lightâ€Emitting Electrochemical Cells – Control through Supramolecular Interactions. Advanced Materials, 2008, 20, 3910-3913.	21.0	185
295	Inside Front Cover: Longâ€Living Lightâ€Emitting Electrochemical Cells – Control through Supramolecular Interactions (Adv. Mater. 20/2008). Advanced Materials, 2008, 20, .	21.0	0
296	Gold(I) phosphine-decorated 2,2′:6′,2″-terpyridine ligands. Polyhedron, 2008, 27, 65-70.	2.2	9
297	A pyrazolyl-terminated 2,2′:6′,2″-terpyridine ligand: Iron(II), ruthenium(II) and palladium(II) complexes of 4′-(3,5-dimethylpyrazol-1-yl)-2,2′:6′,2″-terpyridine. Polyhedron, 2008, 27, 2395-2401.	2.2	21
298	Approaches to wired terpyridine: Bithienyl alkynyl derivatives of $2,2\hat{a}\in^2$: $6\hat{a}\in^2,2\hat{a}\in^3$ -terpyridine and their ruthenium(II) complexes. Polyhedron, 2008, 27, 3601-3606.	2.2	5
299	New chiral oligopyridines—4,4′-bis(disaccharide)-functionalised 2,2′-bipyridines and 4′-(disaccharide)-functionalised 2,2′:6′,2′3€²-terpyridines. Carbohydrate Research, 2008, 343, 2567-25	5753.	5
300	The first complex of 4′-(4-methylthiophenyl)-2,2′:6′,2″-terpyridine – A model for terpylated self-assemmonolayers. Inorganic Chemistry Communication, 2008, 11, 518-520.	nglgd	13
301	Diastereoselective formation of a complex with an atropisomeric $4,43$ e²-biquinazoline ligand: The solid-state structure of cis-bis($4,43$ e²-biquinazoline)dichloridoiridium(III) hexafluoridophosphate. Inorganic Chemistry Communication, 2008, 11, 564-567.	3.9	4
302	Bis(4′-phenyl-2,2′:6′,2″-terpyridine)ruthenium(II): Holding the {Ru(tpy)2}2+ embraces at bay. Inorganic Chemistry Communication, 2008, 11, 805-808.	² 3.9	25
303	4′-Chloro-2,2′:6′,2″-terpyridine (L): ethyl sulfate salts of [H2L]2+ and the single crystal structures of [H2L][EtOSO3]Cl·H2O and [ML2][PF6]2 with M=Fe and Ru. Inorganic Chemistry Communication, 2008, 11, 1006-1008.	3.9	17
304	A new polymorph of $4\hat{a}\in^2$ -tolyl-2, $2\hat{a}\in^2$: $6\hat{a}\in^2$, $2\hat{a}\in^2$ -terpyridine (ttpy) and the single crystal structures of [Fe(ttpy)2][PF6]2 and [Ru(ttpy)2][PF6]2. Inorganic Chemistry Communication, 2008, 11, 1009-1011.	3.9	27
305	Expanding the 4,4 \hat{a} e-bipyridine ligand: Structural variation in {M(pytpy)2}2+ complexes (pytpy=4 \hat{a} e-(4-pyridyl)-2,2 \hat{a} e-:6 \hat{a} e-2,2 \hat{a} e-terpyridine, M=Fe, Ni, Ru) and assembly of the hydrogen-bonded, one-dimensional polymer. Inorganica Chimica Acta, 2008, 361, 2582-2590.	2.4	55
306	An element of surpriseâ€"efficient copper-functionalized dye-sensitized solar cells. Chemical Communications, 2008, , 3717.	4.1	252

#	Article	IF	CITATIONS
307	The aryl–phen and phen–phen embraces—new supramolecular motifs. CrystEngComm, 2008, 10, 1063.	2.6	10
308	A one-dimensional copper(ii) coordination polymer containing [Fe(pytpy)2]2+(pytpy =) Tj ETQq0 0 0 rgBT /Overlo penetrated by rod-like polymers. CrystEngComm, 2008, 10, 344-348.	ck 10 Tf 5 2.6	50 707 Td (48 45
309	Homoleptic metal complexes of 4′-(5-pyrimidinyl)-2,2′:6′,2″-terpyridine: tetrafurcated expanded ligands CrystEngComm, 2008, 10, 986.	⁵ .2.6	21
310	Controlling silica nanoparticle properties for biomedical applications through surface modification. New Journal of Chemistry, 2008, 32, 588.	2.8	16
311	Metal-mediated thiol–disulfide interconversion—a new tool for metallosupramolecular chemistry. Dalton Transactions, 2008, , 3795.	3.3	9
312	Wiring terpyridine: approaches to alkynylthienyl 2,2′:6′,2″-terpyridines. Dalton Transactions, 2008, , 6752	.3.3	12
313	Curly–curly, loop–loop: homoleptic metal(ii) complexes of pyridinecarbaldehyde 4′-(2,2′:6′,2″-terpyridyl)hydrazones and their coordination polymers. Dalton Transactions, 2008, , 6742	3.3	19
314	A new twist to 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine complexes of silver(i). CrystEngComm, 2008, 10, 991.	2.6	22
315	Vectorial property dependence in bis $\{4\hat{a}\in (n-pyridyl)-2,2\hat{a}\in (n-py$	3.3	64
316	A Supramolecularly-Caged Ionic Iridium(III) Complex Yielding Bright and Very Stable Solid-State Light-Emitting Electrochemical Cells. Journal of the American Chemical Society, 2008, 130, 14944-14945.	13.7	138
317	A metallopolymer case-history: polymer, ring or ligand reaction?. Chemical Communications, 2008, , 5360.	4.1	16
318	4-Substituted 3,6-Bis(2-pyridyl)pyridazines: Silver(I) Complexes of 4-Cyano- and 4-(4-Bromophenyl)-3,6-bis(2-pyridyl)pyridazine and Pseudopolymorphs of 1,3,5-Tris{3,6-bis(2-pyridyl)pyridazin-4-yl}benzene. Australian Journal of Chemistry, 2008, 61, 847.	0.9	14
319	The Structure of 4,7-Bis((trimethylsilyl)ethynyl)benzo[c][1,2,5]thiadiazole and Identification of a Widespread S···N Structural Motif. Australian Journal of Chemistry, 2008, 61, 755.	0.9	7
320	[n + n]-Heterometallomacrocyclic complexes (n ≥ 2) prepared from platinum(ii)-centred ditopic 2,2′:6′,2″-terpyridine ligands: dimensional cataloguing by pulsed-field gradient spin-echo NMR spectroscopy. Dalton Transactions, 2007, , 1593-1602.	3.3	17
321	Metal-directed assembly of combinatorial librariesâ€"principles and establishment of equilibrated libraries with oligopyridine ligands. New Journal of Chemistry, 2007, 31, 1437.	2.8	31
322	The conjugate acid of bis{4′-(4-pyridyl)-2,2′:6′,2″-terpyridine}iron(ii) as a self-complementary hydrogen-bonded building block. CrystEngComm, 2007, 9, 1073.	2.6	34
323	The Midas touch: a gold rich metallodendritic wedge. Dalton Transactions, 2007, , 2631.	3.3	11
324	Self-assembled monolayers as two-dimensional crystals: relationship to three-dimensional crystals. CrystEngComm, 2007, 9, 176-180.	2.6	10

#	Article	IF	CITATIONS
325	Expanded ligands: bis $(2,2\hat{a}\in^2:6\hat{a}\in^2,2\hat{a}\in^3$ -terpyridine carboxylic acid)ruthenium(ii) complexes as metallosupramolecular analogues of dicarboxylic acids. Dalton Transactions, 2007, , 4323.	3.3	111
326	A palladium(II) complex of $4\hat{a}\in^2$ - $(4$ -pyridyl)-2,2 $\hat{a}\in^2$: $6\hat{a}\in^2$,2 $\hat{a}\in^3$ -terpyridine: Lattice control through an interplay of stacking and hydrogen bonding effects. Inorganic Chemistry Communication, 2007, 10, 1185-1188.	3.9	24
327	pH-sensitive Ru(II) and Os(II) bis(2,2′:6′,2″-terpyridine) complexes: A photophysical investigation. Inorganica Chimica Acta, 2007, 360, 1102-1110.	2.4	63
328	Selective addressing of heteroditopic ligands by iron(II) and platinum(II). Inorganica Chimica Acta, 2007, 360, 4069-4076.	2.4	8
329	Nanoscale octadecacobalta- and hexacosacobaltaclusters: Synthesis and spectroscopic fingerprinting. Polyhedron, 2007, 26, 1222-1228.	2.2	2
330	Tris-chelate complexes with chiral ligands: In search of diastereoisomeric selectivity with remote stereogenic centres. Polyhedron, 2007, 26, 5519-5526.	2.2	7
331	[μ-Ferrocene-1,1′-diylbis(diphenylphosphine)-κ2P:P′]bis[chloridogold(I)]. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m1697-m1697.	0.2	7
332	Bis[μ2-bis(diphenylphosphino)methane]-1:2κ2P:P′;2:3κ2P:P′-dichlorido-1κCl,3κCl-triangulo-trigold(I) hexafluorophosphate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m1698-m1699.	0.2	2
333	The first example of a coordination polymer from the expanded 4,4′-bipyridine ligand [Ru(pytpy)2]2+(pytpy = 4′-(4-pyridyl)-2,2′∶6′,2″-terpyridine). CrystEngComm, 2007, 9, 456-459.	2.6	78
334	Quantification of single-stranded nucleic acid and oligonucleotide interactions with metal ions by affinity capillary electrophoresis: part I. Journal of Biological Inorganic Chemistry, 2007, 12, 194-203.	2.6	14
335	An evaluation of the relationship between two- and three-dimensional packing in self-organised monolayers and bulk crystals of amphiphilic 2,2′:6′,2″-terpyridines. New Journal of Chemistry, 2006, 30, 1470-1479.	2.8	13
336	Copper Complex-Assisted DNA Hybridization. Bioconjugate Chemistry, 2006, 17, 1441-1446.	3.6	23
337	Ligands and complexes with supramolecular aromaticâ \in aromatic interactions: iron(ii) and ruthenium(ii) complexes of 2,2â \in 2:6â \in 2,2â \in 3-terpyridines with pendant naphthalene groups. Dalton Transactions, 2006, , 2881-2890.	3.3	34
338	Understanding the Structural Properties of a Dendrimeric Material Directly from Powder X-ray Diffraction Data. Journal of Physical Chemistry B, 2006, 110, 11620-11623.	2.6	31
339	What is the coordination number of copper(ii) in metallosupramolecular chemistry?. New Journal of Chemistry, 2006, 30, 1740.	2.8	46
340	A hydrogen-bonded dimer of 13-hydroxy-13-[(triisopropylsilyl)ethynyl]pentacen-6(13H)-one. Acta Crystallographica Section C: Crystal Structure Communications, 2006, 62, o243-o245.	0.4	7
341	trans-Diacetonitriledibromopalladium(II). Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m1059-m1061.	0.2	1
342	N2-(2,6-Dibromo-4-nitrophenyl)-N1,N1-diethyl-2-(triisopropylsilyl)ethanamidine. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o2297-o2299.	0.2	0

#	Article	IF	CITATIONS
343	4′-Chloro-2,2′:6′,2′′-terpyridine. Acta Crystallographica Section E: Structure Reports Online, 2006, 6 o2497-o2498.	62 0.2	5
344	2,3,5-Tri-O-acetyl-1-(2-chloroethyl)- \hat{l}^2 -D-ribofuranose. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o3151-o3153.	0.2	3
345	trans-Diiodobis(triisopropylphosphino)platinum(II). Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m2210-m2212.	0.2	O
346	Structural characterisation of a 1:1 cobalt(II) $\hat{a} \in 2,2\hat{a} \in 2,2\hat{a} \in 3$ -Terpyridine complex. Inorganic Chemistry Communication, 2006, 9, 504-506.	3.9	14
347	Preparation and structural characterisation of bis(4′-(3-pyridyl)-2,2′:6′,2″-terpyridine)ruthenium(II) hexafluorophosphate. Inorganic Chemistry Communication, 2006, 9, 433-436.	3.9	25
348	The solid-state structure of bis(4′-(4-pyridyl)-2,2′:6′,2″-terpyridine)ruthenium hexafluorophosphate nitrate – An expanded 4,4′-bipyridine. Inorganic Chemistry Communication, 2006, 9, 616-619.	3.9	36
349	Conventional and metal-directed synthesis of homodinuclear and heterotrinuclear complexes of homoditopic and heteroditopic ligands incorporating bpy and tpy metal-binding domains. Polyhedron, 2006, 25, 437-458.	2.2	17
350	Cobalt decorated metallostars and metallodendrimers: Synthetic strategies and spectroscopic correlations. Polyhedron, 2006, 25, 421-428.	2.2	9
351	Linear and macrocyclic ruthenium(II) complexes containing bis(2,2′:6′,2″-terpyridine) ligands with flexible, naphthalene-centred spacers. Polyhedron, 2006, 25, 1831-1843.	2.2	29
352	Platinamacrocycles containing 2,5-thiophenediyl and poly(2,5-thiophenediyl)-linked azaaromatic ligands: New structural paradigms for metallosupramolecular chemistry. Polyhedron, 2006, 25, 1844-1863.	2.2	17
353	Solid-state structural properties of 2,4,6-trimethoxybenzene derivatives, determined directly from powder X-ray diffraction data in conjunction with other techniques. Journal of Solid State Chemistry, 2006, 179, 3214-3223.	2.9	7
354	Structural Development of Free or Coordinated 4′-(4-Pyridyl)-2,2′:6′,2′′-terpyridine Ligands through N-Alkylation: New Strategies for Metallamacrocycle Formation. Chemistry - A European Journal, 2006, 12, 4600-4610.	h 3 . 3	71
355	A Planar Silver(I) Complex with a 'Simple' 2,2?-Bipyridine Ligand. Australian Journal of Chemistry, 2006, 59, 30.	0.9	15
356	Switching on Hydrogen Bonding in Oligopyridine Ligands. Supramolecular Chemistry, 2006, 18, 305-309.	1.2	7
357	Where Did All the bpy Go? – Synthesis, Crystal and Molecular Structure of 4-Nitropicolinic Acid Monohydrate. Supramolecular Chemistry, 2006, 18, 299-303.	1.2	3
358	In-Strand Metallated Nucleic Acids – Novel Bioinorganic Constructs. Chimia, 2005, 59, 832-835.	0.6	4
359	Structural properties of methoxy derivatives of benzyl bromide, determined from powder X-ray diffraction data. Powder Diffraction, 2005, 20, 345-352.	0.2	3
360	Preparation and structural characterization of a dicopper prehelicate. Inorganic Chemistry Communication, 2005, 8, 743-745.	3.9	8

#	Article	IF	Citations
361	Octyl-Decorated Fréchet-Type Dendrons: A General Motif for Visualisation of Static and Dynamic Behaviour Using Scanning Tunnelling Microscopy?. Chemistry - A European Journal, 2005, 11, 2307-2318.	3.3	50
362	Metal-Directed Synthesis and Photophysical Studies of Trinuclear V-Shaped and Pentanuclear X-Shaped Ruthenium and Osmium Metallorods and Metallostars Based upon 4′-(3,5-Dihydroxyphenyl)-2,2′:6′,2′′-terpyridine Divergent Units. Chemistry - A European Journal, 200 4024-4034.)5;311,	40
363	Conducting Polymers Containing In-Chain Metal Centers: Â Electropolymerization of Oligothienyl-Substituted $\{M(tpy)2\}$ Complexes and in Situ Conductivity Studies, $M = Os(II)$, $Ru(II)$. Inorganic Chemistry, 2005, 44, 1073-1081.	4.0	109
364	Polymorphs of 4′-(hex-5-ynyloxy)-2,2′:6′,2″-terpyridine: structural diversity arising from weak intermolecular interactions in the solid state. CrystEngComm, 2005, 7, 599.	2.6	13
365	Supramolecular self-assembly on a solid support: metal-directed complementarity. Chemical Communications, 2005, , 3739.	4.1	15
366	Formation of a $[2+2]$ -heterotetranuclear macrocycle from reaction of a platina-homoditopic ligand with iron(ii). Dalton Transactions, 2005, , 234.	3.3	26
367	Formation of $[2+2]$ diruthenium(ii) metallomacrocycles from ligands containing $2,2\hat{a}\in^2:6\hat{a}\in^2,2\hat{a}\in^3$ -terpyridine domains linked through flexible polyethyleneoxy spacers. Dalton Transactions, 2005, , 2259.	3.3	40
368	Hairpin helicates: a missing link between double-helicates and trefoil knots. Dalton Transactions, $2005, 1168$.	3.3	10
369	2,2′:6′,2″-Terpyridine-4′(1′H)-thione: a missing link in metallosupramolecular chemistry. New Journal Chemistry, 2005, 29, 1475.	l of 2.8	42
370	Conformational Analysis of Self-Organized Monolayers with Scanning Tunneling Microscopy at Near-Atomic Resolution. Journal of the American Chemical Society, 2005, 127, 4033-4041.	13.7	45
371	When electron exchange is chemical exchange–assignment of1H NMR spectra of paramagnetic cobalt(ii)-2,2′:6′,2″-terpyridine complexes. Dalton Transactions, 2005, , 236-237.	3.3	36
372	A Case Study in Direct-Space Structure Determination from Powder X-ray Diffraction Data:  Finding the Hydrate Structure of an Organic Molecule with Significant Conformational Flexibilityâ€. Crystal Growth and Design, 2005, 5, 2084-2090.	3.0	19
373	A Convenient Synthesis of Multitopic 2,2′:6′,2′-Terpyridine Ligands. Synthesis, 2004, 2004, 869-874.	2.3	9
374	Electropolymerisation dynamics of a highly conducting metallopolymer: poly-[Os(4′-(5-(2,2′-bithienyl))-2,2′:6′,2″-terpyridine)2]2+. Electrochemistry Communications, 2004,	, 6 ; ⁷ 193-20)ð. ⁴
375	Efficient syntheses of $4\hat{a}\in^2$ -(2-thienyl)- and $4\hat{a}\in^2$ -(3-thienyl)-2, $2\hat{a}\in^2$: $6\hat{a}\in^2$, $2\hat{a}\in^3$ -terpyridine: preparation and characterization of Fe(II), Ru(II), Os(II) and Co(II) complexes. Polyhedron, 2004, 23, 135-143.	2.2	28
376	Modification of electron transfer properties in photoelectrochemical solar cells by substituting {Ru(terpy)2}2+ dyes with thiophene. Inorganic Chemistry Communication, 2004, 7, 117-121.	3.9	41
377	Regioselective metal-directed self-assembly of a prototype double helical hairpin dinuclear complex. Inorganic Chemistry Communication, 2004, 7, 1128-1131.	3.9	11
378	Preparation and structural characterisation of terpy-cored dendrimers and dendriplexes. Dalton Transactions, 2004, , 2635.	3.3	26

#	Article	IF	CITATIONS
379	Monitoring conformational diversity in self-organised monolayers with scanning tunnelling microscopy at near atomic resolution. Chemical Communications, 2004, , 928.	4.1	13
380	Electrochemical probing of ground state electronic interactions in polynuclear complexes of a new heteroditopic ligand. Dalton Transactions, 2004, , 1918.	3.3	57
381	Self-assembly of a novel pentanuclear centred-tetrahedral silver species. Chemical Communications, 2004, , 1056.	4.1	38
382	Chiral Induction in a Ribose-Decorated Metallostar through Intrinsic and Interionic Diastereomeric Interactions. Inorganic Chemistry, 2004, 43, 4817-4819.	4.0	34
383	Structural Aspects of a Dendrimer Precursor Determined Directly from Powder X-ray Diffraction Data. Crystal Growth and Design, 2004, 4, 451-455.	3.0	8
384	Self-Assembled Monolayers of Ru/Os Dinuclear Complexes:Â Probing Monolayer Structure and Interaction Energies by Electrochemical Means. Langmuir, 2004, 20, 9242-9248.	3.5	32
385	Cobalt(II) and iron(II) bis(2,2?: 6?,2?-terpyridine) complexes functionalized with alkynes and cobalt carbonyl clusters. Applied Organometallic Chemistry, 2003, 17, 383-387.	3.5	11
386	Functionalised 2,2′-bipyridine ligands for the preparation of metallostars; X-ray structures of free ligands and preparation of copper(I) and silver(I) complexes. Polyhedron, 2003, 22, 93-108.	2.2	38
387	4′-(Oxodiphenylphosphino)-2,2′:6′,2′′-terpyridine – crystal structure and complexes of cobalt(II) a cobalt(III). Inorganic Chemistry Communication, 2003, 6, 912-915.	and 3.9	3
388	Self-assembly of two discrete polynuclear iron(II) metallomacrocycles from a ligand containing two 2,2′:6′,2″-terpyridine binding domains. Inorganic Chemistry Communication, 2003, 6, 1011-1013.	3.9	56
389	Conducting Polymers Containing In-Chain Metal Centers: Homogeneous Charge Transport through a Quaterthienyl-Bridged {Os(tpy)2} Polymer. Journal of Physical Chemistry B, 2003, 107, 10431-10439.	2.6	40
390	Spontaneous resolution of a diastereomeric ruthenium(ii) complex with an atropisomeric 4,4â \in 2-biquinazoline ligand. Dalton Transactions, 2003, , 4565-4567.	3.3	12
391	Metal-directed assembly of a conformationally restricted metallomacrocycle. Dalton Transactions, 2003, , 4568.	3.3	32
392	Fine tuning of the photoinduced energy transfer rate in trinuclear Ru/Os $2,2\hat{a}\in^2$: $6\hat{a}\in^2,2\hat{a}\in^3$ -terpyridine complexes through structural modification of the peripheryElectronic supplementary information (ESI) available: characterisation data for $1,2$ and 5 . See http://www.rsc.org/suppdata/dt/b3/b300966a/. Dalton Transactions, $2003, 1220-1222$.	3.3	28
393	Metal-directed assembly of cyclometallopeptides. Dalton Transactions, 2003, , 2112.	3.3	13
394	Structural Diversity in Silver(I) Complexes of 3,6-Di(2-pyridyl)pyridazines. Australian Journal of Chemistry, 2003, 56, 653.	0.9	27
395	A rod-like polymer containing {Ru(terpy)2} units prepared by electrochemical coupling of pendant thienyl moieties. Chemical Communications, 2002, , 284-285.	4.1	52
396	Formation of a [1 + 1] metallomacrocycle from a heterotritopic ligand containing two terpy and one bipy metal-binding domains. Chemical Communications, 2002, , 2068-2069.	4.1	30

#	Article	IF	CITATIONS
397	Electronic Energy Transfer and Collection in Luminescent Molecular Rods Containing Ruthenium(II) and Osmium(II) $2,2\hat{a}\in^2$: $6\hat{a}\in^2$, $2\hat{a}\in^3$ -Terpyridine Complexes Linked by Thiophene-2,5-diyl Spacers. Chemistry - A European Journal, 2002, 8, 137-150.	3.3	158
398	How well do we understand self-assembly algorithms? From prototype grid to polymers. Comptes Rendus Chimie, 2002, 5, 425-430.	0.5	30
399	A near planar disilver complex of 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine. Inorganic Chemistry Communication, 2002, 5, 199-202.	3.9	59
400	A polymeric sodium complex of 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine. Chemical Communications, 2001, , 2134-2135.	4.1	22
401	Redistribution of terpy ligands—approaches to new dynamic combinatorial libraries. Dalton Transactions RSC, 2001, , 2864-2871.	2.3	65
402	Dicobalt cluster functionalized 2,2′:6′,2″-terpyridine ligands and their ruthenium(II) complexes. Polyhedron, 2001, 20, 483-492.	2.2	26
403	Pentaruthenium-Based Borides Stabilized by Gold(I) Phosphine Units. Journal of Cluster Science, 2001, 12, 89-98.	3.3	10
404	Structural characterisation of rac-bis(2,2′-bipyridine)(2,5-dipyridylpyrazine)ruthenium(II) hexafluorophosphate; a key building block for metallodendrimers. Inorganic Chemistry Communication, 2001, 4, 749-752.	3.9	11
405	Programmed assembly of heteromultinuclear complexes using $4\hat{a}\in^2$ -diphenylphosphino-2, $2\hat{a}\in^2$: $6\hat{a}\in^2$, $2\hat{a}\in^3$ -terpyric Inorganica Chimica Acta, 2000, 300-302, 49-55.	line 2.4	15
406	Metallostars containing {Ru(bpy)3} motifs. Inorganica Chimica Acta, 2000, 300-302, 158-168.	2.4	21
407	The clusters HRu3W(\hat{l} ·5-Cp)(CO)11 \hat{a} °x(PPh3)xBH (x=1, 2): preparations, characterizations and the crystal structure of HRu3W(\hat{l} ·5-Cp)(CO)10(PPh3)BH. Journal of Organometallic Chemistry, 2000, 609, 89-94.	1.8	6
408	Boride cluster fusion through copper and silver. Crystal structure of [(Ph3P)2N][(HRu4(CO)12BH)2Ag]. Journal of Organometallic Chemistry, 2000, 614-615, 202-207.	1.8	5
409	Regio- and diastereo-selective formation of dicopper(I) and disilver(I) double helicates with chiral 6-substituted 2,2′ⰶ6′,2″-terpyridines. Dalton Transactions RSC, 2000, , 945-959.	2.3	71
410	Development of supramolecular structure through alkylation of pendant pyridyl functionality. Dalton Transactions RSC, 2000, , 2219-2228.	2.3	122
411	A clash of cultures: metal carbonyl functionalized Werner complexes. Journal of Organometallic Chemistry, 1999, 573, 101-108.	1.8	10
412	Metallostars and metallodendrimers based upon hexaphenylbenzene cores. Inorganic Chemistry Communication, 1999, 2, 431-433.	3.9	13
413	Convergent synthesis of a heptaruthenium metallostar. Inorganic Chemistry Communication, 1999, 2, 565-568.	3.9	15
414	Preferential formation of monogold(I) derivatives of [HRu3W(\hat{I} -5-C5H5)(CO)11BH] permits specificity in cluster linkage reactions: the crystal structure of [HRu3W(\hat{I} -5-C5H5)(CO)11B(AuPPh3)]. Polyhedron, 1999, 18, 2415-2421.	2.2	13

#	Article	IF	CITATIONS
415	The versatile nature of [ClAu(L–L)AuCl] (L–L=bis(diphenylphosphino)methane (dppm) or -butane (dppb)) in reactions with [Rh2Ru4(CO)16B]â^': crystal structures of [{Rh2Ru4(CO)16B}2{Î⅓-Au(dppb)Au}] and [RhRu4(CO)14B{Au(dppm)Au}]. Inorganica Chimica Acta, 1999, 289, 149-157.	2.4	13
416	Stereoselective Double-Helicate Assembly from Chiral 2,2′:6′,2″:6″,2′′′-Quaterpyridines and Te Metal Centres. Chemistry - A European Journal, 1999, 5, 1862-1873.	trahedral	104
417	Chiral 1,2-ethanediyl-spaced quaterpyridines give a library of cyclic and double helicates with copper(l). Chemical Communications, 1999, , 195-196.	4.1	19
418	Luminescent molecular wires with 2,5-thiophenediyl spacers linking {Ru(terpy)2} units. Chemical Communications, 1999, , 869-870.	4.1	60
419	High-nuclearity cobaltadendrimers. Journal of the Chemical Society Dalton Transactions, 1999, , 1363-1364.	1.1	18
420	Annular Heterometallic Starsâ€. Organometallics, 1999, 18, 2565-2567.	2.3	23
421	Bucky Ligands: Synthesis, Ruthenium(II) Complexes, and Electrochemical Properties. Chemistry - A European Journal, 1998, 4, 723-733.	3.3	92
422	Carbaborane-functionalised 2,2′:6′,2″-terpyridine ligands for metallosupramolecular chemistry: Syntheses, complex formation, and the crystal and molecular structures of 4′-(ortho-carboranyl)-2,2′:6′,2″-terpyridine and 4′-(ortho-carboranylpropoxy)-2,2′:6′,2″-terpyridine and 4′-(ortho-carboranylpropoxy)-2,2′-(ortho-carbor	y uid ine1Th	ni s paper
423	Chemistry, 1998-550, 193-206 Towards linked clusters: reactions of [Ru6(CO)17B]â^ with dppm and [ClAu(L–L)AuCl]		

#	Article	IF	CITATIONS
433	Gold 1994. Coordination Chemistry Reviews, 1997, 164, 161-182.	18.8	5
434	Scandium 1995. Coordination Chemistry Reviews, 1997, 164, 183-188.	18.8	3
435	Preparation and characterization of [HRu4(CO)12â°'x(PHPh2)xBH2] (x = 1â€"3) and the oxidative addition of a Pî—,H bond in [HRu4(CO)10(PHPh2)2BH2]. Inorganica Chimica Acta, 1997, 259, 85-90.	2.4	8
436	Carboranyl cluster-functionalised ligands for metallosupramolecular chemistry. Supramolecular Chemistry, 1996, 7, 97-100.	1.2	16
437	Reactions of [RhRu3H(η5-C5Me5)(CO)9BH2] with didentate phosphines and the synthesis and crystal structure of [RhRu3H2(η5-C5Me5)(CO)8(Âμ-dppf-P,P′)AuB][dppf = 1,1′-bis(diphenylphosphino)ferrocene]. Journal of the Chemical Society Dalton Transactions, 1996, , 2917-2922.	1.1	13
438	Cluster core geometrical variation in heterometallic boride clusters containing RhRu4skeletons: crystal structures of [RhRu4H2(η5-C5Me5)(µ-Cl)(CO)12B] and [RhRu4H(nbd)(CO)12B(AuPPh3)](nbd =) Tj ETQc	ղ մ.մ 0 rgB ⁻	Γ‡®verlock Ι
439	Boron-rich metallodendrimers—mix-and-match assembly of multifunctional metallosupramolecules. Chemical Communications, 1996, , 1823-1824.	4.1	71
440	2. Silver 1993. Coordination Chemistry Reviews, 1996, 152, 87-105.	18.8	7
441	3. Rhodium 1993. Coordination Chemistry Reviews, 1996, 152, 107-139.	18.8	7
442	4. Iridium 1993. Coordination Chemistry Reviews, 1996, 152, 141-156.	18.8	8
443	12. Scandium 1994. Coordination Chemistry Reviews, 1996, 152, 467-472.	18.8	4
444	Preparation and characterization of the square-based pyramidal cluster anion [H2Ru5(CO)14(\hat{l} /44-COH)]. Journal of Organometallic Chemistry, 1995, 492, 211-216.	1.8	5
445	Transition metal boride clusters at the molecular level. Coordination Chemistry Reviews, 1995, 143, 297-330.	18.8	85
446	4. Yttrium 1993. Coordination Chemistry Reviews, 1995, 146, A155-A165.	18.8	5
447	6. Technetium 1993. Coordination Chemistry Reviews, 1995, 146, A191-A206.	18.8	4
448	10. Gold 1993. Coordination Chemistry Reviews, 1995, 146, A385-A408.	18.8	4
449	2. Yttrium 1992. Coordination Chemistry Reviews, 1995, 138, 27-37.	18.8	5
450	2. Technetium 1992. Coordination Chemistry Reviews, 1995, 142, 21-41.	18.8	4

#	Article	IF	CITATIONS
451	Gold 1992. Coordination Chemistry Reviews, 1995, 142, 101-121.	18.8	5
452	6. Scandium 1992. Coordination Chemistry Reviews, 1995, 142, 147-152.	18.8	5
453	3. Scandium 1993. Coordination Chemistry Reviews, 1995, 146, 37-41.	18.8	3
454	8. Silver 1992. Coordination Chemistry Reviews, 1995, 146, 211-233.	18.8	4
455	9. Rhodium 1992. Coordination Chemistry Reviews, 1995, 146, 235-267.	18.8	7
456	10. Iridium 1992. Coordination Chemistry Reviews, 1995, 146, 269-281.	18.8	6
457	Denuding the boron atom of B–H interactions in transition metal–boron clusters. Chemical Society Reviews, 1995, 24, 215-222.	38.1	27
458	Heterometallic boride clusters: formation of octahedral [M2Ru4(CO)16B]–(M = Rh or Ir) and gold(I) phosphine derivatives. Crystal structures of [N(PPh3)2][trans-Ir2Ru4(CO)16B], trans-[Rh2Ru4(CO)16B{Âμ-3-AuP(C6H11)3}] and cis-[Ir2Ru4(CO)16B{Âμ-AuP(C6H11)3}]. Journal of the Chemical Society Dalton Transactions. 1995. 549-557	1.1	17
459	Chemical Society Dalton Transactions, 1995, 549-557. Unexpected gold-containing bonde clusters formed from the reactions of [RhRu3H(η5-C5Me5)(CO)9BH]–with gold(I) phosphine derivatives: crystal structures of [RhRu3H(η5-C5Me5)(CO)9B{Au(PPh3)}2(AuCl)]·CH2Cl2and [RhRu3H(η5-C5Me5)(CO)9B{Au2(dppf)}(AuCl)]·CH2Cl2[dppf = 1,1′-bis(diphenylphosphino)ferrocene].	1.1	16
460	Mono- and di-dentate tertiary phosphine and monodentate tertiary phosphite derivatives of [Ru4H(CO)12BH2]. Journal of the Chemical Society Dalton Transactions, 1995, , 3789.	1.1	10
461	A spiked-butterfly cluster: crystal and electronic structures of [RhRu4H(η5-C5Me5)(CO)13BH2]. Journal of the Chemical Society Dalton Transactions, 1995, , 2935-2939.	1.1	7
462	Technetium. Coordination Chemistry Reviews, 1994, 131, 153-175.	18.8	6
463	Iridium. Coordination Chemistry Reviews, 1994, 131, 177-210.	18.8	3
464	Boron–nitrogen coupling in a ruthenium-rich ruthenaborane cluster: synthesis, and molecular and electronic structures of [Ru4H(CO)12BH(Âμ-NCHMe)]. Journal of the Chemical Society Dalton Transactions, 1994, , 3273-3277.	1.1	8
465	Contrasting pathways for the reactions of triruthenaborane cluster anions with [{M(η5–) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 Tf 22
466	Syntheses and molecular structures of two boride cluster anions: octahedral [Rh2Ru4(CO)16B]? and double-prismatic [Rh3Ru6(CO)23B2]?. Journal of the Chemical Society Dalton Transactions, 1994, , 2359.	1.1	12
467	Scandium. Coordination Chemistry Reviews, 1993, 124, 41-49.	18.8	2
468	Yttrium. Coordination Chemistry Reviews, 1993, 124, 51-62.	18.8	3

#	Article	IF	CITATIONS
469	Osmium. Coordination Chemistry Reviews, 1993, 124, 183-216.	18.8	7
470	Scandium. Coordination Chemistry Reviews, 1993, 127, 131-137.	18.8	4
471	Yttrium. Coordination Chemistry Reviews, 1993, 127, 139-154.	18.8	3
472	Triphenylphosphine-substituted triruthenaborane clusters: a route to [Ru3(CO)9–x(PPh3)xBH5](x=) Tj ETQq0 C [Ru3(CO)6(PPh3)3BH5]·CH2Cl2. Journal of the Chemical Society Dalton Transactions, 1993, , 2727-2734.	0 rgBT /0 1.1	verlock 10 T
473	Trigonal-prismatic and octahedral hexaruthenium boride clusters: molecular structures of [N(PPh3)2][Ru6H2(CO)18B], [Ru6(CO)17B{AuP(C6H4Me-2)3}], [Ru6H(CO)16B{Au(PPh3)}2] and [Ru6(CO)16B{Au(PPh3)}3]. Journal of the Chemical Society Dalton Transactions, 1993, , 3059.	1.1	23
474	A spiked-butterfly ruthenium borido cluster: synthesis and molecular structure of H2Ru5(CO)13Cp*BH2. Organometallics, 1993, 12, 4167-4171.	2.3	13
475	Transition Metalâ€"Main Group Cluster Compounds. , 1992, , 73-178.		17
476	HRu3(CO)8(PPh3)B2H5: crystallographic confirmation of the first M3B2-containing analogue of pentaborane(9). Journal of the Chemical Society Chemical Communications, 1992, , 323.	2.0	10
477	The first trigonal prismatic discrete transition-metal boride cluster: preparation and molecular structure of [PPN][Ru6(H)2(CO)18B][PPN =(Ph3P)2N+]. Journal of the Chemical Society Chemical Communications, 1992, , 842.	2.0	18
478	Boride cluster fusion via an M4-unit (M = Cu or Ag): molecular structure of [ppn][{Ru4H(CO)12B}2Cu4(Â μ -Cl)][Cl][ppn =(PPh3)2N]. Journal of the Chemical Society Chemical Communications, 1992, .	2.0	16
479	Metal fragment addition and substitution reactions of [Ru3(CO)9BH5] and [Ru3H(CO)9(B2H5)]: molecular structures of [WRu3(cp)H(CO)11(BH)] and [MoRu3(cp)H3(CO)11](cp = \hat{l} -C5H5). Journal of the Chemical Society Dalton Transactions, 1992, , 2855-2864.	1.1	19
480	Preparation and characterisation of some dimeric \hat{i} -2-diyne complexes of cobalt. Journal of the Chemical Society Dalton Transactions, 1992, , 3171-3178.	1.1	42
481	Alkyne addition to the semiinterstitial boron atom in homometallic and heterometallic butterfly clusters: molecular and electronic structures of HRu4(CO)12BHC(Ph)CPhH and H(CpW)Ru3(CO)11BC(Ph)CPhH. Organometallics, 1992, 11, 4048-4056.	2.3	13
482	Ru5(CO)15B(AuPPh3): a novel boride cluster formed by the degradation of Ru6(CO)17B(AuPPh3). Organometallics, 1992, 11, 2959-2961.	2.3	23
483	To fuse or not to fuse? Reactions of [HM4(CO)12BH]- (M = iron, ruthenium) with (phosphine)gold(I) chlorides. Molecular structures of HFe4(CO)12BHAuP(2-MeC6H4)3, [Au(PMePh2)2][[HFe4(CO)12BH]2Au], and [PPN][[HRu4(CO)12BH]2Au]. Organometallics, 1992, 11, 2356-2367.	2.3	31
484	Ru3(CO)9BH5 and [Ru3(CO)9BH4]â^ as precursors to higher nuclearity homo- and heterometallic clusters: molecular structure of a second isomer of HRu6(CO)17B. Journal of Organometallic Chemistry, 1992, 423, 241-254.	1.8	38
485	Synthesis and solution properties of the boron-containing clusters HM4(CO)12BAu2(dppf) (M î—» Fe or) Tj ETQq of Organometallic Chemistry, 1992, 435, 9-20.	1 1 0.7843 1.8	314 rgBT / <mark>O</mark> v 36
486	The coordination of benzene in clusters: The face-capping mode. Journal of Molecular Catalysis, 1992, 74, 61-72.	1.2	20

#	Article	IF	Citations
487	Iridium. Coordination Chemistry Reviews, 1992, 115, 163-189.	18.8	7
488	Rhodium. Coordination Chemistry Reviews, 1992, 115, 191-230.	18.8	9
489	Competition between triborane as a ligand and a hydride donor at platinum centres containing chelating phosphines: molecular structures of [{Ph2P(CH2)2PPh2}PtB3H7], [{Ph2P(CH2)4PPh2}PtB3H7] and [Pt2H3{(Ph2PC5H4)2Fe}2]Cl. Journal of the Chemical Society Dalton Transactions, 1991, , 2175.	1.1	32
490	Static and dynamic structure of the ruthenium cluster Ru3(CO)9(.mu.3eta.2:.eta.2:.eta.2-C6H6) at room temperature and 193 K. Organometallics, 1991, 10, 1260-1268.	2.3	63
491			

#	Article	IF	Citations
505	Ligand reactivity in coordination compounds; A molecular orbital investigation of the quaternisation-coordination analogy. Transition Metal Chemistry, 1988, 13, 19-21.	1.4	5
506	An X-ray crystal and electronic structural investigation of the interstitial phosphide cluster [Os6(CO)18PCl]. Polyhedron, 1988, 7, 1759-1765.	2.2	11
507	Electronic structure of Os3(CO)8(C2Ph2)2: deformation of a trimetal framework by acetylene ligands. Journal of Organometallic Chemistry, 1988, 339, 139-149.	1.8	2
508	The preparation of the metal-rich ruthenaborane, Ru3(CO)9BH5: a case of isomerisation involving endo-hydrogen migration Journal of Organometallic Chemistry, 1988, 349, C17-C21.	1.8	24
509	3. Cobalt. Coordination Chemistry Reviews, 1988, 90, 111-241.	18.8	4
510	An appraisal of the steric versus electronic requirements of gold(I) phosphine substituents in clusters: the crystal structure of [HFe4(CO)12{AuPEt3}2B]. Organometallics, 1988, 7, 1885-1887.	2.3	17
511	A metal encapsulated boron atom: preparation and structure of [Fe4(CO)12B{AuPPh3}3]. Journal of the Chemical Society Chemical Communications, 1988, , 965.	2.0	28
512	A novel fused metallaborane cluster formed via gold-phosphorus bond cleavage: the crystal structure of [{HFe4(CO)12BH}2Au][Au(PPh2Me)2]. Journal of the Chemical Society Chemical Communications, 1988, , 1630.	2.0	14
513	Structural and molecular orbital probes into the H/AuPR3 isolobal and isostructural analogy: Fe4(CO)12(AuPPh3)2BH vs. Fe4(CO)12BH3. Organometallics, 1987, 6, 1332-1340.	2.3	40
514	Synthesis, characterization and ligand substitution of [HFe4(CO)12BH]-: an isoelectronic and isoprotonic inorganometallic analog of HFe4(CO)12CH. Journal of the American Chemical Society, 1987, 109, 3323-3329.	13.7	32
515	From metallaboranes to transition metal borides: The chemistry of metal-rich metallaborane clusters. Polyhedron, 1987, 6, 1935-1958.	2.2	40
516	Main group chemistry on a metal framework. Reactions of [(.muH)Fe3(CO)9BH2R]- ($R = H$, CH3) with Lewis bases. Journal of the American Chemical Society, 1986, 108, 4867-4873.	13.7	24
517	Characterization of hexacarbonyl (hexahydrotriborato) diferrate (1-): a comment on the dynamic structure of hexacarbonyl (heptahydrotriborato) diiron. Inorganic Chemistry, 1986, 25, 3108-3110.	4.0	11
518	Preparation, characterization, and structure of Fe4(CO)12[Au(PPh3)]2BH. An iron-gold borido cluster violating the H/AuPR3 structural analogy. Journal of the American Chemical Society, 1986, 108, 6420-6421.	13.7	28
519	Electronic charge control of stable sites and mobilities of hydrogen atoms on a main-Group transition metal cluster surface. A comparison of $[HFe4(CO)12-n(PPhMe2)nBH]PPN (n = 0-2)$ and $HFe4(CO)12CH$. Organometallics, 1986, 5, 1279-1281.	2.3	12
520	Ferraborane cluster chemistry: reactions of [(.muH)Fe3(CO)9BH3]- with Lewis bases leading to substitution via hydrogen elimination or to cluster degradation. Inorganic Chemistry, 1986, 25, 404-405.	4.0	17
521	Synthesis of [(.muH)Fe4(CO)12BH]- from [(.muH)Fe3(CO)9BH3]- via cluster expansion involving hydrogen elimination. Organometallics, 1986, 5, 379-380.	2.3	19
522	The structure and properties of HFe3(CO)9BH3R and the conjugate bases [HFe3(CO)9BH2R]- ($R = H$ and) Tj ETC Society, 1986, 108, 3304-3310.	9q0 0 0 rgl 13.7	BT /Overlock 1 47

30

Society, 1986, 108, 3304-3310.

#	Article	IF	CITATIONS
523	Cluster bonding and energetics of the borane anions, BnHn2â^' (n = 5â€"12): A comparative study using bond lengthâ€"bond enthal. Polyhedron, 1985, 4, 1875-1881.	2.2	14
524	The borane analogy: CH ligand orientation in arachno- and closo-butterfly clusters. Journal of Organometallic Chemistry, 1984, 276, 297-309.	1.8	9
525	The unusual bonding capabilities of a tetrametal butterfly cluster fragment: electronic structures of HFe4(CO)12CH and HFe4(CO)13 Organometallics, 1984, 3, 764-774.	2.3	11
526	Cluster mimetics. 2. The preparation and characterization of (.muH)(.muCO)Fe3(CO)9BH2, (.muCO)Fe3(CO)9BH2-, and Fe3(CO)9BH4 Organometallics, 1984, 3, 1591-1593.	2.3	29
527	Relative energies of deltahedral clusters: comments on the use of the bireciprocal length-energy relationship $U=d-2-d-1$. Inorganic Chemistry, 1983, 22, 1391-1393.	4.0	5
528	Hydrocarbon-hydrogen interactions with metals. A molecular orbital analysis of HFe4(CO)12(.eta.2-CH). Organometallics, 1983, 2, 690-692.	2.3	11
529	Metalloboranes: Their Relationships to Metal-Hydrocarbon Complexes and Clusters. Advances in Organometallic Chemistry, 1982, 21, 57-112.	1.0	65
530	Triborane. A transition metal ligand or heterocluster fragment?. Inorganic Chemistry, 1982, 21, 1739-1743.	4.0	29
531	Bond-order dependent bond enthalpy terms in simple compounds of boron. Polyhedron, 1982, 1, 701-706.	2.2	14
532	Metalâ€"metal and metalâ€"ligand bond strengths in metal carbonyl clusters. Journal of Organometallic Chemistry, 1981, 213, 35-43.	1.8	27
533	Bond length-based bond enthalpies for nido and arachno boranes BnHn+4 and BnHn+6. Inorganic and Nuclear Chemistry Letters, 1979, 15, 339-342.	0.7	11
534	Bond enthalpies of borane anions BnHn2â^'. Inorganic and Nuclear Chemistry Letters, 1979, 15, 343-347.	0.7	10
535	The relationship between cyclic hydrocarbons and boranes: Cyclobutane as a hydro cluster. Tetrahedron Letters, 1979, 20, 3175-3178.	1.4	6
536	Reorganisation Energies and Site Preferences of Carbonyl Ligands: Bond Energies of the Bridging and Terminal Carbonyl Groups of the Iron Carbonyls Fe2(CO)9 and Fe(CO)5. Journal of Organometallic Chemistry, 1979, 170, C1-C5.	1.8	21
537	Bond strengths in metal carbonyl clusters. Journal of the Chemical Society Chemical Communications, 1978, , 765.	2.0	28
538	Clusters with interstitial atoms from the p-block: How do Wade's rules handle them?., 1977,, 137-156.		1
539	Dye Precursor Molecules on NiO(001) Studied by Non-Contact Atomic Force Microscopy. , 0, , .		0
540	Dye Precursor Molecules on NiO(001) Studied by Non-Contact Atomic Force Microscopy. , 0, , .		0

#	Article	IF	CITATIONS
541	High Refractive Index Dielectric Nanoparticles for Opticallyâ€Enhanced Activity of Waterâ€Splitting Photoanodes. ChemPhotoChem, 0, , .	3.0	O