List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6258652/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Candida albicans Enhances the Progression of Oral Squamous Cell Carcinoma <i>In Vitro</i> and <i>In Vivo</i> WivoMBio, 2022, 13, e0314421.	4.1	39
2	Candidalysins Are a New Family of Cytolytic Fungal Peptide Toxins. MBio, 2022, 13, e0351021.	4.1	18
3	Calcium-dependent ESCRT recruitment and lysosome exocytosis maintain epithelial integrity during Candida albicans invasion. Cell Reports, 2022, 38, 110187.	6.4	31
4	Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature, 2022, 603, 672-678.	27.8	98
5	The <i>Candida albicans</i> toxin candidalysin mediates distinct epithelial inflammatory responses through p38 and EGFR-ERK pathways. Science Signaling, 2022, 15, eabj6915.	3.6	17
6	Programmed Cell Death: Central Player in Fungal Infections. Trends in Cell Biology, 2021, 31, 179-196.	7.9	19
7	<i>Candida albicans</i> and candidalysin in inflammatory disorders and cancer. Immunology, 2021, 162, 11-16.	4.4	36
8	Analysis of Epithelial Responses to Microbial Pathogens. Methods in Molecular Biology, 2021, 2260, 49-82.	0.9	0
9	Role for IL-1 Family Cytokines in Fungal Infections. Frontiers in Microbiology, 2021, 12, 633047.	3.5	17
10	A Human Dectin-2 Deficiency Associated With Invasive Aspergillosis. Journal of Infectious Diseases, 2021, 224, 1219-1224.	4.0	9
11	Fungal pathogenesis: A new venom. Current Biology, 2021, 31, R391-R394.	3.9	1
12	Fungal Toxins and Host Immune Responses. Frontiers in Microbiology, 2021, 12, 643639.	3.5	42
13	Candida vaginitis: the importance of mitochondria and type I interferon signalling. Mucosal Immunology, 2021, 14, 975-977.	6.0	3
14	Candidalysin triggers epithelial cellular stresses that induce necrotic death. Cellular Microbiology, 2021, 23, e13371.	2.1	23
15	Albumin Neutralizes Hydrophobic Toxins and Modulates <i>Candida albicans</i> Pathogenicity. MBio, 2021, 12, e0053121.	4.1	14
16	Candidalysin delivery to the invasion pocket is critical for host epithelial damage induced by <i>Candida albicans</i> . Cellular Microbiology, 2021, 23, e13378.	2.1	33
17	A variant ECE1 allele contributes to reduced pathogenicity of Candida albicans during vulvovaginal candidiasis. PLoS Pathogens, 2021, 17, e1009884.	4.7	35
18	Cover Image: Candidalysin delivery to the invasion pocket is critical for host epithelial damage induced by <i>Candida albicans</i> (Cellular Microbiology 10/2021). Cellular Microbiology, 2021, 23, e13393.	2.1	0

#	Article	IF	CITATIONS
19	Candida albicans elicits protective allergic responses via platelet mediated T helper 2 and T helper 17 cell polarization. Immunity, 2021, 54, 2595-2610.e7.	14.3	47
20	<i>Candida albicans</i> biofilms and polymicrobial interactions. Critical Reviews in Microbiology, 2021, 47, 91-111.	6.1	96
21	Innovations for prevention and care of oral candidiasis in HIVâ€infected individuals: Are they available?—A workshop report. Oral Diseases, 2020, 26, 91-102.	3.0	5
22	Innate immune mechanisms to oral pathogens in oral mucosa of HIVâ€infected individuals. Oral Diseases, 2020, 26, 69-79.	3.0	13
23	Oral epithelial IL-22/STAT3 signaling licenses IL-17–mediated immunity to oral mucosal candidiasis. Science Immunology, 2020, 5, .	11.9	66
24	Candidalysin Is a Potent Trigger of Alarmin and Antimicrobial Peptide Release in Epithelial Cells. Cells, 2020, 9, 699.	4.1	32
25	Some like it hot: Candida activation of inflammasomes. PLoS Pathogens, 2020, 16, e1008975.	4.7	10
26	Candidalysin Is Required for Neutrophil Recruitment and Virulence During Systemic Candida albicans Infection. Journal of Infectious Diseases, 2019, 220, 1477-1488.	4.0	72
27	Candidalysin: discovery and function in Candida albicans infections. Current Opinion in Microbiology, 2019, 52, 100-109.	5.1	134
28	Host–Pathogen Interactions during Female Genital Tract Infections. Trends in Microbiology, 2019, 27, 982-996.	7.7	41
29	Candidalysin activates innate epithelial immune responses via epidermal growth factor receptor. Nature Communications, 2019, 10, 2297.	12.8	104
30	Genome Sequence for Candida albicans Clinical Oral Isolate 529L. Microbiology Resource Announcements, 2019, 8, .	0.6	13
31	Candida albicans Interactions with Mucosal Surfaces during Health and Disease. Pathogens, 2019, 8, 53.	2.8	53
32	CARD9+ microglia promote antifungal immunity via IL-1β- and CXCL1-mediated neutrophil recruitment. Nature Immunology, 2019, 20, 559-570.	14.5	162
33	Candida innate immunity at the mucosa. Seminars in Cell and Developmental Biology, 2019, 89, 58-70.	5.0	45
34	Membrane Activity of the Fungal Peptide Toxin Candidalysin. Biophysical Journal, 2018, 114, 264a.	0.5	0
35	Processing of <i>Candida albicans</i> Ece1p Is Critical for Candidalysin Maturation and Fungal Virulence. MBio, 2018, 9, .	4.1	72
36	Candidalysin Drives Epithelial Signaling, Neutrophil Recruitment, and Immunopathology at the Vaginal Mucosa. Infection and Immunity, 2018, 86, .	2.2	123

#	Article	IF	CITATIONS
37	The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nature Communications, 2018, 9, 4260.	12.8	181
38	Candida–Epithelial Interactions. Journal of Fungi (Basel, Switzerland), 2018, 4, 22.	3.5	67
39	Candida albicans-Induced Epithelial Damage Mediates Translocation through Intestinal Barriers. MBio, 2018, 9, .	4.1	131
40	IL-36 and IL-1/IL-17 Drive Immunity to Oral Candidiasis via Parallel Mechanisms. Journal of Immunology, 2018, 201, 627-634.	0.8	69
41	The Role of ErbB Receptors in Infection. Trends in Microbiology, 2017, 25, 942-952.	7.7	58
42	Candida albicans–epithelial interactions and induction of mucosal innate immunity. Current Opinion in Microbiology, 2017, 40, 104-112.	5.1	104
43	Oral epithelial cells orchestrate innate type 17 responses to <i>Candida albicans</i> through the virulence factor candidalysin. Science Immunology, 2017, 2, .	11.9	154
44	Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature, 2016, 532, 64-68.	27.8	628
45	Epithelial discrimination of commensal and pathogenic <i>Candida albicans</i> . Oral Diseases, 2016, 22, 114-119.	3.0	34
46	IL-17 Receptor Signaling in Oral Epithelial Cells Is Critical for Protection against Oropharyngeal Candidiasis. Cell Host and Microbe, 2016, 20, 606-617.	11.0	148
47	The Missing Link between Candida albicans Hyphal Morphogenesis and Host Cell Damage. PLoS Pathogens, 2016, 12, e1005867.	4.7	79
48	Cell Cycle-Independent Phospho-Regulation of Fkh2 during Hyphal Growth Regulates Candida albicans Pathogenesis. PLoS Pathogens, 2015, 11, e1004630.	4.7	26
49	<i>Candida albicans-</i> epithelial interactions and pathogenicity mechanisms: scratching the surface. Virulence, 2015, 6, 338-346.	4.4	142
50	Dermatophytes Activate Skin Keratinocytes via Mitogen-Activated Protein Kinase Signaling and Induce Immune Responses. Infection and Immunity, 2015, 83, 1705-1714.	2.2	29
51	<i>Candida</i> Immunity. New Journal of Science, 2014, 2014, 1-27.	1.0	24
52	Pathogenicity mechanisms and host response during oral <i>Candida albicans</i> infections. Expert Review of Anti-Infective Therapy, 2014, 12, 867-879.	4.4	86
53	Candida albicans Pathogenicity and Epithelial Immunity. PLoS Pathogens, 2014, 10, e1004257.	4.7	82
54	Protection Against Epithelial Damage During Candida albicans Infection Is Mediated by PI3K/Akt and Mammalian Target of Rapamycin Signaling. Journal of Infectious Diseases, 2014, 209, 1816-1826.	4.0	86

#	Article	IF	CITATIONS
55	Production of Water-Soluble Few-Layer Graphene Mesosheets by Dry Milling with Hydrophobic Drug. Langmuir, 2014, 30, 14999-15008.	3.5	10
56	Oral and Vaginal Epithelial Cell Lines Bind and Transfer Cell-Free Infectious HIV-1 to Permissive Cells but Are Not Productively Infected. PLoS ONE, 2014, 9, e98077.	2.5	29
57	Oral Colonization of Fungi. Current Fungal Infection Reports, 2013, 7, 152-159.	2.6	11
58	Clotrimazole Dampens Vaginal Inflammation and Neutrophil Infiltration in Response to Candida albicans Infection. Antimicrobial Agents and Chemotherapy, 2013, 57, 5178-5180.	3.2	11
59	Host-Fungal Interactions: Pathogenicity versus Immunity. International Journal of Microbiology, 2012, 2012, 1-2.	2.3	2
60	The Mycobiome: Influencing IBD Severity. Cell Host and Microbe, 2012, 11, 551-552.	11.0	35
61	Murine Model of Concurrent Oral and Vaginal Candida albicans Colonisation. Methods in Molecular Biology, 2012, 845, 527-535.	0.9	8
62	<i>Candida albicans</i> dimorphism as a therapeutic target. Expert Review of Anti-Infective Therapy, 2012, 10, 85-93.	4.4	292
63	Glycosylation of Candida albicans Cell Wall Proteins Is Critical for Induction of Innate Immune Responses and Apoptosis of Epithelial Cells. PLoS ONE, 2012, 7, e50518.	2.5	29
64	Analysis of Host-Cell Responses by Immunoblotting, ELISA, and Real-Time PCR. Methods in Molecular Biology, 2012, 845, 345-360.	0.9	0
65	Activation of MAPK/c-Fos induced responses in oral epithelial cells is specific to Candida albicans and Candida dubliniensis hyphae. Medical Microbiology and Immunology, 2012, 201, 93-101.	4.8	57
66	Evaluation of the Role of Candida albicans Agglutinin-Like Sequence (Als) Proteins in Human Oral Epithelial Cell Interactions. PLoS ONE, 2012, 7, e33362.	2.5	93
67	Epithelial Cell Innate Response to Candida albicans. Advances in Dental Research, 2011, 23, 50-55.	3.6	60
68	Candida albicans interactions with epithelial cells and mucosal immunity. Microbes and Infection, 2011, 13, 963-976.	1.9	218
69	Candida albicans Yeast and Hyphae are Discriminated by MAPK Signaling in Vaginal Epithelial Cells. PLoS ONE, 2011, 6, e26580.	2.5	95
70	Candida albicans Cell Wall Glycosylation May Be Indirectly Required for Activation of Epithelial Cell Proinflammatory Responses. Infection and Immunity, 2011, 79, 4902-4911.	2.2	44
71	Mucosal Immunity and <i>Candida albicans</i> Infection. Clinical and Developmental Immunology, 2011, 2011, 1-9.	3.3	106

72 Secreted Candida Proteins: Pathogenicity and Host Immunity. , 2010, , 97-120.

1

#	Article	IF	CITATIONS
73	A Biphasic Innate Immune MAPK Response Discriminates between the Yeast and Hyphal Forms of Candida albicans in Epithelial Cells. Cell Host and Microbe, 2010, 8, 225-235.	11.0	303
74	Animal models of mucosal Candida infection. FEMS Microbiology Letters, 2008, 283, 129-139.	1.8	137
75	MixedCandida albicansstrain populations in colonized and infected mucosal tissues. FEMS Yeast Research, 2008, 8, 1334-1338.	2.3	44
76	Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology (United Kingdom), 2008, 154, 3266-3280.	1.8	218
77	Murine model of concurrent oral and vaginal Candida albicans colonization to study epithelial host–pathogen interactions. Microbes and Infection, 2007, 9, 615-622.	1.9	88
78	In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cellular Microbiology, 2007, 9, 2938-2954.	2.1	255
79	Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling. Journal of Clinical Investigation, 2007, 117, 3664-72.	8.2	186
80	Comparison of Human Immunodeficiency Virus Type 1-Specific Inhibitory Activities in Saliva and Other Human Mucosal Fluids. Vaccine Journal, 2006, 13, 1111-1118.	3.1	75
81	Models of oral and vaginal candidiasis based on in vitro reconstituted human epithelia. Nature Protocols, 2006, 1, 2767-2773.	12.0	94
82	Candida albicans isolates with different genomic backgrounds display a differential response to macrophage infection. Microbes and Infection, 2006, 8, 791-800.	1.9	42
83	Candida albicans HWP1 gene expression and host antibody responses in colonization and disease. Journal of Medical Microbiology, 2006, 55, 1323-1327.	1.8	83
84	Glycosylphosphatidylinositol-anchored Proteases of Candida albicans Target Proteins Necessary for Both Cellular Processes and Host-Pathogen Interactions. Journal of Biological Chemistry, 2006, 281, 688-694.	3.4	222
85	Humoral Factors in the Protection of the Oral Cavity against Candidiasis. , 2005, , 37-57.		1
86	Fungal Adenylyl Cyclase Integrates CO2 Sensing with cAMP Signaling and Virulence. Current Biology, 2005, 15, 2021-2026.	3.9	372
87	Serum and saliva antibodies do not inhibitCandida albicansSap2 proteinase activity using a BSA hydrolysis assay. Medical Mycology, 2005, 43, 73-77.	0.7	11
88	Candida albicans Secreted Aspartyl Proteinases in Virulence and Pathogenesis. Microbiology and Molecular Biology Reviews, 2003, 67, 400-428.	6.6	936
89	Differential Expression ofCandida albicansSecreted Aspartyl Proteinase and Phospholipase B Genes in Humans Correlates with Active Oral and Vaginal Infections. Journal of Infectious Diseases, 2003, 188, 469-479.	4.0	177
90	In Vivo Analysis of Secreted Aspartyl Proteinase Expression in Human Oral Candidiasis. Infection and Immunity, 1999, 67, 2482-2490.	2.2	171