Edward A Burton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6258481/publications.pdf

Version: 2024-02-01

63 papers 3,381 citations

30 h-index 56 g-index

70 all docs

70 docs citations

times ranked

70

4768 citing authors

#	Article	IF	CITATIONS
1	NADPH oxidase 2 activity in Parkinson's disease. Neurobiology of Disease, 2022, 170, 105754.	4.4	18
2	Seizures are a druggable mechanistic link between TBI and subsequent tauopathy. ELife, 2021, 10, .	6.0	22
3	Mechanism of Pacemaker Activity in Zebrafish DC2/4 Dopaminergic Neurons. Journal of Neuroscience, 2021, 41, 4141-4157.	3.6	4
4	Quantitative Tools for Phenotypeâ€Based Drug Discovery in Zebrafish Models of Neurological Disease. FASEB Journal, 2021, 35, .	0.5	0
5	Sinusoidal analysis reveals a non-linear and dopamine-dependent relationship between ambient illumination and motor activity in larval zebrafish. Neuroscience Letters, 2021, 761, 136121.	2.1	1
6	α-Synuclein amplifies cytoplasmic peroxide flux and oxidative stress provoked by mitochondrial inhibitors in CNS dopaminergic neurons in vivo. Redox Biology, 2020, 37, 101695.	9.0	26
7	Acquired dysregulation of dopamine homeostasis reproduces features of Parkinson's disease. Npj Parkinson's Disease, 2020, 6, 34.	5.3	29
8	Chemoptogenetic ablation of neuronal mitochondria in vivo with spatiotemporal precision and controllable severity. ELife, 2020, 9, .	6.0	20
9	Ablation of the pro-inflammatory master regulator miR-155 does not mitigate neuroinflammation or neurodegeneration in a vertebrate model of Gaucher's disease. Neurobiology of Disease, 2019, 127, 563-569.	4.4	19
10	Regeneration of the zebrafish retinal pigment epithelium after widespread genetic ablation. PLoS Genetics, 2019, 15, e1007939.	3.5	43
11	Long-term RNAi knockdown of α-synuclein in the adult rat substantia nigra without neurodegeneration. Neurobiology of Disease, 2019, 125, 146-153.	4.4	38
12	Astrocyte-specific DJ-1 overexpression protects against rotenone-induced neurotoxicity in a rat model of Parkinson's disease. Neurobiology of Disease, 2018, 115, 101-114.	4.4	83
13	Modulation of the zebrafish optokinetic reflex by pharmacologic agents targeting GABAA receptors. Neuroscience Letters, 2018, 671, 33-37.	2.1	11
14	Astroglial DJ-1 over-expression up-regulates proteins involved in redox regulation and is neuroprotective in vivo. Redox Biology, 2018, 16, 237-247.	9.0	31
15	An open-source method to analyze optokinetic reflex responses in larval zebrafish. Journal of Neuroscience Methods, 2018, 293, 329-337.	2.5	29
16	LRRK2 activation in idiopathic Parkinson's disease. Science Translational Medicine, 2018, 10, .	12.4	363
17	Spectral properties of the zebrafish visual motor response. Neuroscience Letters, 2017, 646, 62-67.	2.1	25
18	Quantitative Responses of Adult Zebrafish to Changes in Ambient Illumination. Zebrafish, 2017, 14, 508-516.	1.1	8

#	Article	IF	CITATIONS
19	The Developmental Toxicity of Complex Silica-Embedded Nickel Nanoparticles Is Determined by Their Physicochemical Properties. PLoS ONE, 2016, 11, e0152010.	2.5	6
20	Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP+ exposure. Neurobiology of Disease, 2016, 95, 238-249.	4.4	44
21	α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson's disease. Science Translational Medicine, 2016, 8, 342ra78.	12.4	432
22	shRNA targeting α-synuclein prevents neurodegeneration in a Parkinson's disease model. Journal of Clinical Investigation, 2015, 125, 2721-2735.	8.2	143
23	Zebrafish. , 2015, , 117-138.		2
24	Glucocerebrosidase 1 deficient <i>Danio rerio</i> mirror key pathological aspects of human Gaucher disease and provide evidence of early microglial activation preceding alpha-synuclein-independent neuronal cell death. Human Molecular Genetics, 2015, 24, 6640-6652.	2.9	108
25	Different Mechanisms Regulate Expression of Zebrafish Myelin Protein Zero (P0) in Myelinating Oligodendrocytes and Its Induction following Axonal Injury. Journal of Biological Chemistry, 2014, 289, 24114-24128.	3.4	14
26	Quantification of larval zebrafish motor function in multiwell plates using open-source MATLAB applications. Nature Protocols, 2014, 9, 1533-1548.	12.0	47
27	The advantages of frontotemporal degeneration drug development (partÂ2Âof frontotemporal) Tj ETQq1 1 0.78	34314 rgB ⁻	Г/Qyerlock <mark>1</mark>
28	Frontotemporal degeneration, the next therapeutic frontier: Molecules and animal models for frontotemporal degeneration drug development. Alzheimer's and Dementia, 2013, 9, 176-188.	0.8	58
29	Research on the Premotor Symptoms of Parkinson's Disease: Clinical and Etiological Implications. Environmental Health Perspectives, 2013, 121, 1245-1252.	6.0	68
30	Hypokinesia and Reduced Dopamine Levels in Zebrafish Lacking \hat{l}^2 - and \hat{l}^3 1-Synucleins. Journal of Biological Chemistry, 2012, 287, 2971-2983.	3.4	71
31	The Zebrafish Homologue of the Human DYT1 Dystonia Gene Is Widely Expressed in CNS Neurons but Non-Essential for Early Motor System Development. PLoS ONE, 2012, 7, e45175.	2.5	6
32	Claudin k is specifically expressed in cells that form myelin during development of the nervous system and regeneration of the optic nerve in adult zebrafish. Glia, 2012, 60, 253-270.	4.9	78
33	Single-Cell Redox Imaging Demonstrates a Distinctive Response of Dopaminergic Neurons to Oxidative Insults. Antioxidants and Redox Signaling, 2011, 15, 855-871.	5.4	70
34	Zebrafish models of Tauopathy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 353-363.	3.8	24
35	Pseudotype-dependent lentiviral transduction of astrocytes or neurons in the rat substantia nigra. Experimental Neurology, 2011, 228, 41-52.	4.1	56
36	Automated measurement of zebrafish larval movement. Journal of Physiology, 2011, 589, 3703-3708.	2.9	45

#	Article	IF	Citations
37	Evaluation of spontaneous propulsive movement as a screening tool to detect rescue of Parkinsonism phenotypes in zebrafish models. Neurobiology of Disease, 2011, 44, 9-18.	4.4	55
38	Major isoform of zebrafish PO is a 23.5 kDa myelin glycoprotein expressed in selected white matter tracts of the central nervous system. Journal of Comparative Neurology, 2011, 519, 1580-1596.	1.6	24
39	Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization. Human Molecular Genetics, 2011, 20, 927-940.	2.9	200
40	Transgenic zebrafish models of neurodegenerative diseases. Brain Structure and Function, 2010, 214, 285-302.	2.3	85
41	Genetic zebrafish models of neurodegenerative diseases. Neurobiology of Disease, 2010, 40, 58-65.	4.4	107
42	Of fish, flies, worms and men: Powerful approaches to neuropsychiatric disease using genetic models. Neurobiology of Disease, 2010, 40, 1-3.	4.4	2
43	Cis-acting elements responsible for dopaminergic neuron-specific expression of zebrafish slc6a3 (dopamine transporter) in vivo are located remote from the transcriptional start site. Neuroscience, 2009, 164, 1138-1151.	2.3	25
44	Expression of a 12-kb promoter element derived from the zebrafish enolase-2 gene in the zebrafish visual system. Neuroscience Letters, 2009, 449, 252-257.	2.1	16
45	Survival of transplanted neural progenitor cells enhanced by brain irradiation. Journal of Neurosurgery, 2007, 107, 383-391.	1.6	15
46	Generation of a transgenic zebrafish model of Tauopathy using a novel promoter element derived from the zebrafish eno2 gene. Nucleic Acids Research, 2007, 35, 6501-6516.	14.5	104
47	Gene Therapy Approaches in Neurology. , 2007, , 101-123.		0
48	Herpes Simplex Virus Vectors for Gene Therapy of Lysosomal Storage Disorders. , 2007, , 111-131.		0
49	Zebrafish DJ-1 is evolutionarily conserved and expressed in dopaminergic neurons. Brain Research, 2006, 1113, 33-44.	2.2	64
50	Soluble V Domain of Nectin-1/HveC Enables Entry of Herpes Simplex Virus Type 1 (HSV-1) into HSV-Resistant Cells by Binding to Viral Glycoprotein D. Journal of Virology, 2006, 80, 138-148.	3.4	43
51	Replication-defective genomic HSV gene therapy vectors: design, production and CNS applications. Current Opinion in Molecular Therapeutics, 2005, 7, 326-36.	2.8	19
52	The Stable 2.0-Kilobase Intron of the Herpes Simplex Virus Type 1 Latency-Associated Transcript Does Not Function as an Antisense Repressor of ICPO in Nonneuronal Cells. Journal of Virology, 2003, 77, 3516-3530.	3.4	21
53	Virus-based vectors for gene expression in mammalian cells: Herpes simplex virus. New Comprehensive Biochemistry, 2003, 38, 27-54.	0.1	1
54	Redirecting the Tropism of HSV-1 for Gene Therapy Applications. , 2003, , 377-403.		0

#	Article	IF	CITATIONS
55	Use of the Herpes Simplex Viral Genome to Construct Gene Therapy Vectors. , 2003, 76, 01-32.		5
56	A- and B-utrophin Have Different Expression Patterns and Are Differentially Up-regulated in mdx Muscle. Journal of Biological Chemistry, 2002, 277, 45285-45290.	3.4	114
57	Gene Delivery Using Herpes Simplex Virus Vectors. DNA and Cell Biology, 2002, 21, 915-936.	1.9	85
58	Muscular Dystrophy—Reason for Optimism?. Cell, 2002, 108, 5-8.	28.9	61
59	Replication-defective genomic herpes simplex vectors: design and production. Current Opinion in Biotechnology, 2002, 13, 424-428.	6.6	45
60	Multiple Applications For Replication-Defective Herpes Simplex Virus Vectors. Stem Cells, 2001, 19, 358-377.	3.2	69
61	Targeting gene expression using HSV vectors. Advanced Drug Delivery Reviews, 2001, 53, 155-170.	13.7	23
62	Multi-modal combination gene therapy for malignant glioma using replication-defective HSV vectors. Drug Discovery Today, 2001, 6, 347-356.	6.4	10
63	Muscle and Neural Isoforms of Agrin Increase Utrophin Expression in Cultured Myotubes via a Transcriptional Regulatory Mechanism. Journal of Biological Chemistry, 1998, 273, 736-743.	3.4	85