
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6257367/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epigenetic mechanisms of inner ear development. Hearing Research, 2022, 426, 108440.	2.0	5
2	Incorporation of exomeâ€based CNV analysis makes trioâ€WES a more powerful tool for clinical diagnosis in neurodevelopmental disorders: A retrospective study. Human Mutation, 2021, 42, 990-1004.	2.5	25
3	Association of Salary Differences Between Medical Specialties With Sex Distribution. JAMA Pediatrics, 2021, 175, 524.	6.2	19
4	Meis2 Is Required for Inner Ear Formation and Proper Morphogenesis of the Cochlea. Frontiers in Cell and Developmental Biology, 2021, 9, 679325.	3.7	8
5	Chromatin remodeler CHD7 is critical for cochlear morphogenesis and neurosensory patterning. Developmental Biology, 2021, 477, 11-21.	2.0	10
6	GJB2 gene therapy and conditional deletion reveal developmental stage-dependent effects on inner ear structure and function. Molecular Therapy - Methods and Clinical Development, 2021, 23, 319-333.	4.1	15
7	Development and implementation of an electronic medical record module to track genetic testing results. Genetics in Medicine, 2021, 23, 972-975.	2.4	2
8	Genotype–phenotype analysis of 523 patients by genetics evaluation and clinical exome sequencing. Pediatric Research, 2020, 87, 735-739.	2.3	28
9	Congenital heart defects in CHARGE: The molecular role of CHD7 and effects on cardiac phenotype and clinical outcomes. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2020, 184, 81-89.	1.6	17
10	CHD7 promotes neural progenitor differentiation in embryonic stem cells via altered chromatin accessibility and nascent gene expression. Scientific Reports, 2020, 10, 17445.	3.3	23
11	Changing the editorial process at JCI and JCI Insight in response to the COVID-19 pandemic. Journal of Clinical Investigation, 2020, 130, 2147-2147.	8.2	10
12	De Novo Heterozygous POLR2A Variants Cause a Neurodevelopmental Syndrome with Profound Infantile-Onset Hypotonia. American Journal of Human Genetics, 2019, 105, 283-301.	6.2	46
13	Mutation update for the <i>SATB2</i> gene. Human Mutation, 2019, 40, 1013-1029.	2.5	38
14	Neural crest contributions to the ear: Implications for congenital hearing disorders. Hearing Research, 2019, 376, 22-32.	2.0	54
15	Genotype-phenotype correlations in individuals with pathogenic <i>RERE</i> variants. Human Mutation, 2018, 39, 666-675.	2.5	34
16	Dysregulation of cotranscriptional alternative splicing underlies CHARGE syndrome. Proceedings of the United States of America, 2018, 115, E620-E629.	7.1	28
17	Genetic analysis of CHARGE syndrome identifies overlapping molecular biology. Genetics in Medicine, 2018, 20, 1022-1029.	2.4	43
18	Atopic disorders in CHARGE syndrome: A retrospective study and literature review. European Journal of Medical Genetics, 2018, 61, 225-229.	1.3	12

#	Article	IF	CITATIONS
19	Nervous system development and disease: A focus on trithorax related proteins and chromatin remodelers. Molecular and Cellular Neurosciences, 2018, 87, 46-54.	2.2	16
20	Single Cell Transcriptomics Reveal Abnormalities in Neurosensory Patterning of the Chd7 Mutant Mouse Ear. Frontiers in Genetics, 2018, 9, 473.	2.3	16
21	Oligodendrocyte precursor survival and differentiation requires chromatin remodeling by Chd7 and Chd8. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8246-E8255.	7.1	81
22	Dual Requirement of CHD8 for Chromatin Landscape Establishment and Histone Methyltransferase Recruitment to Promote CNS Myelination and Repair. Developmental Cell, 2018, 45, 753-768.e8.	7.0	112
23	CHD7 represses the retinoic acid synthesis enzyme ALDH1A3 during inner ear development. JCI Insight, 2018, 3, .	5.0	27
24	Balancing dual demands on the physician-scientist workforce. Journal of Clinical Investigation, 2018, 128, 3204-3205.	8.2	5
25	The influence of 5-HTTLPR transporter genotype on amygdala-subgenual anterior cingulate cortex connectivity in autism spectrum disorder. Developmental Cognitive Neuroscience, 2017, 24, 12-20.	4.0	16
26	It's All in the Delivery: Improving AAV Transfection Efficiency with Exosomes. Molecular Therapy, 2017, 25, 309-311.	8.2	6
27	Support for the Diagnosis of CHARGE Syndrome. JAMA Otolaryngology - Head and Neck Surgery, 2017, 143, 634.	2.2	0
28	Harnessing molecular motors for nanoscale pulldown in live cells. Molecular Biology of the Cell, 2017, 28, 463-475.	2.1	25
29	Inner ear manifestations in CHARGE: Abnormalities, treatments, animal models, and progress toward treatments in auditory and vestibular structures. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2017, 175, 439-449.	1.6	16
30	New insights and advances in CHARGE syndrome: Diagnosis, etiologies, treatments, and research discoveries. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2017, 175, 397-406.	1.6	46
31	Genetic specification of left–right asymmetry in the diaphragm muscles and their motor innervation. ELife, 2017, 6, .	6.0	6
32	Response to correspondence to Hale et al. atypical phenotypes associated with pathogenic <i>CHD7</i> variants and a proposal for broadening CHARGE syndrome clinical diagnostic criteria. American Journal of Medical Genetics, Part A, 2016, 170, 3367-3368.	1.2	7
33	Recurrent De Novo and Biallelic Variation of ATAD3A , Encoding a Mitochondrial Membrane Protein, Results in Distinct Neurological Syndromes. American Journal of Human Genetics, 2016, 99, 831-845.	6.2	146
34	Duplication 2p25 in a child with clinical features of CHARGE syndrome. American Journal of Medical Genetics, Part A, 2016, 170, 1148-1154.	1.2	11
35	Atypical phenotypes associated with pathogenic <i>CHD7</i> variants and a proposal for broadening CHARGE syndrome clinical diagnostic criteria. American Journal of Medical Genetics, Part A, 2016, 170, 344-354.	1.2	122
36	Chd7 cooperates with Sox10 and regulates the onset of CNS myelination and remyelination. Nature Neuroscience, 2016, 19, 678-689.	14.8	142

#	Article	IF	CITATIONS
37	<i>De novo</i> dominant <i>ASXL3</i> mutations alter H2A deubiquitination and transcription in Bainbridge–Ropers syndrome. Human Molecular Genetics, 2016, 25, 597-608.	2.9	56
38	Recurrent deletions and duplications of chromosome 2q11.2 and 2q13 are associated with variable outcomes. American Journal of Medical Genetics, Part A, 2015, 167, 2664-2673.	1.2	42
39	Mouse Models for the Dissection of CHD7 Functions in Eye Development and the Molecular Basis for Ocular Defects in CHARGE Syndrome. , 2015, 56, 7923.		26
40	Super Enhancers in Cancers, Complex Disease, and Developmental Disorders. Genes, 2015, 6, 1183-1200.	2.4	61
41	Epigenetic Developmental Disorders: CHARGE Syndrome, a Case Study. Current Genetic Medicine Reports, 2015, 3, 1-7.	1.9	19
42	Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci. Neuron, 2015, 87, 1215-1233.	8.1	1,219
43	A Genome-wide Association Study of Autism Using the Simons Simplex Collection: Does Reducing Phenotypic Heterogeneity in Autism Increase Genetic Homogeneity?. Biological Psychiatry, 2015, 77, 775-784.	1.3	133
44	Axial levelâ€specific regulation of neuronal development: Lessons from PITX2. Journal of Neuroscience Research, 2015, 93, 195-198.	2.9	5
45	CHD7 and retinoic acid signaling cooperate to regulate neural stem cell and inner ear development in mouse models of CHARGE syndrome. Human Molecular Genetics, 2014, 23, 434-448.	2.9	57
46	The chromatin remodeling protein CHD7, mutated in CHARGE syndrome, is necessary for proper craniofacial and tracheal development. Developmental Dynamics, 2014, 243, 1055-1066.	1.8	34
47	Serotonin transporter genotype impacts amygdala habituation in youth with autism spectrum disorders. Social Cognitive and Affective Neuroscience, 2014, 9, 832-838.	3.0	38
48	Ageâ€related effect of serotonin transporter genotype on amygdala and prefrontal cortex function in adolescence. Human Brain Mapping, 2014, 35, 646-658.	3.6	18
49	Modest Impact on Risk for Autism Spectrum Disorder of Rare Copy Number Variants at 15 <scp>q</scp> 11.2, Specifically Breakpoints 1 to 2. Autism Research, 2014, 7, 355-362.	3.8	59
50	Inappropriate p53 activation during development induces features of CHARGE syndrome. Nature, 2014, 514, 228-232.	27.8	117
51	CHD7 Mutations and CHARGE Syndrome in Semicircular Canal Dysplasia. Otology and Neurotology, 2014, 35, 1466-1470.	1.3	25
52	Adjusting Head Circumference for Covariates in Autism: Clinical Correlates of a Highly Heritable Continuous Trait. Biological Psychiatry, 2013, 74, 576-584.	1.3	70
53	C-terminals in the mouse branchiomotor nuclei originate from the magnocellular reticular formation. Neuroscience Letters, 2013, 548, 137-142.	2.1	7
54	The impact of serotonin transporter genotype on default network connectivity in children and adolescents with autism spectrum disorders. NeuroImage: Clinical, 2013, 2, 17-24.	2.7	15

#	Article	IF	CITATIONS
55	Pleiotropic and isoform-specific functions for Pitx2 in superior colliculus and hypothalamic neuronal development. Molecular and Cellular Neurosciences, 2013, 52, 128-139.	2.2	11
56	Disruption of RAB40AL function leads to Martin–Probst syndrome, a rare X-linked multisystem neurodevelopmental human disorder. Journal of Medical Genetics, 2012, 49, 332-340.	3.2	17
57	Have You Heard? Viral-Mediated Gene Therapy Restores Hearing. Neuron, 2012, 75, 188-190.	8.1	2
58	Distinct populations of GABAergic neurons in mouse rhombomere 1 express but do not require the homeodomain transcription factor PITX2. Molecular and Cellular Neurosciences, 2012, 49, 32-43.	2.2	10
59	The impact of serotonin transporter (5-HTTLPR) genotype on the development of resting-state functional connectivity in children and adolescents: A preliminary report. NeuroImage, 2012, 59, 2760-2770.	4.2	55
60	Delayed fusion and altered gene expression contribute to semicircular canal defects in Chd7 deficient mice. Mechanisms of Development, 2012, 129, 308-323.	1.7	33
61	Common genetic variants, acting additively, are a major source of risk for autism. Molecular Autism, 2012, 3, 9.	4.9	357
62	A novel <i>TaulacZ</i> allele reveals a requirement for <i>Pitx2</i> in formation of the mammillothalamic tract. Genesis, 2012, 50, 67-73.	1.6	17
63	Mature middle and inner ears express Chd7 and exhibit distinctive pathologies in a mouse model of CHARGE syndrome. Hearing Research, 2011, 282, 184-195.	2.0	36
64	Multiple Recurrent De Novo CNVs, Including Duplications of the 7q11.23 Williams Syndrome Region, Are Strongly Associated with Autism. Neuron, 2011, 70, 863-885.	8.1	1,146
65	GABAergic and glutamatergic identities of developing midbrain <i>Pitx2</i> neurons. Developmental Dynamics, 2011, 240, 333-346.	1.8	32
66	Reproductive dysfunction and decreased GnRH neurogenesis in a mouse model of CHARGE syndrome. Human Molecular Genetics, 2011, 20, 3138-3150.	2.9	57
67	Molecular and phenotypic aspects of <i>CHD7</i> mutation in CHARGE syndrome. American Journal of Medical Genetics, Part A, 2010, 152A, 674-686.	1.2	265
68	Duplication 16p11.2 in a child with infantile seizure disorder. American Journal of Medical Genetics, Part A, 2010, 152A, 1567-1574.	1.2	37
69	Microarray oligonucleotide probe designer: a Web service. Open Access Bioinformatics, 2010, 2, 145.	0.9	5
70	CHD7 functions in the nucleolus as a positive regulator of ribosomal RNA biogenesis. Human Molecular Genetics, 2010, 19, 3491-3501.	2.9	91
71	The ATP-dependent chromatin remodeling enzyme CHD7 regulates pro-neural gene expression and neurogenesis in the inner ear. Development (Cambridge), 2010, 137, 3139-3150.	2.5	116
72	Chromatin Remodeling in Development and Disease: Focus on CHD7. PLoS Genetics, 2010, 6, e1001010.	3.5	31

#	Article	IF	CITATIONS
73	A novel chromosome 19p13.12 deletion in a child with multiple congenital anomalies. American Journal of Medical Genetics, Part A, 2009, 149A, 396-402.	1.2	31
74	Branchiootorenal syndrome and oculoauriculovertebral spectrum features associated with duplication of <i>SIX1</i> , <i>SIX6</i> , and <i>OTX2</i> resulting from a complex chromosomal rearrangement. American Journal of Medical Genetics, Part A, 2008, 146A, 2480-2489.	1.2	42
75	Cre fate mapping reveals lineage specific defects in neuronal migration with loss of Pitx2 function in the developing mouse hypothalamus and subthalamic nucleus. Molecular and Cellular Neurosciences, 2008, 37, 696-707.	2.2	38
76	Defects in vestibular sensory epithelia and innervation in mice with loss of <i>Chd7</i> function: Implications for human CHARGE syndrome. Journal of Comparative Neurology, 2007, 504, 519-532.	1.6	56
77	Characterization of progenitor domains in the developing mouse thalamus. Journal of Comparative Neurology, 2007, 505, 73-91.	1.6	141
78	Loss of Chd7 function in gene-trapped reporter mice is embryonic lethal and associated with severe defects in multiple developing tissues. Mammalian Genome, 2007, 18, 94-104.	2.2	148
79	Nestin-Cre mediated deletion ofPitx2 in the mouse. Genesis, 2006, 44, 336-344.	1.6	41
80	Genetics of subthalamic nucleus in development and disease. Experimental Neurology, 2005, 192, 320-330.	4.1	5
81	Skewed X-inactivation in carriers establishes linkage in an X-linked deafness-mental retardation syndrome. American Journal of Medical Genetics Part A, 2004, 131A, 209-212.	2.4	5
82	PITX2 is required for normal development of neurons in the mouse subthalamic nucleus and midbrain. Developmental Biology, 2004, 267, 93-108.	2.0	94
83	Interrupted aortic arch in a child with trisomy 5q31.1q35.1 due to a maternal (20;5) balanced insertion. American Journal of Medical Genetics Part A, 2003, 116A, 268-271.	2.4	9
84	Nestin-Lineage Cells Contribute to the Microvasculature but Not Endocrine Cells of the Islet. Diabetes, 2003, 52, 2503-2512.	0.6	137
85	Characterization of a Stapes Ankylosis Family with a NOG Mutation. Otology and Neurotology, 2003, 24, 210-215.	1.3	24
86	Gene-based diagnostic and treatment methods for tinnitus. International Tinnitus Journal, 2003, 9, 3-10.	0.2	6
87	Pitx2 Distinguishes Subtypes of Terminally Differentiated Neurons in the Developing Mouse Neuroepithelium. Developmental Biology, 2002, 252, 84-99.	2.0	59
88	Autosomal Dominant Stapes Ankylosis with Broad Thumbs and Toes, Hyperopia, and Skeletal Anomalies Is Caused by Heterozygous Nonsense and Frameshift Mutations in NOG, the Gene Encoding Noggin*. American Journal of Human Genetics, 2002, 71, 618-624.	6.2	93
89	CHARGE association With choanal atresia and inner ear hypoplasia in a child with a de novo chromosome translocation t(2;7)(p14;q21.11). American Journal of Medical Genetics Part A, 2001, 99, 115-119.	2.4	30
90	Systemic lupus erythematosus in a man with Noonan syndrome. American Journal of Medical Genetics Part A, 2001, 102, 59-62.	2.4	18