Michael Ailion

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6257331/publications.pdf

Version: 2024-02-01

257450 265206 3,438 41 24 42 h-index citations g-index papers 56 56 56 3571 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Local adaptation and spatiotemporal patterns of genetic diversity revealed by repeated sampling of <i>Caenorhabditis elegans</i> across the Hawaiian Islands. Molecular Ecology, 2022, 31, 2327-2347.	3.9	8
2	Dopamine receptor DOP-1 engages a sleep pathway to modulate swimming in C.Âelegans. IScience, 2021, 24, 102247.	4.1	8
3	EIPR1 controls dense-core vesicle cargo retention and EARP complex localization in insulin-secreting cells. Molecular Biology of the Cell, 2020, 31, 59-79.	2.1	14
4	Casein Kinase $1\hat{l}$ Stabilizes Mature Axons by Inhibiting Transcription Termination of Ankyrin. Developmental Cell, 2020, 52, 88-103.e18.	7.0	15
5	Hybridization promotes asexual reproduction in Caenorhabditis nematodes. PLoS Genetics, 2019, 15, e1008520.	3.5	10
6	Modulation of Gq-Rho Signaling by the ERK MAPK Pathway Controls Locomotion in <i>Caenorhabditis elegans</i> . Genetics, 2018, 209, 523-535.	2.9	14
7	Pristionchus nematodes occur frequently in diverse rotting vegetal substrates and are not exclusively necromenic, while Panagrellus redivivoides is found specifically in rotting fruits. PLoS ONE, 2018, 13, e0200851.	2.5	32
8	The NCA-1 and NCA-2 Ion Channels Function Downstream of Gq and Rho To Regulate Locomotion in <i>Caenorhabditis elegans</i>	2.9	26
9	The SEK-1 p38 MAP Kinase Pathway Modulates Gq Signaling in <i>Caenorhabditis elegans</i> Genomes, Genetics, 2017, 7, 2979-2989.	1.8	13
10	Genetics: Master Regulator or Master of Disguise?. Current Biology, 2017, 27, R844-R847.	3.9	1
11	The denseâ€core vesicle maturation protein <scp>CCCP</scp> â€1 binds <scp>RAB</scp> â€2 and membranes through its Câ€terminal domain. Traffic, 2017, 18, 720-732.	2.7	15
12	Cytoplasmic–Nuclear Incompatibility Between Wild Isolates of <i>Caenorhabditis nouraguensis</i> G3: Genes, Genomes, Genetics, 2017, 7, 823-834.	1.8	12
13	Dopamine negatively modulates the NCA ion channels in C. elegans. PLoS Genetics, 2017, 13, e1007032.	3.5	24
14	The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles. PLoS Genetics, 2016, 12, e1006074.	3.5	53
15	The Conserved VPS-50 Protein Functions in Dense-Core Vesicle Maturation and Acidification and Controls Animal Behavior. Current Biology, 2016, 26, 862-871.	3.9	25
16	Two Rab2 Interactors Regulate Dense-Core Vesicle Maturation. Neuron, 2014, 82, 167-180.	8.1	69
17	The membrane-associated proteins FCHo and SGIP are allosteric activators of the AP2 clathrin adaptor complex. ELife, 2014, 3, .	6.0	75
18	Improved Mos1-mediated transgenesis in C. elegans. Nature Methods, 2012, 9, 117-118.	19.0	397

#	Article	IF	Citations
19	Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes. Nature, 2011, 477, 321-325.	27.8	225
20	A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits. BMC Evolutionary Biology, 2011, 11, 339.	3.2	317
21	Neuron-specific proteotoxicity of mutant ataxin-3 in C. elegans : rescue by the DAF-16 and HSF-1 pathways. Human Molecular Genetics, 2011, 20, 2996-3009.	2.9	101
22	A Novel Sperm-Delivered Toxin Causes Late-Stage Embryo Lethality and Transmission Ratio Distortion in C. elegans. PLoS Biology, 2011, 9, e1001115.	5.6	158
23	Genetics of Extracellular Matrix Remodeling During Organ Growth Using the <i>Caenorhabditis elegans</i> Pharynx Model. Genetics, 2010, 186, 969-982.	2.9	22
24	C. elegans Anaplastic Lymphoma Kinase Ortholog SCD-2 Controls Dauer Formation by Modulating TGF-Î ² Signaling. Current Biology, 2008, 18, 1101-1109.	3.9	66
25	Ammonium-Acetate Is Sensed by Gustatory and Olfactory Neurons in Caenorhabditis elegans. PLoS ONE, 2008, 3, e2467.	2.5	21
26	UNC-31 (CAPS) Is Required for Dense-Core Vesicle But Not Synaptic Vesicle Exocytosis in Caenorhabditis elegans. Journal of Neuroscience, 2007, 27, 6150-6162.	3.6	261
27	Trio's Rho-specific GEF domain is the missing Gα _q effector in <i>C. elegans</i> Development, 2007, 21, 2731-2746.	5.9	84
28	Functional genomics and biochemical characterization of the C. elegans orthologue of the Machadoâ€Joseph disease protein ataxinâ€3. FASEB Journal, 2007, 21, 1126-1136.	0.5	62
29	Genetic Analysis of Dauer Formation in <i>Caenorhabditis briggsae</i> . Genetics, 2007, 177, 809-818.	2.9	32
30	NCR-1 and NCR-2, the C. elegans homologs of the human Niemann-Pick type C1 disease protein, function upstream of DAF-9 in the dauer formation pathways. Development (Cambridge), 2004, 131, 5741-5752.	2.5	72
31	Isolation and Characterization of High-Temperature-Induced Dauer Formation Mutants in <i>Caenorhabditis elegans (i). Genetics, 2003, 165, 127-144.</i>	2.9	70
32	<i>egl-4</i> Acts Through a Transforming Growth Factor-β/SMAD Pathway in <i>Caenorhabditis elegans</i> to Regulate Multiple Neuronal Circuits in Response to Sensory Cues. Genetics, 2000, 156, 123-141.	2.9	106
33	Dauer Formation Induced by High Temperatures in <i>Caenorhabditis elegans</i> . Genetics, 2000, 156, 1047-1067.	2.9	165
34	Neurosecretory control of aging in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 7394-7397.	7.1	116
35	A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes and Development, 1999, 13, 1438-1452.	5.9	375
36	Genetic characterization of the pdu operon: use of 1,2-propanediol in Salmonella typhimurium. Journal of Bacteriology, 1997, 179, 1013-1022.	2.2	57

#	Article	IF	CITATIONS
37	Repression of the cob operon of Salmonella typhimurium by adenosylcobalamin is influenced by mutations in the pdu operon. Journal of Bacteriology, 1997, 179, 6084-6091.	2.2	13
38	Five promoters integrate control of the cob/pdu regulon in Salmonella typhimurium. Journal of Bacteriology, 1995, 177, 5401-5410.	2.2	48
39	The end of the cob operon: evidence that the last gene (cobT) catalyzes synthesis of the lower ligand of vitamin B12, dimethylbenzimidazole. Journal of Bacteriology, 1995, 177, 1461-1469.	2.2	29
40	Two global regulatory systems (Crp and Arc) control the cobalamin/propanediol regulon of Salmonella typhimurium. Journal of Bacteriology, 1993, 175, 7200-7208.	2.2	80
41	A single regulatory gene integrates control of vitamin B12 synthesis and propanediol degradation. Journal of Bacteriology, 1992, 174, 2253-2266.	2.2	126