Fabrizio Barone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6257177/publications.pdf

Version: 2024-02-01

466 papers 66,452 citations

4370 86 h-index 255 g-index

471 all docs

471 docs citations

times ranked

471

17666 citing authors

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	2.9	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	2.9	6,413
3	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	3.0	2,805
4	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	2.9	2,701
5	Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 2015, 32, 024001.	1.5	2,530
6	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	3.0	2,314
7	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	2.8	2,022
8	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	2.9	1,987
9	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	2.9	1,600
10	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	2.9	1,473
11	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	2.9	1,224
12	The Einstein Telescope: a third-generation gravitational wave observatory. Classical and Quantum Gravity, 2010, 27, 194002.	1.5	1,211
13	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Physical Review X, 2021, 11, .	2.8	1,097
14	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	3.0	1,090
15	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	3.0	1,049
16	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	1.5	1,029
17	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	3.0	968
18	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	1.5	956

#	Article	IF	CITATIONS
19	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	2.8	898
20	GW190521: A Binary Black Hole Merger with a Total Mass of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>150</mml:mn><mml:mtext>â€%</mml:mtext><mml:mtext>â€%⊙</mml:mtext></mml:mrow></mml:math> . Physical Review Letters, 2020, 125, 101102.	nml zn text	> <n&sn&msub>-</n
21	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
22	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	2.8	728
23	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	2.9	673
24	Sensitivity studies for third-generation gravitational wave observatories. Classical and Quantum Gravity, 2011, 28, 094013.	1.5	644
25	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	3.0	633
26	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	3.0	566
27	Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog. Astrophysical Journal Letters, 2021, 913, L7.	3.0	514
28	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D, 2019, 100, .	1.6	470
29	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	2.9	466
30	Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences. Astrophysical Journal Letters, 2021, 915, L5.	3.0	453
31	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
32	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	8.2	427
33	The VIRGO Project: A wide band antenna for gravitational wave detection. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1990, 289, 518-525.	0.7	425
34	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	3.0	406
35	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D, 2020, 102, .	1.6	394
36	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102.	2.9	370

#	Article	IF	Citations
37	Scientific objectives of Einstein Telescope. Classical and Quantum Gravity, 2012, 29, 124013.	1.5	355
38	Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Physical Review D, 2021, 103, .	1.6	338
39	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	1.6	315
40	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	13.7	303
41	The third generation of gravitational wave observatories and their science reach. Classical and Quantum Gravity, 2010, 27, 084007.	1.5	287
42	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116 , 131102 .	2.9	269
43	Virgo: a laser interferometer to detect gravitational waves. Journal of Instrumentation, 2012, 7, P03012-P03012.	0.5	257
44	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Physical Review Letters, 2019, 123, 231108.	2.9	254
45	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	3.0	230
46	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	1.5	225
47	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	3.0	210
48	Search for the isotropic stochastic background using data from Advanced LIGO's second observing run. Physical Review D, 2019, 100, .	1.6	200
49	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	2.9	194
50	Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgoâ \in^{TM} s third observing run. Physical Review D, 2021, 104, .	1.6	192
51	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	3.0	189
52	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	1.5	188
53	Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D, 2012, 85, .	1.6	185
54	The Virgo status. Classical and Quantum Gravity, 2006, 23, S635-S642.	1.5	179

#	Article	IF	CITATIONS
55	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	3.0	179
56	Status of the Virgo project. Classical and Quantum Gravity, 2011, 28, 114002.	1.5	171
57	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	2.9	166
58	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	3.0	156
59	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	1.6	155
60	Status of Virgo. Classical and Quantum Gravity, 2008, 25, 114045.	1.5	148
61	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	3.0	146
62	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	3.0	145
63	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	1.6	144
64	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	1.6	132
65	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	1.6	131
66	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	1.6	125
67	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	1.6	119
68	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	2.9	119
69	Virgo status. Classical and Quantum Gravity, 2008, 25, 184001.	1.5	116
70	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D, 2010, 82, .	1.6	111
71	Model comparison from LIGO–Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006.	1.5	109
72	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 2010, 81, .	1.6	107

#	Article	IF	Citations
73	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 2012, 85, .	1.6	107
74	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	2.8	106
75	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	1.6	104
76	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	1.6	102
77	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Physical Review D, 2019, 100, .	1.6	102
78	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	1.5	98
79	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	1.6	97
80	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	2.9	94
81	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	1.5	94
82	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	1.6	92
83	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	1.6	91
84	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	1.6	90
85	Status of VIRGO. Classical and Quantum Gravity, 2004, 21, S385-S394.	1.5	89
86	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	1.6	89
87	Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D, 2018, 97, .	1.6	88
88	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	1.6	88
89	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run. Physical Review Letters, 2021, 126, 241102.	2.9	87
90	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	2.9	86

#	Article	IF	CITATIONS
91	The present status of the VIRGO Central Interferometer*. Classical and Quantum Gravity, 2002, 19, 1421-1428.	1.5	85
92	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. Physical Review D, $2011, 83, \ldots$	1.6	85
93	Calibration and sensitivity of the Virgo detector during its second science run. Classical and Quantum Gravity, 2011, 28, 025005.	1.5	85
94	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	2.9	85
95	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	2.9	84
96	Implementation and testing of the first prompt search forÂgravitational wave transients with electromagnetic counterparts. Astronomy and Astrophysics, 2012, 539, A124.	2.1	84
97	The status of VIRGO. Classical and Quantum Gravity, 2006, 23, S63-S69.	1.5	83
98	Measurement of the seismic attenuation performance of the VIRGO Superattenuator. Astroparticle Physics, 2005, 23, 557-565.	1.9	79
99	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	2.9	77
100	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy and Astrophysics, 2012, 541, A155.	2.1	75
101	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	1.5	73
102	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	1.6	73
103	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	3.0	73
104	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	1.6	72
105	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	1.6	71
106	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	1.6	69
107	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	0.9	69
108	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D, 2020, 101, .	1.6	69

#	Article	IF	CITATIONS
109	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	2.9	68
110	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	2.9	68
111	All-sky search for periodic gravitational waves in the full S5 LIGO data. Physical Review D, 2012, 85, .	1.6	66
112	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	1.6	66
113	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	1.6	65
114	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophysical Journal Letters, 2020, 902, L21.	3.0	65
115	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	1.6	64
116	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	3.0	63
117	Measurements of Superattenuator seismic isolation by Virgo interferometer. Astroparticle Physics, 2010, 33, 182-189.	1.9	62
118	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	3.0	62
119	Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs. Physical Review D, 2021, 104, .	1.6	62
120	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	1.6	61
121	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	1.6	60
122	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	1.6	60
123	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	1.6	60
124	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Physical Review D, 2017, 96, .	1.6	60
125	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Physical Review D, 2019, 99, .	1.6	60
126	Noise from scattered light in Virgo's second science run data. Classical and Quantum Gravity, 2010, 27, 194011.	1.5	59

#	Article	IF	Citations
127	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	1.6	59
128	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo's Third Observing Run. Astrophysical Journal, 2021, 923, 14.	1.6	59
129	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	3.0	57
130	Status of Virgo detector. Classical and Quantum Gravity, 2007, 24, S381-S388.	1.5	56
131	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	3.0	55
132	Status of Virgo. Classical and Quantum Gravity, 2005, 22, S869-S880.	1.5	54
133	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D, 2019, 100, .	1.6	54
134	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	1.6	52
135	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D, 2019, 100, .	1.6	52
136	Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs. Physical Review D, 2019, 100, .	1.6	52
137	The VIRGO interferometer for gravitational wave detection. Nuclear Physics, Section B, Proceedings Supplements, 1997, 54, 167-175.	0.5	50
138	Mechanical monolithic horizontal sensor for low frequency seismic noise measurement. Review of Scientific Instruments, 2008, 79, 074501.	0.6	49
139	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85,	1.6	48
140	High altitude test of RPCs for the Argo YBJ experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 443, 342-350.	0.7	47
141	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	1.6	47
142	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D, 2017, 96, .	1.6	47
143	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	1.6	46
144	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2018, 97, .	1.6	46

#	Article	IF	CITATIONS
145	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D, 2019, 100, .	1.6	46
146	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	3.0	44
147	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000ÂHz. Physical Review D, 2012, 85, .	1.6	43
148	All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. Physical Review D, 2021, 103, .	1.6	43
149	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	1.5	42
150	All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data. Physical Review D, 2021, 104 , .	1.6	42
151	Calibration of advanced Virgo and reconstruction of the gravitational wave signal <i>h</i> (<i>t</i>) Tj ETQq1 1	0.784314 1.5	FrgBT /Over
152	Highâ€performance modular digital lockâ€in amplifier. Review of Scientific Instruments, 1995, 66, 3697-3702.	0.6	39
153	Scaler mode technique for the ARGO-YBJ detector. Astroparticle Physics, 2008, 30, 85-95.	1.9	39
154	Tunable mechanical monolithic sensor with interferometric readout for low frequency seismic noise measurement. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 617, 457-458.	0.7	39
155	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	1.6	39
156	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	1.6	37
157	Neural neZtworks in astronomy. Neural Networks, 2003, 16, 297-319.	3.3	36
158	Constraining the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> -Modeâ€" <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>g</mml:mi></mml:math> -Mode Tidal Instability with GW170817. Physical Review Letters, 2019, 122, 061104.	2.9	36
159	Results from the ARGO-YBJ test experiment. Astroparticle Physics, 2002, 17, 151-165.	1.9	35
160	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014, 89, .	1.6	35
161	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	1.6	35
162	Quantum Backaction on Kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector. Physical Review Letters, 2020, 125, 131101.	2.9	35

#	Article	IF	Citations
163	Results from the analysis of data collected with a 50m2 RPC carpet at YangBaJing. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 456, 121-125.	0.7	34
164	Implementation of an $\frac{F}{s-s}$ -statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	1.5	34
165	All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D, 2021, 104, .	1.6	33
166	Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run. Astrophysical Journal, 2022, 932, 133.	1.6	33
167	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	1.9	32
168	Search for Gravitational Waves Associated with $<$ mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> $<$ mml:mi> $\hat{I}^3 <$ mml:mi> $<$ mml:math>-ray Bursts Detected by the Interplanetary Network. Physical Review Letters, 2014, 113, 011102.	2.9	32
169	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	1.6	32
170	Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo. Astronomy and Astrophysics, 2022, 659, A84.	2.1	32
171	The Virgo 3 km interferometer for gravitational wave detection. Journal of Optics, 2008, 10, 064009.	1.5	31
172	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	1.6	31
173	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	1.6	31
174	The VIRGO large mirrors: a challenge for low loss coatings. Classical and Quantum Gravity, 2004, 21, S935-S945.	1.5	30
175	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	1.6	30
176	SEARCH FOR GAMMA RAY BURSTS WITH THE ARGO-YBJ DETECTOR IN SCALER MODE. Astrophysical Journal, 2009, 699, 1281-1287.	1.6	29
177	Status and perspectives of the Virgo gravitational wave detector. Journal of Physics: Conference Series, 2010, 203, 012074.	0.3	29
178	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	1.6	29
179	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	1.6	29
180	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	1.6	29

#	Article	IF	Citations
181	Search for gravitational waves associated with GRB 050915a using the Virgo detector. Classical and Quantum Gravity, 2008, 25, 225001.	1.5	28
182	The Seismic Superattenuators of the Virgo Gravitational Waves Interferometer. Journal of Low Frequency Noise Vibration and Active Control, 2011, 30, 63-79.	1.3	28
183	Microseismic studies of an underground site for a new interferometric gravitational wave detector. Classical and Quantum Gravity, 2014, 31, 105016.	1.5	28
184	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	1.6	28
185	The Advanced Virgo detector. Journal of Physics: Conference Series, 2015, 610, 012014.	0.3	27
186	Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run. Physical Review D, 2022, 105, .	1.6	27
187	Characterization of the seismic environment at the Sanford Underground Laboratory, South Dakota. Classical and Quantum Gravity, 2010, 27, 225011.	1.5	26
188	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	1.6	26
189	Spectral analysis of stellar light curves by means of neural networks. Astronomy and Astrophysics, 1999, 137, 391-405.	2.1	26
190	Properties of seismic noise at the Virgo site. Classical and Quantum Gravity, 2004, 21, S433-S440.	1.5	25
191	Fabry-Pérot resonators with oscillating mirrors. Physical Review A, 1991, 43, 6227-6240.	1.0	24
192	Analysis of contact binary systems - AA Ursae Majoris, V752 Centauri, AO Camelopardalis, and V 677 Centauri. Astrophysical Journal, 1993, 407, 237.	1.6	24
193	The commissioning of the central interferometer of the Virgo gravitational wave detector. Astroparticle Physics, 2004, 21, 1-22.	1.9	22
194	A local control system for the test masses of the Virgo gravitational wave detector. Astroparticle Physics, 2004, 20, 617-628.	1.9	22
195	The variable finesse locking technique. Classical and Quantum Gravity, 2006, 23, S85-S89.	1.5	22
196	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. Physical Review D, 2019, 99, .	1.6	22
197	Effects of misalignments and beam jitters in interferometric gravitational wave detectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 217, 90-96.	0.9	21
198	Virgo upgrade investigations. Journal of Physics: Conference Series, 2006, 32, 223-229.	0.3	21

#	Article	IF	Citations
199	Low Frequency - High Sensitivity Horizontal Inertial Sensor based on Folded Pendulum. Journal of Physics: Conference Series, 2012, 363, 012001.	0.3	21
200	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	1.5	21
201	Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants. Physical Review D, 2022, 105, .	1.6	21
202	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGOâ€"Virgo Run O3a. Astrophysical Journal, 2021, 915, 86.	1.6	20
203	Calibration of advanced Virgo and reconstruction of the detector strain h(t) during the observing run O3. Classical and Quantum Gravity, 2022, 39, 045006.	1.5	20
204	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	20
205	Soft computing methodologies for spectral analysis in cyclostratigraphy. Computers and Geosciences, 2001, 27, 535-548.	2.0	19
206	First locking of the Virgo central area interferometer with suspension hierarchical control. Astroparticle Physics, 2004, 20, 629-640.	1.9	19
207	Gravitational waves by gamma-ray bursts and the Virgo detector: the case of GRB 050915a. Classical and Quantum Gravity, 2007, 24, S671-S679.	1.5	19
208	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	1.6	19
209	All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D, 2021, 104, .	1.6	19
210	Fringe-counting technique used to lock a suspended interferometer. Applied Optics, 1994, 33, 1194.	2.1	18
211	Long term seismic noise acquisition and analysis in the Homestake mine with tunable monolithic sensors. Journal of Physics: Conference Series, 2010, 228, 012036.	0.3	18
212	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	1.5	18
213	All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO's and Advanced Virgo's first three observing runs. Physical Review D, 2022, 105, .	1.6	18
214	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	1.6	17
215	Status of the VIRGO experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 360, 258-262.	0.7	16
216	Time domain amplitude and frequency detection of gravitational waves from coalescing binaries. Physical Review D, 1997, 55, 4537-4554.	1.6	16

#	Article	IF	Citations
217	The Virgo automatic alignment system. Classical and Quantum Gravity, 2006, 23, S91-S101.	1.5	16
218	Lock acquisition of the Virgo gravitational wave detector. Astroparticle Physics, 2008, 30, 29-38.	1.9	16
219	Gravitational wave burst search in the Virgo C7 data. Classical and Quantum Gravity, 2009, 26, 085009.	1.5	16
220	The use of RPC in the ARGO-YBJ project. Nuclear Physics, Section B, Proceedings Supplements, 1999, 78, 38-43.	0.5	15
221	VIRGO: a large interferometer for gravitational wave detection started its first scientific run. Journal of Physics: Conference Series, 2008, 120, 032007.	0.3	15
222	Tunable mechanical monolithic horizontal sensor with high Q for low frequency seismic noise measurement. Journal of Physics: Conference Series, 2010, 228, 012035.	0.3	15
223	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3b. Astrophysical Journal, 2022, 928, 186.	1.6	15
224	High accuracy digital temperature control for a laser diode. Review of Scientific Instruments, 1995, 66, 4051-4054.	0.6	14
225	Last stage control and mechanical transfer function measurement of the VIRGO suspensions. Review of Scientific Instruments, 2002, 73, 2143-2149.	0.6	14
226	Low-loss coatings for the VIRGO large mirrors. , 2004, , .		14
227	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	1.6	14
228	Watts linkage based large band low frequency sensors for scientific applications. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 824, 187-189.	0.7	14
229	Search for inspiralling binary events in the Virgo Engineering Run data. Classical and Quantum Gravity, 2004, 21, S709-S716.	1.5	13
230	Coincidence analysis between periodic source candidates in C6 and C7 Virgo data. Classical and Quantum Gravity, 2007, 24, S491-S499.	1.5	13
231	Measurement of the optical parameters of the Virgo interferometer. Applied Optics, 2007, 46, 3466.	2.1	13
232	In-vacuum optical isolation changes by heating in a Faraday isolator. Applied Optics, 2008, 47, 5853.	2.1	13
233	First joint gravitational wave search by the AURIGA–EXPLORER–NAUTILUS–Virgo Collaboration. Classical and Quantum Gravity, 2008, 25, 205007.	1.5	13
234	Performance of the Virgo interferometer longitudinal control system during the second science run. Astroparticle Physics, 2011, 34, 521-527.	1.9	13

#	Article	IF	CITATIONS
235	The UNISA folded pendulum: A very versatile class of low frequency high sensitive sensors. Measurement: Journal of the International Measurement Confederation, 2018, 118, 339-347.	2.5	13
236	Adaptive optics approach for prefiltering of geometrical fluctuations of the input laser beam of an interferometric gravitational waves detector. Review of Scientific Instruments, 2003, 74, 2570-2574.	0.6	12
237	The NoEMi (Noise Frequency Event Miner) framework. Journal of Physics: Conference Series, 2012, 363, 012037.	0.3	12
238	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	1.6	12
239	Real-time digital control of optical interferometers by the mechanical-modulation technique. Applied Optics, 1994, 33, 7846.	2.1	11
240	Electrostatic systems for fine control of mirror orientation in interferometric GW antennas. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 244, 360-370.	0.9	11
241	Performance of the RPCs for the ARGO detector operated at the YangBaJing laboratory (4300m a.s.l.). Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 508, 110-115.	0.7	11
242	Genetic approach helps to speed classical Price algorithm for global optimization. Soft Computing, 2005, 9, 525-535.	2.1	11
243	Automatic Alignment for the first science run of the Virgo interferometer. Astroparticle Physics, 2010, 33, 131-139.	1.9	11
244	Central heating radius of curvature correction (CHRoCC) for use in large scale gravitational wave interferometers. Classical and Quantum Gravity, 2013, 30, 055017.	1.5	11
245	The Virgo Detector. AIP Conference Proceedings, 2005, , .	0.3	10
246	Improving the timing precision for inspiral signals found by interferometric gravitational wave detectors. Classical and Quantum Gravity, 2007, 24, S617-S625.	1.5	10
247	Fractional volume integration in two-dimensional NMR spectra: CAKE, a Monte Carlo approach. Journal of Magnetic Resonance, 2008, 192, 294-301.	1.2	10
248	Cleaning the Virgo sampled data for the search of periodic sources of gravitational waves. Classical and Quantum Gravity, 2009, 26, 204002.	1.5	10
249	Performances of the Virgo interferometer longitudinal control system. Astroparticle Physics, 2010, 33, 75-80.	1.9	10
250	Unraveling amyloid toxicity pathway in NIH3T3 cells by a combined proteomic and ¹ Hâ€NMR metabonomic approach. Journal of Cellular Physiology, 2013, 228, 1359-1367.	2.0	10
251	Reconstruction of the gravitational wave signal h (t) during the Virgo science runs and independent validation with a photon calibrator. Classical and Quantum Gravity, 2014, 31, 165013.	1.5	10
252	Automatic alignment of a Michelson interferometer. IEEE Transactions on Nuclear Science, 1992, 39, 232-237.	1.2	9

#	Article	IF	CITATIONS
253	The environmental monitoring system of VIRGO antenna for gravitational wave detection. IEEE Transactions on Nuclear Science, 2002, 49, 405-410.	1.2	9
254	Status of VIRGO. Classical and Quantum Gravity, 2003, 20, S609-S616.	1.5	9
255	Analysis of noise lines in the Virgo C7 data. Classical and Quantum Gravity, 2007, 24, S433-S443.	1.5	9
256	Status of coalescing binaries search activities in Virgo. Classical and Quantum Gravity, 2007, 24, 5767-5775.	1.5	9
257	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003.	0.1	9
258	The advanced Virgo longitudinal control system for the O2 observing run. Astroparticle Physics, 2020, 116, 102386.	1.9	9
259	Advanced Virgo Status. Journal of Physics: Conference Series, 2020, 1342, 012010.	0.3	9
260	A Michelson interferometer for seismic wave measurement: theoretical analysis and system performances., 2006,,.		9
261	A digital approach to automatic control of a long-baseline interferometric antenna for gravitational wave detection. Measurement Science and Technology, 1994, 5, 1187-1196.	1.4	8
262	Digital alignment system for a laser beam. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 193, 15-20.	0.9	8
263	Noise studies during the first Virgo science run and after. Classical and Quantum Gravity, 2008, 25, 184003.	1.5	8
264	Laser with an in-loop relative frequency stability of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn> 1.0 </mml:mn> <mml:mo>× </mml:mo> <mml:msup> <mml:mrow> <mn .<="" 100-ms="" 2009,="" 79,="" a="" a,="" detection.="" for="" gravitational-wave="" physical="" review="" scale="" td="" time=""><td>nl:<u>1.0</u> nl:mn>10<</td><td>/mml:mn></td></mn></mml:mrow></mml:msup></mml:mrow></mml:math>	nl: <u>1.0</u> nl:mn>10<	/mml:mn>
265	Virgo calibration and reconstruction of the gravitationnal wave strain during VSR1. Journal of Physics: Conference Series, 2010, 228, 012015.	0.3	8
266	In-vacuum Faraday isolation remote tuning. Applied Optics, 2010, 49, 4780.	2.1	8
267	Low frequency, high sensitive tunable mechanical monolithic horizontal sensors. Proceedings of SPIE, $2011,\ldots$	0.8	8
268	A state observer for the Virgo inverted pendulum. Review of Scientific Instruments, 2011, 82, 094502.	0.6	8
269	Status of the VIRGO experiment. Nuclear Physics, Section B, Proceedings Supplements, 1996, 48, 107-109.	0.5	7
270	Data analysis methods for non-Gaussian, nonstationary and nonlinear features and their application to VIRGO. Classical and Quantum Gravity, 2003, 20, S915-S924.	1.5	7

#	Article	IF	Citations
271	NAP: a tool for noise data analysis. Application to Virgo engineering runs. Classical and Quantum Gravity, 2005, 22, S1041-S1049.	1.5	7
272	The status of coalescing binaries search code in Virgo, and the analysis of C5 data. Classical and Quantum Gravity, 2006, 23, S187-S196.	1.5	7
273	The Virgo interferometric gravitational antenna. Optics and Lasers in Engineering, 2007, 45, 478-487.	2.0	7
274	The Real-Time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. IEEE Transactions on Nuclear Science, 2008, 55, 302-310.	1.2	7
275	Model Independent Numerical Procedure for the Diagonalization of a Multiple Input Multiple Output Dynamic System. IEEE Transactions on Nuclear Science, 2011, 58, 1588-1595.	1.2	7
276	A principal components algorithm for spectra normalisation. International Journal of Biomedical Engineering and Technology, 2013, 13, 357.	0.2	7
277	Low frequency seismic characterization of underground sites with tunable mechanical monolithic sensors. , 2015, , .		7
278	Digital error-signal extraction technique for real-time automatic control of optical interferometers. Applied Optics, 1995, 34, 8100.	2.1	6
279	Digitally controlled interferometer prototype for gravitational wave detection. Review of Scientific Instruments, 1996, 67, 4353-4359.	0.6	6
280	A simple line detection algorithm applied to Virgo data. Classical and Quantum Gravity, 2005, 22, S1189-S1196.	1.5	6
281	Automatic Alignment system during the second science run of the Virgo interferometer. Astroparticle Physics, 2011, 34, 327-332.	1.9	6
282	Comparison of ¹ H-NMR spectra by normalisation algorithms for studying amyloid toxicity in cells. International Journal of Biomedical Engineering and Technology, 2013, 13, 370.	0.2	6
283	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	0.5	6
284	Real-time procedure for noise uncoupling in laser interferometry. IEEE Transactions on Nuclear Science, 2002, 49, 411-416.	1.2	5
285	Results of the Virgo central interferometer commissioning. Classical and Quantum Gravity, 2004, 21, S395-S402.	1.5	5
286	The last-stage suspension of the mirrors for the gravitational wave antenna Virgo. Classical and Quantum Gravity, 2004, 21, S425-S432.	1.5	5
287	Testing the detection pipelines for inspirals with Virgo commissioning run C4 data. Classical and Quantum Gravity, 2005, 22, S1139-S1148.	1.5	5
288	Length Sensing and Control in the Virgo Gravitational Wave Interferometer. IEEE Transactions on Instrumentation and Measurement, 2006, 55, 1985-1995.	2.4	5

#	Article	IF	Citations
289	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. IEEE Transactions on Nuclear Science, 2008, 55, 225-232.	1.2	5
290	Characterization of the Virgo seismic environment. Classical and Quantum Gravity, 2012, 29, 025005.	1.5	5
291	A new method of spectral analysis of unevenly spaced astrophysical data. 1: The single-period case. Astrophysical Journal, 1994, 421, 284.	1.6	5
292	Results from the ARGO-YBJ test experiment. Nuclear Physics, Section B, Proceedings Supplements, 2000, 85, 338-345.	0.5	4
293	An adaptive optics approach to the reduction of misalignments and beam jitters in gravitational wave interferometers. Classical and Quantum Gravity, 2002, 19, 1813-1818.	1.5	4
294	A procedure for noise uncoupling in laser interferometry. Classical and Quantum Gravity, 2002, 19, 1529-1536.	1.5	4
295	A neural network-based approach to noise identification of interferometric GW antennas: the case of the 40 m Caltech laser interferometer. Classical and Quantum Gravity, 2002, 19, 3293-3307.	1.5	4
296	Laser interferometry based seismic sensor. , 2003, 4886, 614.		4
297	Laser interferometry based read-out system for seismic accelerometer., 2003, 5050, 342.		4
298	Dynamic matched filters for gravitational wave detection. Classical and Quantum Gravity, 2004, 21, S1849-S1854.	1.5	4
299	Lock acquisition of the central interferometer of the gravitational wave detector Virgo. Astroparticle Physics, 2004, 21, 465-477.	1.9	4
300	Hybrid techniques for the digital control of mechanical and optical systems. , 2004, , .		4
301	A first study of environmental noise coupling to the Virgo interferometer. Classical and Quantum Gravity, 2005, 22, S1069-S1077.	1.5	4
302	First adaptive optics control of laser beam based on interferometric phase-front detection. Review of Scientific Instruments, 2005, 76, 083119.	0.6	4
303	Adaptive filters for detection of gravitational waves from coalescing binaries. Physical Review D, 2006, 73, .	1.6	4
304	Environmental noise studies in Virgo. Journal of Physics: Conference Series, 2006, 32, 80-88.	0.3	4
305	Data quality studies for burst analysis of Virgo data acquired during Weekly Science Runs. Classical and Quantum Gravity, 2007, 24, S415-S422.	1.5	4
306	Control of the laser frequency of the Virgo gravitational wave interferometer with an in-loop relative frequency stability of 1.0 $\rm \mathring{A}-10 \mathring{a}^221$ on a 100 ms time scale., 2009,,.		4

#	Article	IF	CITATIONS
307	THE VIRGO INTERFEROMETER FOR GRAVITATIONAL WAVE DETECTION. International Journal of Modern Physics D, 2011, 20, 2075-2079.	0.9	4
308	Long term seismic noise acquisition and analysis with tunable monolithic horizontal sensors at the INFN Gran Sasso National Laboratory. , 2012 , , .		4
309	Low frequency/high sensitivity horizontal monolithic sensor. Proceedings of SPIE, 2012, , .	0.8	4
310	Low-frequency high-sensitivity horizontal monolithic folded-pendulum as sensor in the automatic control of ground-based and space telescopes. Proceedings of SPIE, 2012, , .	0.8	4
311	Triaxial tunable mechanical monolithic sensors for large band low frequency monitoring and characterization of sites and structures. Proceedings of SPIE, 2016 , , .	0.8	4
312	An Optimization Method for solutions of Close Eclipsing Binaries. , 1990, , 161-188.		4
313	The ARGO-YBJ detector and high energy GRBs. Astronomy and Astrophysics, 1999, 138, 597-598.	2.1	4
314	The archiving system of the Virgo antenna for gravitational wave detection. Review of Scientific Instruments, 1997, 68, 3907-3913.	0.6	3
315	Effects of misalignment and beam jitter in Fabry-Perot laser stabilization. Optics Communications, 1997, 142, 50-54.	1.0	3
316	<title>Digital control system for mechanical damping of suspended mass</title> ., 2003,,.		3
317	Status of Virgo. Journal of Physics: Conference Series, 2006, 39, 32-35.	0.3	3
318	Testing Virgo burst detection tools on commissioning run data. Classical and Quantum Gravity, 2006, 23, S197-S205.	1.5	3
319	Hybrid control and acquisition system for distributed sensors for environmental monitoring. , 2007, ,		3
320	Mechanical monolithic sensor for low-frequency seismic noise measurement., 2007,,.		3
321	A Hybrid Modular Control and Acquisition System. IEEE Transactions on Nuclear Science, 2008, 55, 295-301.	1.2	3
322	Tunable mechanical monolithic sensor with interferometric readout for low frequency seismic noise measurement. Proceedings of SPIE, 2008, , .	0.8	3
323	Publisher's Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81 , 102001 (2010)]. Physical Review D, 2012, 85, .	1.6	3
324	A new control approach for the design and implementation of low frequency large band mechanical suspensions and inertial platforms. Proceedings of SPIE, 2012, , .	0.8	3

#	Article	IF	Citations
325	Mechanical monolithic tiltmeter for low frequency measurements. Proceedings of SPIE, 2013, , .	0.8	3
326	Low frequency motion measurement and control of spacecrafts and satellites. Proceedings of SPIE, $2015, \ldots$	0.8	3
327	Low frequency inertial control strategy for seismic attenuation with multi-stage mechanical suspensions. , 2015, , .		3
328	Tunable mechanical monolithic sensors for large band low frequency monitoring and characterization of sites and structures. , $2016, , .$		3
329	A new typology of DC tiltmeter based on the Watt's linkage architecture. Sensors and Actuators A: Physical, 2018, 281, 264-277.	2.0	3
330	STATIC AND DYNAMIC BEHAVIOUR ASSESSMENT OF THE TRAJAN ARCH BY MEANS OF NEW MONITORING TECHNOLOGIES. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-2/W5, 567-574.	0.2	3
331	UU CNC and VZ PSC, contact systems before the common envelope phase?. Astrophysics and Space Science, 1989, 159, 67-83.	0.5	2
332	Search for contact, systems among EB-type binaries. Astrophysics and Space Science, 1991, 183, 117-127.	0.5	2
333	Search for contact systems among EB-type binaries. Astrophysics and Space Science, 1992, 198, 321-340.	0.5	2
334	Gravitational wave background from a sample of Cataclysmic Variables. General Relativity and Gravitation, 1992, 24, 323-341.	0.7	2
335	Detection of x rays with a fiber-optic interferometric sensor. Applied Optics, 1993, 32, 1229.	2.1	2
336	High-speed low-noise digital control system. IEEE Transactions on Nuclear Science, 1994, 41, 194-199.	1.2	2
337	Dynamic matched filter technique for gravitational wave detection from coalescing binary systems. Classical and Quantum Gravity, 2004, 21, S807-S810.	1.5	2
338	Status of VIRGO. , 2004, 5500, 58.		2
339	Interferometric sensor for seismic noise measurement: theoretical model and experimental perfomances., 2004, 5574, 299.		2
340	Virgo and the worldwide search for gravitational waves. AIP Conference Proceedings, 2005, , .	0.3	2
341	Virgo status and commissioning results. Classical and Quantum Gravity, 2005, 22, S185-S191.	1.5	2
342	Mechanical monolithic sensor for low frequency seismic noise measurement. , 2007, , .		2

#	Article	IF	Citations
343	Low frequency seismic noise acquisition and analysis with tunable monolithic horizontal sensors. Proceedings of SPIE, $2011, , .$	0.8	2
344	Noise monitor tools and their application to Virgo data. Journal of Physics: Conference Series, 2012, 363, 012024.	0.3	2
345	Publisher's Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D82, 102001 (2010)]. Physical Review D, 2012, 85, .	1.6	2
346	Large-band seismic characterization of the INFN Gran Sasso National Laboratory. Proceedings of SPIE, 2013, , .	0.8	2
347	Very low frequency/high sensitivity triaxial monolithic inertial sensor. Proceedings of SPIE, 2014, , .	0.8	2
348	Concepts and research for future detectors. General Relativity and Gravitation, 2014, 46, 1.	0.7	2
349	Tunable mechanical monolithic sensors for real-time broadband monitoring of large civil infrastructures. , $2016, \ldots$		2
350	Low frequency inertial control strategy for seismic attenuation with passive monolithic mechanical sensors. Proceedings of SPIE, 2016, , .	0.8	2
351	Large band high sensitivity motion measurement and control of spacecrafts and satellites. Proceedings of SPIE, 2016, , .	0.8	2
352	A new class of compact high sensitive tiltmeter based on the UNISA folded pendulum mechanical architecture. Journal of Physics: Conference Series, 2018, 957, 012011.	0.3	2
353	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
354	A THERMAL COMPENSATION SYSTEM FOR THE GRAVITATIONAL WAVE DETECTOR VIRGO. , 2012, , .		2
355	Earth-based gravitational wave detection from pulsars. General Relativity and Gravitation, 1996, 28, 613-631.	0.7	1
356	IIR adaptive line enhancer filters for detection of gravitational waves from coalescing binaries. Classical and Quantum Gravity, 2004, 21, S781-S785.	1.5	1
357	A GRID solution for gravitational waves signal analysis from coalescing binaries: performances of test algorithms and further developments. Classical and Quantum Gravity, 2004, 21, S811-S814.	1.5	1
358	First results on an adaptive optics pre-mode cleaning system based on interferometric phase-front detection. Classical and Quantum Gravity, 2004, 21, S947-S950.	1.5	1
359	A first test of a sine-Hough method for the detection of pulsars in binary systems using the E4 Virgo engineering run data. Classical and Quantum Gravity, 2004, 21, S717-S727.	1.5	1
360	A hierarchical Bayesian framework for nonlinearities identification in gravitational wave detector outputs. Classical and Quantum Gravity, 2005, 22, S1223-S1232.	1.5	1

#	Article	IF	Citations
361	Hybrid control and acquisition system for remote sensing systems for environmental monitoring. , 2006, , .		1
362	Methods of gravitational wave detection in the VIRGO Interferometer. , 2007, , .		1
363	The Real-time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. , 2007, , .		1
364	Mechanical monolithic accelerometer for suspension inertial damping and low frequency seismic noise measurement. Journal of Physics: Conference Series, 2008, 122, 012012.	0.3	1
365	Application of a hybrid modular acquisition system to the control of a suspended interferometer with electrostatic actuators. Journal of Physics: Conference Series, 2008, 122, 012011.	0.3	1
366	A new method for SAR measurement in MRI. Proceedings of SPIE, 2008, , .	0.8	1
367	Laser interferometric sensor for seismic waves measurement. Proceedings of SPIE, 2008, , .	0.8	1
368	Automatic control of laser beams aberrations in air using an adaptive optics system prototype based on interferometric techniques. , 2008, , .		1
369	Tunable mechanical monolithic horizontal accelerometer for low frequency seismic noise measurement., 2009,,.		1
370	Mechanical monolithic tiltmeter for low frequency measurements. Proceedings of SPIE, 2009, , .	0.8	1
371	MATCAKE: a flexible toolbox for integrating 2D NMR spectra in Matlab. Proceedings of SPIE, 2010, , .	0.8	1
372	A new architecture for the implementation of force-feedback tunable mechanical monolithic horizontal sensor. , 2010, , .		1
373	Model independent numerical procedure for the diagonalization of a Multiple Input Multiple Output dynamic system. , $2010, , .$		1
374	Status of the commissioning of the Virgo interferometer. , 2012, , .		1
375	The PRICONA algorithm for biological spectra normalization. Proceedings of SPIE, 2013, , .	0.8	1
376	New class of monolithic sensors for low frequency motion measurement and control of spacecrafts and satellites. , 2013, , .		1
377	Low frequency/high sensitivity triaxial monolithic sensor. , 2013, , .		1
378	Low frequency control strategy for seismic attenuation in inertial platforms and mechanical suspensions. Proceedings of SPIE, 2013, , .	0.8	1

#	Article	IF	Citations
379	New strategy for the control of low frequency large band mechanical suspensions and inertial platforms. , 2014, , .		1
380	Watt-linkage based sensors for low frequency motion measurement and control of spacecrafts and satellites. Proceedings of SPIE, 2014, , .	0.8	1
381	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , 2016, 19, 1.		1
382	Monolithic sensors for low frequency motion measurement and control of spacecrafts and satellites. , $2016, , .$		1
383	FIRST COINCIDENCE SEARCH AMONG PERIODIC GRAVITATIONAL WAVE SOURCE CANDIDATES USING VIRGO DATA. , 2008, , .		1
384	Dynamic matched filter for the detection of gravitational waves. , 2004, , .		1
385	PLANS FOR THE UPGRADE OF THE GRAVITATIONAL WAVE DETECTOR VIRGO: ADVANCED VIRGO. , 2012, , .		1
386	Neural Networks for Spectral Analysis of Unevenly Sampled Data. Perspectives in Neural Computing, 1999, , 226-233.	0.1	1
387	Tunable mechanical monolithic sensors for real-time broadband distributed monitoring of large civil and industrial infrastructures., 2017,,.		1
388	Mechanical monolithic compact sensors for real-time linear and angular broadband low frequency monitoring and control of spacecrafts and satellites. , 2017, , .		1
389	Monolithic linear and angular sensors for real-time low-frequency structural distributed monitoring. , 2018, , .		1
390	Inertial monolithic sensors for low frequency acceleration measurement of spacecrafts and satellites. , $2018, , .$		1
391	Tunable broadband monolithic inertial sensors for real-time monitoring and characterization of sites and structures. , $2018, , .$		1
392	Mechanical Monolithic Inertial Sensors for Historical and Archeological Heritage Real-Time Broadband Monitoring., 2022, , 1137-1166.		1
393	<title>Test of a fiber optic interferometric x-ray detector</title> ., 1993, 1795, 408.		0
394	Detection of gravitational waves from coalescing binaries in the time domain. Classical and Quantum Gravity, 1997, 14, 1531-1536.	1.5	0
395	Determination of the Physical Parameters of Binary Systems: A Statistical Approach. Astrophysics and Space Science, 1998, 260, 469-491.	0.5	0
396	Data archiving and distribution of the Virgo antenna for gravitational wave detection., 0,,.		0

#	Article	IF	Citations
397	Data archiving and distribution of the Virgo antenna for gravitational wave detection. IEEE Transactions on Nuclear Science, 2000, 47, 319-323.	1.2	O
398	<title>Adaptive Optics correction of geometrical fluctuations of Virgo input laser beam: preliminary results</title> ., 2002, , .		0
399	Distributed multiprotocol acquisition network for environmental data. , 2003, , .		0
400	A multi-standard farm prototype for gravitational wave signal analysis. Classical and Quantum Gravity, 2004, 21, S837-S842.	1.5	0
401	Interferometric adaptive optics system for laser noise reduction in virgo. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 518, 226-227.	0.7	0
402	Laser interferometric adaptive optics system for a three-meter suspended Michelson interferometer for low-frequency seismic noise measurement. , 2004, 5572, 366.		0
403	Multidimensional digital control system for mechanical damping of suspended mass. , 2004, , .		0
404	A real-time control system for the control of suspended interferometers based on hybrid computing techniques. , 2004, , .		0
405	Measurement of seismic noise with a laser interferometer. , 2004, 5383, 551.		O
406	Adaptive optics in gravitational wave interferometers. , 2004, , .		0
407	Laser interferometric adaptive optics system as light source of the IDGW-3P interferometer. , 2004, , .		0
408	IIR adaptive filters for detection of gravitational waves from coalescing binaries. , 2004, , .		0
409	Interferometric adaptive optics system for laser beam noise control. , 2004, , .		0
410	Dynamic Matched Filter for Gravitational Wave Detection. AIP Conference Proceedings, 2005, , .	0.3	0
411	Adaptive Filters for Detection of Gravitational Waves from Coalescing Binaries. AIP Conference Proceedings, 2005, , .	0.3	0
412	A parallel in-time analysis system for Virgo Journal of Physics: Conference Series, 2006, 32, 35-43.	0.3	0
413	Normal/independent noise in VIRGO data. Classical and Quantum Gravity, 2006, 23, S829-S836.	1.5	0
414	A hybrid modular control and acquisition system. , 2007, , .		0

#	Article	IF	CITATIONS
415	Adaptive optics system prototype for the automatic control of geometrical fluctuations in a laser beam in air. , 2007, , .		O
416	Laser interferometric sensor for seismic waves measurement. , 2007, , .		0
417	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. , 2007, , .		O
418	A cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo. Classical and Quantum Gravity, 2008, 25, 114046.	1.5	0
419	Hybrid control and acquisition system for remote control systems for environmental monitoring. , 2008, , .		O
420	Seismic waves velocity measurement with laser interferometric sensors. Proceedings of SPIE, 2008, , .	0.8	0
421	Adaptive optics system prototype for the automatic control of geometrical fluctuations in a laser beam in air. Proceedings of SPIE, 2008, , .	0.8	0
422	SAR measurement in MRI: an improved method., 2009,,.		0
423	Development of an adaptive optics system for fast automatic control of laser beam jitters in air. , 2009, , .		0
424	Design and test of an Adaptive Optics system prototype for laser beam jitters reduction. Proceedings of SPIE, 2009, , .	0.8	0
425	Fractional volume integration in two-dimensional NMR spectra: CAKE, a Monte Carlo approach. Proceedings of SPIE, 2009, , .	0.8	O
426	Long term seismic noise acquisition and analysis in the Homestake mine with tunable monolithic sensors. , 2009, , .		0
427	Seismic waves velocity measurement with mechanical monolithic sensors. Proceedings of SPIE, 2009, , .	0.8	О
428	The phase transition method for SAR measurement in MRI. , 2010, , .		0
429	Tools for noise characterization in Virgo. Journal of Physics: Conference Series, 2010, 243, 012004.	0.3	0
430	Adaptive optics system for fast automatic control of laser beam jitters in air., 2010,,.		0
431	New tunable mechanical monolithic horizontal accelerometer for low frequency seismic noise measurement., 2010,,.		O
432	Mechanical monolithic tiltmeter for low frequency measurements. , 2010, , .		0

#	Article	IF	CITATIONS
433	Low frequency seismic noise acquisition and analysis in the Homestake Mine with tunable monolithic horizontal sensors. Proceedings of SPIE, 2010, , .	0.8	O
434	New architecture of tunable mechanical monolithic horizontal sensor for low frequency seismic noise measurement. Proceedings of SPIE, 2010, , .	0.8	0
435	MATCAKE: a flexible toolbox for 2D NMR spectra integration by CAKE algorithm. Proceedings of SPIE, 2011, , .	0.8	0
436	A no-calorimetric method for measuring SAR in MRI. Proceedings of SPIE, 2011, , .	0.8	0
437	Mechanical monolithic sensors for mechanical damping of a suspended mass. Proceedings of SPIE, 2011, , .	0.8	0
438	Mechanical monolithic tiltmeter for low frequency measurements. , 2011, , .		0
439	New strategy for the control of low frequency large band mechanical suspensions and inertial platforms. , 2012, , .		0
440	Mechanical monolithic tiltmeter for low frequency measurements. , 2012, , .		0
441	Mechanical monolithic tiltmeter for low frequency measurements. , 2012, , .		0
442	Low frequency/high sensitivity horizontal monolithic sensor. Proceedings of SPIE, 2012, , .	0.8	0
443	Long term seismic noise acquisition and analysis with tunable monolithic horizontal sensors at the INFN Gran Sasso National Laboratory. Proceedings of SPIE, 2012, , .	0.8	0
444	PROGRESSES IN THE REALIZATION OF A MONOLITHIC SUSPENSION SYSTEM IN VIRGO. , 2012, , .		0
445	Publisher's Note: Search for gravitational waves from binary black hole inspiral, merger, and ringdown [Phys. Rev. D83, 122005 (2011)]. Physical Review D, 2012, 85, .	1.6	0
446	Low frequency/high sensitivity triaxial monolithic inertial sensor. , 2013, , .		0
447	Biological NMR FIDs and spectra normalization. , 2014, , .		0
448	The phase transition method for SAR measurement in MRI. , 2014, , .		0
449	An MRI myocarditis index defined by a PCA-based object recognition algorithm. , 2015, , .		0
450	Quantitative MRI myocarditis analysis by a PCA-based object recognition algorithm. , 2016, , .		0

#	Article	IF	Citations
451	A new class of monolithic seismometers and accelerometers for commercial and industrial applications: the UNISA folded pendulum. Proceedings of SPIE, 2017, , .	0.8	0
452	VIRGO DATA ANALYSIS FOR C6 AND C7 ENGINEERING RUNS. , 2008, , .		0
453	VIRGO COMMISSIONING PROGRESS., 2008, , .		0
454	THE STATUS OF THE VIRGO GRAVITATIONAL WAVE DETECTOR. , 2008, , .		0
455	NOISE ANALYSIS IN VIRGO: ON-LINE AND OFFLINE TOOLS FOR NOISE CHARACTERIZATION. , 2012, , .		0
456	A fiber-optic interferometric X-ray dosimeter. , 1991, , .		0
457	Digital systems for automatic control of optical resonators used as gravitational waves interferometric detectors., 1992,,.		0
458	Low frequency control strategy for seismic attenuators with inertial monolithic mechanical sensors. Proceedings of SPIE, 2017, , .	0.8	0
459	Low frequency motion measurement of spacecrafts and satellites with inertial monolithic sensors. Proceedings of SPIE, 2017, , .	0.8	0
460	Tunable compact mechanical monolithic sensors for linear and angular large band low-frequency monitoring and characterization of sites and structures. , 2017, , .		0
461	Advanced Virgo Status., 2017, , .		0
462	MRI myocardium T2* measurement by a new PCA-based object recognition algorithm. , 2018, , .		0
463	New control strategies with inertial monolithic sensors: advantages and limitations in the control of benches and platforms for seismic isolation. , 2018, , .		0
464	Towards the miniaturization of monolithic folded pendulums: a new approach to the implementation of small and light sensors for ground, space, and marine applications. , 2018 , , .		0
465	Compact inertial triaxial monolithic sensors for low-frequency acceleration measurement of spacecrafts and satellites., 2018,,.		0
466	UNISA folded pendulum technological platform for the implementation of mechanical inertial broadband low-frequency high-sensitivity sensors for ground, marine and space applications. , 2018, , .		0