
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6257016/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Sol–gel based structural designs of macropores and material shapes of metal–organic framework<br>gels. Materials Advances, 2021, 2, 4235-4239.                                                                                              | 2.6 | 1         |
| 2  | Tunable and Well-Defined Bimodal Porous Model Electrodes for Revealing Multiscale Structural<br>Effects in the Nonaqueous Li–O <sub>2</sub> Electrode Process. Journal of Physical Chemistry C, 2021,<br>125, 1403-1413.                    | 1.5 | 6         |
| 3  | Highly porous melamine-formaldehyde monoliths with controlled hierarchical porosity toward application as a metal scavenger. Materials Advances, 2021, 2, 2604-2608.                                                                        | 2.6 | 2         |
| 4  | Preparation of hierarchically porous spinel CoMn 2 O 4 monoliths via sol–gel process accompanied by phase separation. Journal of the American Ceramic Society, 2021, 104, 2449-2459.                                                        | 1.9 | 5         |
| 5  | Designing hierarchical porosity in tin oxide monoliths and their application as a solid acid catalyst.<br>New Journal of Chemistry, 2021, 45, 17558-17565.                                                                                  | 1.4 | 0         |
| 6  | Synthesis of Hierarchically Porous Metal Oxide Monoliths via Sol–Gel Process Accompanied by Phase<br>Separation From Divalent Metal Salts: A Short Review. Frontiers in Chemical Engineering, 2021, 3, .                                    | 1.3 | 1         |
| 7  | Colorless Transparent Melamine–Formaldehyde Aerogels for Thermal Insulation. ACS Applied Nano<br>Materials, 2020, 3, 49-54.                                                                                                                 | 2.4 | 26        |
| 8  | On-site formation of small Ag nanoparticles on superhydrophobic mesoporous silica for antibacterial application. New Journal of Chemistry, 2020, 44, 13553-13556.                                                                           | 1.4 | 5         |
| 9  | Hierarchically porous monoliths prepared via sol–gel process accompanied by spinodal decomposition. Journal of Sol-Gel Science and Technology, 2020, 95, 530-550.                                                                           | 1.1 | 40        |
| 10 | Hierarchically porous monoliths based on low-valence transition metal (Cu, Co, Mn) oxides: gelation<br>and phase separation. National Science Review, 2020, 7, 1656-1666.                                                                   | 4.6 | 11        |
| 11 | Superhydrophobic highly flexible doubly cross-linked aerogel/carbon nanotube composites as strain/pressure sensors. Journal of Materials Chemistry B, 2020, 8, 4883-4889.                                                                   | 2.9 | 25        |
| 12 | Variation of meso- and macroporous morphologies in resorcinol–formaldehyde (RF) gels tailored via<br>a sol–gel process combined with soft-templating and phase separation. Journal of Sol-Gel Science and<br>Technology, 2020, 95, 801-812. | 1.1 | 8         |
| 13 | Superelastic Triple-Network Polyorganosiloxane-Based Aerogels as Transparent Thermal Superinsulators and Efficient Separators. Chemistry of Materials, 2020, 32, 1595-1604.                                                                 | 3.2 | 57        |
| 14 | Synthesis of hierarchically porous MgO monoliths with continuous structure via sol–gel process accompanied by phase separation. Journal of Sol-Gel Science and Technology, 2019, 89, 29-36.                                                 | 1.1 | 12        |
| 15 | Resilient, fire-retardant and mechanically strong polyimide-polyvinylpolymethylsiloxane composite<br>aerogel prepared via stepwise chemical liquid deposition. Materials and Design, 2019, 183, 108096.                                     | 3.3 | 38        |
| 16 | Ambient-dried highly flexible copolymer aerogels and their nanocomposites with polypyrrole for thermal insulation, separation, and pressure sensing. Polymer Chemistry, 2019, 10, 4980-4990.                                                | 1.9 | 21        |
| 17 | Superhydrophobic Ultraflexible Triple-Network Graphene/Polyorganosiloxane Aerogels for a<br>High-Performance Multifunctional Temperature/Strain/Pressure Sensing Array. Chemistry of<br>Materials, 2019, 31, 6276-6285.                     | 3.2 | 82        |
| 18 | Selfâ€Assembly of Metal–Organic Frameworks into Monolithic Materials with Highly Controlled<br>Trimodal Pore Structures. Angewandte Chemie, 2019, 131, 19223-19229.                                                                         | 1.6 | 11        |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Superelastic Multifunctional Aminosilane-Crosslinked Graphene Aerogels for High Thermal<br>Insulation, Three-Component Separation, and Strain/Pressure-Sensing Arrays. ACS Applied Materials<br>& Interfaces, 2019, 11, 43533-43542.       | 4.0 | 55        |
| 20 | Selfâ€Assembly of Metal–Organic Frameworks into Monolithic Materials with Highly Controlled<br>Trimodal Pore Structures. Angewandte Chemie - International Edition, 2019, 58, 19047-19053.                                                 | 7.2 | 37        |
| 21 | Thermogravimetric Evolved Gas Analysis and Microscopic Elemental Mapping of the Solid Electrolyte<br>Interphase on Silicon Incorporated in Free-Standing Porous Carbon Electrodes. Langmuir, 2019, 35,<br>12680-12688.                     | 1.6 | 7         |
| 22 | Preparation of surface-coated macroporous silica (core-shell silica monolith) for HPLC separations.<br>Journal of Sol-Gel Science and Technology, 2019, 90, 105-112.                                                                       | 1.1 | 4         |
| 23 | Preparation of zinc oxide with a three-dimensionally interconnected macroporous structure via a sol–gel method accompanied by phase separation. New Journal of Chemistry, 2019, 43, 11720-11726.                                           | 1.4 | 12        |
| 24 | Macroporous Niobium Phosphate-Supported Magnesia Catalysts for Isomerization of Glucose-to-Fructose. ACS Sustainable Chemistry and Engineering, 2019, 7, 8512-8521.                                                                        | 3.2 | 33        |
| 25 | Hybrid silicone aerogels toward unusual flexibility, functionality, and extended applications. Journal of Sol-Gel Science and Technology, 2019, 89, 166-175.                                                                               | 1.1 | 16        |
| 26 | Comprehensive studies on phosphoric acid treatment of porous titania toward titanium phosphate<br>and pyrophosphate monoliths with pore hierarchy and a nanostructured pore surface. Inorganic<br>Chemistry Frontiers, 2018, 5, 1397-1404. | 3.0 | 7         |
| 27 | Iron( <scp>iii</scp> ) oxyhydroxide and oxide monoliths with controlled multiscale porosity: synthesis and their adsorption performance. Journal of Materials Chemistry A, 2018, 6, 9041-9048.                                             | 5.2 | 16        |
| 28 | Transparent, Superflexible Doubly Cross-Linked Polyvinylpolymethylsiloxane Aerogel Superinsulators<br>via Ambient Pressure Drying. ACS Nano, 2018, 12, 521-532.                                                                            | 7.3 | 211       |
| 29 | Versatile Double-Cross-Linking Approach to Transparent, Machinable, Supercompressible, Highly<br>Bendable Aerogel Thermal Superinsulators. Chemistry of Materials, 2018, 30, 2759-2770.                                                    | 3.2 | 130       |
| 30 | On-line Redox Derivatization Liquid Chromatography Using a Carbon Monolithic Column. Bunseki<br>Kagaku, 2018, 67, 469-478.                                                                                                                 | 0.1 | 0         |
| 31 | Superflexible Multifunctional Polyvinylpolydimethylsiloxaneâ€Based Aerogels as Efficient Absorbents,<br>Thermal Superinsulators, and Strain Sensors. Angewandte Chemie, 2018, 130, 9870-9875.                                              | 1.6 | 16        |
| 32 | Superflexible Multifunctional Polyvinylpolydimethylsiloxaneâ€Based Aerogels as Efficient Absorbents,<br>Thermal Superinsulators, and Strain Sensors. Angewandte Chemie - International Edition, 2018, 57,<br>9722-9727.                    | 7.2 | 108       |
| 33 | Sol–gel preparation of hierarchically porous magnesium aluminate (MgAl2O4) spinel monoliths for<br>dye adsorption. Journal of Sol-Gel Science and Technology, 2018, 88, 114-128.                                                           | 1.1 | 12        |
| 34 | Synthesis of a hierarchically porous niobium phosphate monolith by a sol–gel method for fructose dehydration to 5-hydroxymethylfurfural. Catalysis Science and Technology, 2018, 8, 3675-3685.                                             | 2.1 | 28        |
| 35 | Macroporous Morphology Control by Phase Separation. , 2018, , 835-866.                                                                                                                                                                     |     | 1         |
|    |                                                                                                                                                                                                                                            |     |           |

36 Monolithic Porous Silica for High‧peed HPLC. , 2018, , 1939-1948.

0

| #  | Article                                                                                                                                                                                                                                               | lF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Porosity Measurement. , 2018, , 1399-1409.                                                                                                                                                                                                            |     | 1         |
| 38 | Low-density, transparent aerogels and xerogels based on hexylene-bridged polysilsesquioxane with bendability. Journal of Sol-Gel Science and Technology, 2017, 81, 42-51.                                                                             | 1.1 | 32        |
| 39 | Siliconeâ€Based Organic–Inorganic Hybrid Aerogels and Xerogels. Chemistry - A European Journal, 2017,<br>23, 5176-5187.                                                                                                                               | 1.7 | 91        |
| 40 | Highly Flexible Hybrid Polymer Aerogels and Xerogels Based on Resorcinol-Formaldehyde with<br>Enhanced Elastic Stiffness and Recoverability: Insights into the Origin of Their Mechanical Properties.<br>Chemistry of Materials, 2017, 29, 2122-2134. | 3.2 | 76        |
| 41 | Functionalization of hierarchically porous silica monoliths with polyethyleneimine (PEI) for CO 2 adsorption. Microporous and Mesoporous Materials, 2017, 245, 51-57.                                                                                 | 2.2 | 78        |
| 42 | Effects of nanostructured biosilica on rice plant mechanics. RSC Advances, 2017, 7, 13065-13071.                                                                                                                                                      | 1.7 | 20        |
| 43 | Transparent polyvinylsilsesquioxane aerogels: investigations on synthetic parameters and surface modification. Journal of Sol-Gel Science and Technology, 2017, 82, 2-14.                                                                             | 1.1 | 8         |
| 44 | Frontispiece: Siliconeâ€Based Organic–Inorganic Hybrid Aerogels and Xerogels. Chemistry - A European<br>Journal, 2017, 23, .                                                                                                                          | 1.7 | 2         |
| 45 | Transparent Ethenylene-Bridged Polymethylsiloxane Aerogels: Mechanical Flexibility and Strength and<br>Availability for Addition Reaction. Langmuir, 2017, 33, 4543-4550.                                                                             | 1.6 | 43        |
| 46 | Fabrication of hydrophobic polymethylsilsesquioxane aerogels by a surfactant-free method using alkoxysilane with ionic group. Journal of Asian Ceramic Societies, 2017, 5, 104-108.                                                                   | 1.0 | 10        |
| 47 | Amine/Hydrido Bifunctional Nanoporous Silica with Small Metal Nanoparticles Made Onsite: Efficient<br>Dehydrogenation Catalyst. ACS Applied Materials & Interfaces, 2017, 9, 36-41.                                                                   | 4.0 | 13        |
| 48 | Grafted Polymethylhydrosiloxane on Hierarchically Porous Silica Monoliths: A New Path to<br>Monolith-Supported Palladium Nanoparticles for Continuous Flow Catalysis Applications. ACS<br>Applied Materials & Interfaces, 2017, 9, 406-412.           | 4.0 | 46        |
| 49 | Aerogels from Chloromethyltrimethoxysilane and Their Functionalizations. Langmuir, 2017, 33, 13841-13848.                                                                                                                                             | 1.6 | 4         |
| 50 | Polymer-assisted shapeable synthesis of porous frameworks consisting of silica nanoparticles with mechanical property tuning. Polymer Journal, 2017, 49, 825-830.                                                                                     | 1.3 | 6         |
| 51 | Synthesis and characterization of monolithic ZnAl2O4 spinel with well-defined hierarchical pore structures via a sol-gel route. Journal of Alloys and Compounds, 2017, 727, 763-770.                                                                  | 2.8 | 15        |
| 52 | Nanostructured titanium phosphates prepared via hydrothermal reaction and their electrochemical<br>Li- and Na-ion intercalation properties. CrystEngComm, 2017, 19, 4551-4560.                                                                        | 1.3 | 13        |
| 53 | Synthesis, Reduction, and Electrical Properties of Macroporous Monolithic Mayenite Electrides with<br>High Porosity. ACS Omega, 2017, 2, 8148-8155.                                                                                                   | 1.6 | 7         |
| 54 | Highly Efficient Encapsulation of Ingredients in Poly(methyl methacrylate) Capsules Using a<br>Superoleophobic Material. Polymers and Polymer Composites, 2017, 25, 129-134.                                                                          | 1.0 | 6         |

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Monolithic Porous Silica for High Speed HPLC. , 2017, , 1-10.                                                                                                                                                 |     | 0         |
| 56 | Studies on electrochemical sodium storage into hard carbons with binder-free monolithic electrodes. Journal of Power Sources, 2016, 318, 41-48.                                                               | 4.0 | 67        |
| 57 | Boehmite Nanofiber–Polymethylsilsesquioxane Core–Shell Porous Monoliths for a Thermal<br>Insulator under Low Vacuum Conditions. Chemistry of Materials, 2016, 28, 3237-3240.                                  | 3.2 | 25        |
| 58 | Hierarchically Porous Carbon Monoliths Comprising Ordered Mesoporous Nanorod Assemblies for<br>High-Voltage Aqueous Supercapacitors. Chemistry of Materials, 2016, 28, 3944-3950.                             | 3.2 | 203       |
| 59 | The XVIII International Sol–Gel Conference: Sol–Gel 2015 was held in Kyoto, Japan, September 6–11, 2015.<br>Journal of Sol-Gel Science and Technology, 2016, 79, 241-241.                                     | 1.1 | 0         |
| 60 | Transparent, Highly Insulating Polyethyl- and Polyvinylsilsesquioxane Aerogels: Mechanical<br>Improvements by Vulcanization for Ambient Pressure Drying. Chemistry of Materials, 2016, 28,<br>6860-6868.      | 3.2 | 96        |
| 61 | Transparent Ethylene-Bridged Polymethylsiloxane Aerogels and Xerogels with Improved Bending Flexibility. Langmuir, 2016, 32, 13427-13434.                                                                     | 1.6 | 49        |
| 62 | Monolithic acidic catalysts for the dehydration of xylose into furfural. Catalysis Communications, 2016, 87, 112-115.                                                                                         | 1.6 | 27        |
| 63 | Metal zirconium phosphate macroporous monoliths: Versatile synthesis, thermal expansion and mechanical properties. Microporous and Mesoporous Materials, 2016, 225, 122-127.                                  | 2.2 | 13        |
| 64 | Dynamic spring-back behavior in evaporative drying of polymethylsilsesquioxane monolithic gels for<br>low-density transparent thermal superinsulators. Journal of Non-Crystalline Solids, 2016, 434, 115-119. | 1.5 | 41        |
| 65 | The chromatographic performance of flow-through particles: A computational fluid dynamics study.<br>Journal of Chromatography A, 2016, 1429, 166-174.                                                         | 1.8 | 4         |
| 66 | Hierarchically porous titanium phosphate monoliths and their crystallization behavior in ethylene<br>glycol. New Journal of Chemistry, 2016, 40, 4153-4159.                                                   | 1.4 | 11        |
| 67 | Facile preparation of well-defined macroporous yttria-stabilized zirconia monoliths via sol–gel process accompanied by phase separation. Journal of Porous Materials, 2016, 23, 867-875.                      | 1.3 | 9         |
| 68 | Encapsulation of hydrophobic ingredients in hard resin capsules with ultrahigh efficiency using a superoleophobic material. Polymer Bulletin, 2016, 73, 409-417.                                              | 1.7 | 6         |
| 69 | Macroporous Morphology Control by Phase Separation. , 2016, , 1-32.                                                                                                                                           |     | 3         |
| 70 | Porosity Measurement. , 2016, , 1-11.                                                                                                                                                                         |     | 2         |
| 71 | Synthesis of hierarchically porous polymethylsilsesquioxane monoliths with controlled mesopores for HPLC separation. Journal of the Ceramic Society of Japan, 2015, 123, 770-778.                             | 0.5 | 13        |
| 72 | Novel soft touch silicone beads from methyltrimethoxysilane and dimethyldimethoxysilane using easy aqueous solution reaction. Journal of the Ceramic Society of Japan, 2015, 123, 714-718.                    | 0.5 | 5         |

| #                    | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IF                       | CITATIONS           |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------|
| 73                   | High-performance liquid chromatography separation of unsaturated organic compounds by a<br>monolithic silica column embedded with silver nanoparticles. Journal of Separation Science, 2015, 38,<br>2841-2847.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.3                      | 12                  |
| 74                   | Hard Carbon Anodes for Naâ€ion Batteries: Toward a Practical Use. ChemElectroChem, 2015, 2, 1917-1920.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.7                      | 112                 |
| 75                   | Direct preparation and conversion of copper hydroxide-based monolithic xerogels with hierarchical pores. New Journal of Chemistry, 2015, 39, 6771-6777.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.4                      | 23                  |
| 76                   | Effect of Calcination Conditions on Porous Reduced Titanium Oxides and Oxynitrides via a Preceramic Polymer Route. Inorganic Chemistry, 2015, 54, 2802-2808.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.9                      | 14                  |
| 77                   | Efficiency of short, small-diameter columns for reversed-phase liquid chromatography under practical operating conditions. Journal of Chromatography A, 2015, 1383, 47-57.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.8                      | 30                  |
| 78                   | Synthesis of robust hierarchically porous zirconium phosphate monolith for efficient ion adsorption. New Journal of Chemistry, 2015, 39, 2444-2450.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.4                      | 48                  |
| 79                   | Mechanically stable, hierarchically porous Cu <sub>3</sub> (btc) <sub>2</sub> (HKUST-1) monoliths via direct conversion of copper( <scp>ii</scp> ) hydroxide-based monoliths. Chemical Communications, 2015, 51, 3511-3514.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.2                      | 67                  |
| 80                   | Sol–gel synthesis of nanocrystal-constructed hierarchically porous TiO <sub>2</sub> based composites for lithium ion batteries. RSC Advances, 2015, 5, 24803-24813.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.7                      | 22                  |
| 81                   | Mesoscopic superstructures of flexible porous coordination polymers synthesized <i>via</i> coordination replication. Chemical Science, 2015, 6, 5938-5946.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.7                      | 39                  |
| 82                   | Titania. , 2015, , 2525-2528.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | 0                   |
| 0.0                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                     |
| 83                   | High-Level Doping of Nitrogen, Phosphorus, and Sulfur into Activated Carbon Monoliths and Their Electrochemical Capacitances. Chemistry of Materials, 2015, 27, 4703-4712.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.2                      | 237                 |
| 83                   | High-Level Doping of Nitrogen, Phosphorus, and Sulfur into Activated Carbon Monoliths and Their<br>Electrochemical Capacitances. Chemistry of Materials, 2015, 27, 4703-4712.<br>Preparation of silver nanoparticles embedded hierarchically porous AlPO <sub>4</sub> monoliths.<br>New Journal of Chemistry, 2015, 39, 6238-6243.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.2<br>1.4               | 237<br>6            |
|                      | Electrochemical Capacitances. Chemistry of Materials, 2015, 27, 4703-4712.<br>Preparation of silver nanoparticles embedded hierarchically porous AlPO <sub>4</sub> monoliths.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                     |
| 84                   | Electrochemical Capacitances. Chemistry of Materials, 2015, 27, 4703-4712.<br>Preparation of silver nanoparticles embedded hierarchically porous AlPO <sub>4</sub> monoliths.<br>New Journal of Chemistry, 2015, 39, 6238-6243.<br>Spontaneous preparation of hierarchically porous silica monoliths with uniform spherical<br>mesopores confined in a well-defined macroporous framework. Dalton Transactions, 2015, 44,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.4                      | 6                   |
| 84<br>85             | Electrochemical Capacitances. Chemistry of Materials, 2015, 27, 4703-4712.<br>Preparation of silver nanoparticles embedded hierarchically porous AlPO <sub>4</sub> monoliths.<br>New Journal of Chemistry, 2015, 39, 6238-6243.<br>Spontaneous preparation of hierarchically porous silica monoliths with uniform spherical<br>mesopores confined in a well-defined macroporous framework. Dalton Transactions, 2015, 44,<br>13592-13601.<br>Fabrication of hierarchically porous monolithic layered double hydroxide composites with tunable                                                                                                                                                                                                                                                                                                                                                                                                             | 1.4<br>1.6               | 6<br>28             |
| 84<br>85<br>86       | Electrochemical Capacitances. Chemistry of Materials, 2015, 27, 4703-4712.<br>Preparation of silver nanoparticles embedded hierarchically porous AlPO <sub>4</sub> monoliths.<br>New Journal of Chemistry, 2015, 39, 6238-6243.<br>Spontaneous preparation of hierarchically porous silica monoliths with uniform spherical<br>mesopores confined in a well-defined macroporous framework. Dalton Transactions, 2015, 44,<br>13592-13601.<br>Fabrication of hierarchically porous monolithic layered double hydroxide composites with tunable<br>microcages for effective oxyanion adsorption. RSC Advances, 2015, 5, 57187-57192.<br>Preparation of macroporous zirconia monoliths from ionic precursors via an epoxide-mediated<br>sol-gel process accompanied by phase separation. Science and Technology of Advanced Materials, 2015,                                                                                                                 | 1.4<br>1.6<br>1.7        | 6<br>28<br>30       |
| 84<br>85<br>86<br>87 | Electrochemical Capacitances. Chemistry of Materials, 2015, 27, 4703-4712.<br>Preparation of silver nanoparticles embedded hierarchically porous AlPO <sub>4</sub> monoliths.<br>New Journal of Chemistry, 2015, 39, 6238-6243.<br>Spontaneous preparation of hierarchically porous silica monoliths with uniform spherical<br>mesopores confined in a well-defined macroporous framework. Dalton Transactions, 2015, 44,<br>13592-13601.<br>Fabrication of hierarchically porous monolithic layered double hydroxide composites with tunable<br>microcages for effective oxyanion adsorption. RSC Advances, 2015, 5, 57187-57192.<br>Preparation of macroporous zirconia monoliths from ionic precursors via an epoxide-mediated<br>sol-gel process accompanied by phase separation. Science and Technology of Advanced Materials, 2015,<br>16, 025003.<br>Ultralow-Density, Transparent, Superamphiphobic Boehmite Nanofiber Aerogels and Their Alumina | 1.4<br>1.6<br>1.7<br>2.8 | 6<br>28<br>30<br>17 |

| #   | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Preparation and characterization of macroporous TiO2–SrTiO3 heterostructured monolithic photocatalyst. Materials Letters, 2014, 116, 353-355.                                                                                   | 1.3 | 15        |
| 92  | Facile preparation of silver nanoparticles homogeneously immobilized in hierarchically monolithic silica using ethylene glycol as reductant. Dalton Transactions, 2014, 43, 12648.                                              | 1.6 | 34        |
| 93  | Reduction on reactive pore surfaces as a versatile approach to synthesize monolith-supported metal alloy nanoparticles and their catalytic applications. Journal of Materials Chemistry A, 2014, 2, 12535.                      | 5.2 | 30        |
| 94  | Porous chromium-based ceramic monoliths: oxides (Cr <sub>2</sub> O <sub>3</sub> ), nitrides (CrN), and carbides (Cr <sub>3</sub> C <sub>2</sub> ). Journal of Materials Chemistry A, 2014, 2, 745-752.                          | 5.2 | 32        |
| 95  | The thermal conductivity of polymethylsilsesquioxane aerogels and xerogels with varied pore sizes for practical application as thermal superinsulators. Journal of Materials Chemistry A, 2014, 2, 6525-6531.                   | 5.2 | 176       |
| 96  | A new hierarchically porous Pd@HSQ monolithic catalyst for Mizoroki–Heck cross-coupling reactions. New Journal of Chemistry, 2014, 38, 1144-1149.                                                                               | 1.4 | 19        |
| 97  | Synthesis and electrochemical performance of hierarchically porous N-doped TiO2 for Li-ion batteries. New Journal of Chemistry, 2014, 38, 1380.                                                                                 | 1.4 | 28        |
| 98  | Surface Functionalization of Silica by Si–H Activation of Hydrosilanes. Journal of the American<br>Chemical Society, 2014, 136, 11570-11573.                                                                                    | 6.6 | 68        |
| 99  | Facile synthesis of monolithic mayenite with well-defined macropores via an epoxide-mediated sol–gel process accompanied by phase separation. New Journal of Chemistry, 2014, 38, 5832-5839.                                    | 1.4 | 21        |
| 100 | Layered double hydroxide composite monoliths with three-dimensional hierarchical channels: structural control and adsorption behavior. RSC Advances, 2014, 4, 16075-16080.                                                      | 1.7 | 19        |
| 101 | Experimental and numerical validation of the effective medium theory for the B-term band broadening in 1st and 2nd generation monolithic silica columns. Journal of Chromatography A, 2014, 1351, 46-55.                        | 1.8 | 11        |
| 102 | Detailed characterization of the kinetic performance of first and second generation silica monolithic columns for reversed-phase chromatography separations. Journal of Chromatography A, 2014, 1325, 72-82.                    | 1.8 | 37        |
| 103 | Preparation of macroporous cordierite monoliths via the sol–gel process accompanied by phase separation. Journal of the European Ceramic Society, 2014, 34, 817-823.                                                            | 2.8 | 46        |
| 104 | Polymethylsilsesquioxane–Cellulose Nanofiber Biocomposite Aerogels with High Thermal Insulation,<br>Bendability, and Superhydrophobicity. ACS Applied Materials & Interfaces, 2014, 6, 9466-9471.                               | 4.0 | 164       |
| 105 | Fabrication of nitrogen-doped TiO2 monolith with well-defined macroporous and bicrystalline<br>framework and its photocatalytic performance under visible light. Journal of the European Ceramic<br>Society, 2014, 34, 809-816. | 2.8 | 35        |
| 106 | Pore structure control of macroporous methylsilsesquioxane monoliths prepared by in situ two-step processing. Journal of Porous Materials, 2013, 20, 1477-1483.                                                                 | 1.3 | 13        |
| 107 | Gelation behavior and phase separation of macroporous methylsilsesquioxane monoliths prepared by in situ two-step processing. Journal of Sol-Gel Science and Technology, 2013, 67, 406-413.                                     | 1.1 | 11        |
| 108 | 2011 Donald R. Ulrich Awards. Journal of Sol-Gel Science and Technology, 2013, 65, 2-3.                                                                                                                                         | 1.1 | 0         |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Sol–gel synthesis of macroporous TiO2 from ionic precursors via phase separation route. Journal of<br>Sol-Gel Science and Technology, 2013, 67, 639-645.                                                                | 1.1 | 17        |
| 110 | Synthesis of Concentrated Polymer Brushes via Surface-Initiated Organotellurium-Mediated Living Radical Polymerization. Macromolecules, 2013, 46, 6777-6785.                                                            | 2.2 | 27        |
| 111 | Hierarchically Porous Monoliths Based on N-Doped Reduced Titanium Oxides and Their Electric and Electric and Electrochemical Properties. Chemistry of Materials, 2013, 25, 3504-3512.                                   | 3.2 | 52        |
| 112 | Preparation of a hierarchically porous AlPO <sub>4</sub> monolith via an epoxide-mediated sol–gel<br>process accompanied by phase separation. Science and Technology of Advanced Materials, 2013, 14,<br>045007.        | 2.8 | 18        |
| 113 | A Superamphiphobic Macroporous Silicone Monolith with Marshmallowâ€like Flexibility. Angewandte<br>Chemie - International Edition, 2013, 52, 10788-10791.                                                               | 7.2 | 122       |
| 114 | Synthesis of Silver Nanoparticles Confined in Hierarchically Porous Monolithic Silica: A New<br>Function in Aromatic Hydrocarbon Separations. ACS Applied Materials & Interfaces, 2013, 5,<br>2118-2125.                | 4.0 | 41        |
| 115 | New Li2FeSiO4–carbon monoliths with controlled macropores: effects of pore properties on electrode performance. Physical Chemistry Chemical Physics, 2013, 15, 8736.                                                    | 1.3 | 17        |
| 116 | Sol–gel synthesis of zinc ferrite-based xerogel monoliths with well-defined macropores. RSC<br>Advances, 2013, 3, 3661.                                                                                                 | 1.7 | 18        |
| 117 | Facile Synthesis of Marshmallowâ€like Macroporous Gels Usable under Harsh Conditions for the<br>Separation of Oil and Water. Angewandte Chemie - International Edition, 2013, 52, 1986-1989.                            | 7.2 | 408       |
| 118 | Hierarchically porous nickel/carbon composite monoliths prepared by sol–gel method from an ionic precursor. Microporous and Mesoporous Materials, 2013, 176, 64-70.                                                     | 2.2 | 32        |
| 119 | Preparation of mullite monoliths with well-defined macropores and mesostructured skeletons via<br>the sol–gel process accompanied by phase separation. Journal of the European Ceramic Society, 2013,<br>33, 1967-1974. | 2.8 | 52        |
| 120 | Hierarchically porous monoliths of oxygen-deficient anatase TiO2â^'x with electronic conductivity.<br>RSC Advances, 2013, 3, 7205.                                                                                      | 1.7 | 15        |
| 121 | Fabrication of largeâ€sized silica monolith exceeding 1000 mL with high structural homogeneity.<br>Journal of Separation Science, 2013, 36, 1890-1896.                                                                  | 1.3 | 23        |
| 122 | Layered double hydroxide (LDH)-based monolith with interconnected hierarchical channels: enhanced sorption affinity for anionic species. Journal of Materials Chemistry A, 2013, 1, 7702.                               | 5.2 | 58        |
| 123 | Recyclable Functionalization of Silica with Alcohols via Dehydrogenative Addition on Hydrogen<br>Silsesquioxane. Langmuir, 2013, 29, 12243-12253.                                                                       | 1.6 | 10        |
| 124 | Synthesis of Hierarchically Porous Hydrogen Silsesquioxane Monoliths and Embedding of Metal<br>Nanoparticles by On‧ite Reduction. Advanced Functional Materials, 2013, 23, 2714-2722.                                   | 7.8 | 47        |
| 125 | Macroporous SiO <sub>2</sub> Monoliths Prepared <em>via</em> Sol-Gel Process<br>Accompanied by Phase Separation. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2013, 29, 646-652.                                  | 2.2 | 8         |
| 126 | New Insights into the Relationship between Micropore Properties, Ionic Sizes, and Electric<br>Double-Layer Capacitance in Monolithic Carbon Electrodes. Journal of Physical Chemistry C, 2012, 116,<br>26197-26203.     | 1.5 | 45        |

| #   | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | New Monolithic Capillary Columns with Well-Defined Macropores Based on<br>Poly(styrene-co-divinylbenzene). ACS Applied Materials & Interfaces, 2012, 4, 2343-2347.                                                                          | 4.0 | 38        |
| 128 | Role of block copolymer surfactant on the pore formation in methylsilsesquioxane aerogel systems.<br>RSC Advances, 2012, 2, 7166.                                                                                                           | 1.7 | 43        |
| 129 | Synthesis of Monolithic Hierarchically Porous Iron-Based Xerogels from Iron(III) Salts via an Epoxide-Mediated Sol–Gel Process. Chemistry of Materials, 2012, 24, 2071-2077.                                                                | 3.2 | 78        |
| 130 | Selective Preparation of Macroporous Monoliths of Conductive Titanium Oxides<br>Ti <sub><i>n</i></sub> O <sub>2<i>n</i>–1</sub> ( <i>n</i> = 2, 3, 4, 6). Journal of the American Chemical<br>Society, 2012, 134, 10894-10898.              | 6.6 | 106       |
| 131 | Evolution of Mesopores in Monolithic Macroporous Ethylene-Bridged Polysilsesquioxane Gels<br>Incorporated with Nonionic Surfactant. International Journal of Polymer Science, 2012, 2012, 1-6.                                              | 1.2 | 7         |
| 132 | Flower-like surface modification of titania materials by lithium hydroxide solution. Journal of Colloid and Interface Science, 2012, 374, 291-296.                                                                                          | 5.0 | 12        |
| 133 | Facile preparation of macroporous graphitized carbon monoliths from iron-containing<br>resorcinol–formaldehyde gels. Materials Letters, 2012, 76, 1-4.                                                                                      | 1.3 | 33        |
| 134 | Pore properties of hierarchically porous carbon monoliths with high surface area obtained from bridged polysilsesquioxanes. Microporous and Mesoporous Materials, 2012, 155, 265-273.                                                       | 2.2 | 19        |
| 135 | Structure and properties of polymethylsilsesquioxane aerogels synthesized with surfactant<br>n-hexadecyltrimethylammonium chloride. Microporous and Mesoporous Materials, 2012, 158, 247-252.                                               | 2.2 | 53        |
| 136 | Monolithic electrode for electric double-layer capacitors based on macro/meso/microporous<br>S-Containing activated carbon with high surface area. Journal of Materials Chemistry, 2011, 21, 2060.                                          | 6.7 | 151       |
| 137 | Hierarchically Porous Carbon Monoliths with High Surface Area from Bridged Poly(silsesquioxane)<br>without Thermal Activation Process. IOP Conference Series: Materials Science and Engineering, 2011,<br>18, 032005.                       | 0.3 | 0         |
| 138 | Facile Preparation of Monolithic LiFePO <sub>4</sub> /Carbon Composites with Well-Defined<br>Macropores for a Lithium-Ion Battery. Chemistry of Materials, 2011, 23, 5208-5216.                                                             | 3.2 | 82        |
| 139 | New flexible aerogels and xerogels derived from methyltrimethoxysilane/dimethyldimethoxysilane co-precursors. Journal of Materials Chemistry, 2011, 21, 17077.                                                                              | 6.7 | 122       |
| 140 | (3-Mercaptopropyl)trimethoxysilane-derived Porous Gel Monolith via Thioacetal Reaction-Assisted<br>Sol-Gel Route. IOP Conference Series: Materials Science and Engineering, 2011, 18, 032003.                                               | 0.3 | 2         |
| 141 | Synthesis of New Flexible Aerogels from Di- and Trifunctional Organosilanes. Materials Research<br>Society Symposia Proceedings, 2011, 1306, 1.                                                                                             | 0.1 | 4         |
| 142 | Facile preparation of monolithic magnesium titanates with hierarchical porosity. Journal of the<br>Ceramic Society of Japan, 2011, 119, 440-444.                                                                                            | 0.5 | 8         |
| 143 | Pore Structure and Mechanical Properties of Poly(methylsilsesquioxane) Aerogels. IOP Conference<br>Series: Materials Science and Engineering, 2011, 18, 032001.                                                                             | 0.3 | 4         |
| 144 | Preparation of Hierarchically Porous Nanocrystalline <scp>CaTiO<sub>3</sub></scp> ,<br><scp>SrTiO<sub>3</sub></scp> and <scp>BaTiO<sub>3</sub></scp> Perovskite Monoliths. Journal of<br>the American Ceramic Society, 2011, 94, 3335-3339. | 1.9 | 40        |

| #   | Article                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Fabrication of highly crosslinked methacrylate-based polymer monoliths with well-defined macropores via living radical polymerization. Polymer, 2011, 52, 4644-4647.                               | 1.8  | 40        |
| 146 | Controlled pore formation in organotrialkoxysilane-derived hybrids: from aerogels to hierarchically porous monoliths. Chemical Society Reviews, 2011, 40, 754-770.                                 | 18.7 | 204       |
| 147 | Synthesis of hierarchical macro/mesoporous dicalcium phosphate monolith via epoxide-mediated sol–gel reaction from ionic precursors. Journal of Sol-Gel Science and Technology, 2011, 57, 269-278. | 1.1  | 48        |
| 148 | Performance evaluation of long monolithic silica capillary columns in gradient liquid<br>chromatography using peptide mixtures. Journal of Chromatography A, 2011, 1218, 3360-3366.                | 1.8  | 30        |
| 149 | Monolithic silica rod columns for high-efficiency reversed-phase liquid chromatography. Journal of<br>Chromatography A, 2011, 1218, 1988-1994.                                                     | 1.8  | 32        |
| 150 | New hierarchically porous titania monoliths for chromatographic separation media. Journal of Separation Science, 2011, 34, 3004-3010.                                                              | 1.3  | 31        |
| 151 | Transition from transparent aerogels to hierarchically porous monoliths in<br>polymethylsilsesquioxane sol–gel system. Journal of Colloid and Interface Science, 2011, 357, 336-344.               | 5.0  | 64        |
| 152 | Macroporous Carbon Monoliths with Large Surface Area for Electric Double-Layer Capacitor.<br>Materials Research Society Symposia Proceedings, 2011, 1304, 1.                                       | 0.1  | 0         |
| 153 | Organosiloxane Transparent Aerogels and Hierarchically Porous Monoliths. Materials Research<br>Society Symposia Proceedings, 2011, 1306, 1.                                                        | 0.1  | ο         |
| 154 | Facile preparation of transparent monolithic titania gels utilizing a chelating ligand and mineral salts. Journal of Sol-Gel Science and Technology, 2010, 53, 59-66.                              | 1.1  | 32        |
| 155 | Sol–gel preparation of Ni/TiO2 catalysts with bimodal pore structures. Applied Catalysis A: General, 2010, 383, 66-72.                                                                             | 2.2  | 33        |
| 156 | In situ SAXS observation on metal–salt-derived alumina sol–gel system accompanied by phase<br>separation. Journal of Colloid and Interface Science, 2010, 352, 303-308.                            | 5.0  | 23        |
| 157 | Synthesis of high-silica and low-silica zeolite monoliths with trimodal pores. Microporous and Mesoporous Materials, 2010, 132, 538-542.                                                           | 2.2  | 22        |
| 158 | Fabrication of activated carbons with well-defined macropores derived from sulfonated poly(divinylbenzene) networks. Carbon, 2010, 48, 1757-1766.                                                  | 5.4  | 69        |
| 159 | Macro- and microporous carbon monoliths with high surface areas pyrolyzed from poly(divinylbenzene) networks. Comptes Rendus Chimie, 2010, 13, 207-211.                                            | 0.2  | 22        |
| 160 | Facile Preparation of Hierarchically Porous TiO <sub>2</sub> Monoliths. Journal of the American<br>Ceramic Society, 2010, 93, 3110-3115.                                                           | 1.9  | 92        |
| 161 | Effects of Starting Compositions on the Properties of Methylsilsesquioxane Aerogels. Materials<br>Research Society Symposia Proceedings, 2010, 1247, 1.                                            | 0.1  | Ο         |
| 162 | Hierarchically porous carbon monoliths with high surface area from bridged polysilsesquioxanes without thermal activation process. Chemical Communications, 2010, 46, 8037.                        | 2.2  | 27        |

| #   | Article                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | A New Route to Monolithic Macroporous SiC/C Composites from Biphenylene-bridged<br>Polysilsesquioxane Gels. Chemistry of Materials, 2010, 22, 2541-2547.                                                                                                                   | 3.2 | 45        |
| 164 | Rigid Crosslinked Polyacrylamide Monoliths with Wellâ€Đefined Macropores Synthesized by Living<br>Polymerization. Macromolecular Rapid Communications, 2009, 30, 986-990.                                                                                                  | 2.0 | 59        |
| 165 | Performance of wideâ€pore monolithic silica column in protein separation. Journal of Separation Science, 2009, 32, 2747-2751.                                                                                                                                              | 1.3 | 8         |
| 166 | Structural characterization of hierarchically porous alumina aerogel and xerogel monoliths.<br>Journal of Colloid and Interface Science, 2009, 338, 506-513.                                                                                                               | 5.0 | 87        |
| 167 | Semi-micro-monolithic columns using macroporous silica rods with improved performance. Journal of Chromatography A, 2009, 1216, 7384-7387.                                                                                                                                 | 1.8 | 27        |
| 168 | Sol–gel synthesis of macro–mesoporous titania monoliths and their applications to<br>chromatographic separation media for organophosphate compounds. Journal of Chromatography A,<br>2009, 1216, 7375-7383.                                                                | 1.8 | 97        |
| 169 | Pore Formation in Poly(divinylbenzene) Networks Derived from Organotellurium-Mediated Living<br>Radical Polymerization. Macromolecules, 2009, 42, 1270-1277.                                                                                                               | 2.2 | 69        |
| 170 | Spinodal decomposition in siloxane sol-gel systems in macroporous media. Soft Matter, 2009, 5, 3106.                                                                                                                                                                       | 1.2 | 26        |
| 171 | Fabrication of macroporous silicon carbide ceramics by intramolecular carbothermal reduction of phenyl-bridged polysilsesquioxane. Journal of Materials Chemistry, 2009, 19, 7716.                                                                                         | 6.7 | 38        |
| 172 | Effect of La addition on thermal microstructural evolution of macroporous alumina monolith prepared from ionic precursors. Journal of the Ceramic Society of Japan, 2009, 117, 351-355.                                                                                    | 0.5 | 19        |
| 173 | Sol-gel synthesis, porous structure, and mechanical property of polymethylsilsesquioxane aerogels.<br>Journal of the Ceramic Society of Japan, 2009, 117, 1333-1338.                                                                                                       | 0.5 | 42        |
| 174 | Alkoxy-derived multiscale porous TiO2 gels probed by ultra-small-angle X-ray scattering and small-angle X-ray scattering. Journal of Sol-Gel Science and Technology, 2008, 46, 63-69.                                                                                      | 1.1 | 4         |
| 175 | Elastic organic–inorganic hybrid aerogels and xerogels. Journal of Sol-Gel Science and Technology,<br>2008, 48, 172-181.                                                                                                                                                   | 1.1 | 114       |
| 176 | Preparation of monolithic silica columns for high-performance liquid chromatography. Journal of<br>Chromatography A, 2008, 1191, 231-252.                                                                                                                                  | 1.8 | 220       |
| 177 | Preparation and properties of radiofrequency sputtered X-ray amorphous films in the system<br>SiO2–ZrO2. Thin Solid Films, 2008, 516, 4665-4672.                                                                                                                           | 0.8 | 11        |
| 178 | Multiscale Templating of Siloxane Gels via Polymerization-Induced Phase Separation. Chemistry of<br>Materials, 2008, 20, 1108-1115.                                                                                                                                        | 3.2 | 75        |
| 179 | Crystalline ZrO <sub>2</sub> Monoliths with Well-Defined Macropores and Mesostructured<br>Skeletons Prepared by Combining the Alkoxy-Derived Sol–Gel Process Accompanied by Phase<br>Separation and the Solvothermal Process. Chemistry of Materials, 2008, 20, 2165-2173. | 3.2 | 110       |
| 180 | Cr3+-doped macroporous Al2O3 monoliths prepared by the metal-salt-derived sol–gel method. Journal of Non-Crystalline Solids, 2008, 354, 659-664.                                                                                                                           | 1.5 | 34        |

| #   | Article                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Facile Synthesis of Macroporous Cross-Linked Methacrylate Gels by Atom Transfer Radical<br>Polymerization. Macromolecules, 2008, 41, 7186-7193.                                                    | 2.2  | 88        |
| 182 | Preparation of Macroporous Poly(divinylbenzene) Gels via Living Radical Polymerization. Materials<br>Research Society Symposia Proceedings, 2008, 1134, 1.                                         | 0.1  | 0         |
| 183 | Elastic Aerogels and Xerogels Synthesized from Methyltrimethoxysilane (MTMS). Materials Research<br>Society Symposia Proceedings, 2008, 1134, 1.                                                   | 0.1  | 2         |
| 184 | Scattering-based hole burning through volume speckles in a random medium with tunable diffusion constant. Applied Physics Letters, 2008, 93, 151912.                                               | 1.5  | 4         |
| 185 | Phase Separation in Silica Sol-gel System Containing Anionic Surfactant. Materials Research Society<br>Symposia Proceedings, 2007, 1056, 1.                                                        | 0.1  | 0         |
| 186 | Hierarchically Porous Oxides, Hybrids and Polymers via Sol-gel Accompanied by Phase Separation.<br>Materials Research Society Symposia Proceedings, 2007, 1007, 1.                                 | 0.1  | 5         |
| 187 | Phase Separation in Al <sub>2</sub> O <sub>3</sub> Sol-gel System Incorporated with High Molecular<br>Weight Poly(ethylene oxide). Materials Research Society Symposia Proceedings, 2007, 1007, 1. | 0.1  | 1         |
| 188 | Phase Separation in Alkoxy-Derived Silica System Containing Polyacrylamide. Materials Research<br>Society Symposia Proceedings, 2007, 1007, 1.                                                     | 0.1  | 1         |
| 189 | Simple Liquid Chromatography Using Monolithic Silica Rod and Capillary. Bunseki Kagaku, 2007, 56, 227-229.                                                                                         | 0.1  | 0         |
| 190 | Functional Porous Materials via Sol-Gel with Phase Separation. Journal of the Ceramic Society of<br>Japan, 2007, 115, 169-175.                                                                     | 1.3  | 10        |
| 191 | Sol-gel Synthesis of Macroporous YAG from Ionic Precursors via Phase Separation Route. Journal of the Ceramic Society of Japan, 2007, 115, 925-928.                                                | 0.5  | 45        |
| 192 | Size-Exclusion Effect and Protein Repellency of Concentrated Polymer Brushes Prepared by<br>Surface-Initiated Living Radical Polymerization. Macromolecular Symposia, 2007, 248, 189-198.          | 0.4  | 28        |
| 193 | Synthesis of Monolithic Al2O3 with Well-Defined Macropores and Mesostructured Skeletons via the Solâ^'Gel Process Accompanied by Phase Separation. Chemistry of Materials, 2007, 19, 3393-3398.    | 3.2  | 198       |
| 194 | Sol–Gel with Phase Separation. Hierarchically Porous Materials Optimized for High-Performance<br>Liquid Chromatography Separations. Accounts of Chemical Research, 2007, 40, 863-873.              | 7.6  | 430       |
| 195 | New Transparent Methylsilsesquioxane Aerogels and Xerogels with Improved Mechanical Properties.<br>Advanced Materials, 2007, 19, 1589-1593.                                                        | 11.1 | 377       |
| 196 | Real space observation of silica monoliths in the formation process. Journal of Separation Science, 2007, 30, 2881-2887.                                                                           | 1.3  | 14        |
| 197 | Three-dimensional observation of macroporous silica gels and the study on structural formation mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 300, 245-252.    | 2.3  | 11        |
| 198 | Temperature-tunable scattering strength based on the phase transition of liquid crystal infiltrated in well-defined macroporous random media. Optical Materials, 2007, 29, 949-954.                | 1.7  | 8         |

| #   | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Surface interaction of wellâ€defined, concentrated poly(2â€hydroxyethyl methacrylate) brushes with proteins. Journal of Polymer Science Part A, 2007, 45, 4795-4803.                                                                                       | 2.5 | 62        |
| 200 | High-throughput protein digestion by trypsin-immobilized monolithic silica with pipette-tip formula.<br>Journal of Proteomics, 2007, 70, 57-62.                                                                                                            | 2.4 | 60        |
| 201 | Monolithic TiO2with Controlled Multiscale Porosity via a Template-Free Solâ^'Gel Process<br>Accompanied by Phase Separation. Chemistry of Materials, 2006, 18, 6069-6074.                                                                                  | 3.2 | 162       |
| 202 | Performance of Monolithic Silica Capillary Columns with Increased Phase Ratios and Small-Sized Domains. Analytical Chemistry, 2006, 78, 7632-7642.                                                                                                         | 3.2 | 150       |
| 203 | Phase-Separation-Induced Titania Monoliths with Well-Defined Macropores and Mesostructured<br>Framework from Colloid-Derived Solâ^'Gel Systems. Chemistry of Materials, 2006, 18, 864-866.                                                                 | 3.2 | 85        |
| 204 | Direct observation of the spatial distribution of samarium ions in alumina–silica macroporous<br>monoliths by laser scanning confocal microscopy. Journal of Alloys and Compounds, 2006, 408-412,<br>831-834.                                              | 2.8 | 3         |
| 205 | Fabrication of Sm2+-doped macroporous aluminosilicate glasses with high alumina content. Journal of Non-Crystalline Solids, 2006, 352, 2553-2557.                                                                                                          | 1.5 | 5         |
| 206 | Formation of photonic structures in Sm2+-doped aluminosilicate glasses through phase separation.<br>Journal of Non-Crystalline Solids, 2006, 352, 2496-2500.                                                                                               | 1.5 | 7         |
| 207 | Sol–Gel Process of Oxides Accompanied by Phase Separation. Bulletin of the Chemical Society of Japan, 2006, 79, 673-691.                                                                                                                                   | 2.0 | 63        |
| 208 | Thermodynamics of Aggregation of Two Proteins. Journal of the Physical Society of Japan, 2006, 75, 064803.                                                                                                                                                 | 0.7 | 4         |
| 209 | Basic study of the gelation of dimethacrylate-type crosslinking agents. Journal of Polymer Science<br>Part A, 2006, 44, 949-958.                                                                                                                           | 2.5 | 14        |
| 210 | High-performance liquid chromatographic enantioseparations on capillary columns containing<br>monolithic silica modified with amylose tris(3,5-dimethylphenylcarbamate). Journal of<br>Chromatography A, 2006, 1110, 46-52.                                | 1.8 | 73        |
| 211 | Anisotropic siloxane-based monolith prepared in confined spaces. Journal of Chromatography A, 2006, 1119, 88-94.                                                                                                                                           | 1.8 | 8         |
| 212 | Mutual consistency between simulated and measured pressure drops in silica monoliths based on<br>geometrical parameters obtained by three-dimensional laser scanning confocal microscope<br>observations. Journal of Chromatography A, 2006, 1119, 95-104. | 1.8 | 26        |
| 213 | Morphological control and strong light scattering in macroporous TiO2monoliths prepared via a<br>colloid-derived sol–gel route. Science and Technology of Advanced Materials, 2006, 7, 511-518.                                                            | 2.8 | 15        |
| 214 | Size Exclusion Chromatography of Standard Polystyrenes with a Wide Range of Molecular Weight Up<br>to 7.45×106 on Monolithic Silica Capillary Columns. Polymer Journal, 2006, 38, 1194-1197.                                                               | 1.3 | 14        |
| 215 | Monolithic silica capillary column extraction of methamphetamine and amphetamine in urine coupled with thin-layer chromatographic detection. Forensic Toxicology, 2006, 24, 75-79.                                                                         | 1.4 | 9         |
| 216 | High-performance liquid chromatographic enantioseparations on capillary columns containing<br>crosslinked polysaccharide phenylcarbamate derivatives attached to monolithic silica. Journal of<br>Separation Science, 2006, 29, 1988-1995.                 | 1.3 | 72        |

| #   | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Thick silica gel coatings on methylsilsesquioxane monoliths using anisotropic phase separation.<br>Journal of Separation Science, 2006, 29, 2463-2470.                                                                   | 1.3  | 26        |
| 218 | Performance of octadecylsilylated monolithic silica capillary columns of 530 μm inner diameter in HPLC. Journal of Separation Science, 2006, 29, 2471-2477.                                                              | 1.3  | 45        |
| 219 | Rigid Macroporous Poly(divinylbenzene) Monoliths with a Well-Defined Bicontinuous Morphology<br>Prepared by Living Radical Polymerization. Advanced Materials, 2006, 18, 2407-2411.                                      | 11.1 | 132       |
| 220 | New Macroporous Crosslinked Polymer Gels Prepared via Living Radical Polymerization. Materials<br>Research Society Symposia Proceedings, 2006, 947, 1.                                                                   | 0.1  | 1         |
| 221 | Phase Separation in Sol-Gel Systems of Organic-Inorganic Hybrids. Advances in Science and Technology, 2006, 45, 759.                                                                                                     | 0.2  | Ο         |
| 222 | Formation of photonic structures in Sm2+-doped aluminosilicate glasses through phase separation. , 2005, 5720, 261.                                                                                                      |      | 0         |
| 223 | Fabrication of macroporous TiO 2 monoliths for photonic applications. , 2005, 5720, 233.                                                                                                                                 |      | Ο         |
| 224 | Silica monolithic membrane as separation medium. Journal of Chromatography A, 2005, 1073, 123-126.                                                                                                                       | 1.8  | 9         |
| 225 | Titania-coated monolithic silica as separation medium for high performance liquid chromatography of phosphorus-containing compounds. Journal of Separation Science, 2005, 28, 39-44.                                     | 1.3  | 48        |
| 226 | An Application of Silica-Based Monolithic Membrane Emulsification Technique for Easy and Efficient<br>Preparation of Uniformly Sized Polymer Particles. Macromolecular Materials and Engineering, 2005,<br>290, 753-758. | 1.7  | 9         |
| 227 | Tailoring Spontaneous Pillar Structure Using Phase-Separating Organosiloxane Sol-Gel Systems in<br>Micro-Fabricated Grooves. Journal of Sol-Gel Science and Technology, 2005, 35, 183-191.                               | 1.1  | 6         |
| 228 | Insight on Structural Change in Sol?Gel-Derived Silica Gel with Aging under Basic Conditions for<br>Mesopore Control. Journal of Sol-Gel Science and Technology, 2005, 33, 159-167.                                      | 1.1  | 21        |
| 229 | High-Performance Frontal Analysis of the Binding of Thyroxine Enantiomers to Human Serum Albumin<br>Binding of Thyroxine Enantiomers to Human Serum Albumin Kimura. Pharmaceutical Research, 2005, 22,<br>667-675.       | 1.7  | 7         |
| 230 | Porous methylsiloxane gel thick film for millimeter-wave antenna substrate prepared by gap filling<br>method. Materials Research Society Symposia Proceedings, 2005, 888, 1.                                             | 0.1  | 2         |
| 231 | Topical Application of Ionic Polymers Affects Skin Permeability Barrier Homeostasis. Skin<br>Pharmacology and Physiology, 2005, 18, 36-41.                                                                               | 1.1  | 14        |
| 232 | Experimental Validation of the Tetrahedral Skeleton Model Pressure Drop Correlation for Silica<br>Monoliths and the Influence of Column Heterogeneity. Analytical Chemistry, 2005, 77, 3986-3992.                        | 3.2  | 31        |
| 233 | Monolithic Periodic Mesoporous Silica with Well-Defined Macropores. Chemistry of Materials, 2005, 17, 2114-2119.                                                                                                         | 3.2  | 176       |
| 234 | Organic–inorganic hybrid poly(silsesquioxane) monoliths with controlled macro- and mesopores.<br>Journal of Materials Chemistry, 2005, 15, 3776.                                                                         | 6.7  | 137       |

| #   | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Control of Light Scattering in Organic-inorganic Hybrid Macroporous Monoliths. Funtai Oyobi<br>Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2005, 52, 781-785.                                               | 0.1 | 0         |
| 236 | Tailoring Photonic Strength in Monolithic Macroporous Silica for Random Media. Japanese Journal of<br>Applied Physics, 2004, 43, 5359-5364.                                                                                                  | 0.8 | 16        |
| 237 | Strong light scattering in macroporous TiO2 monoliths induced by phase separation. Applied Physics<br>Letters, 2004, 85, 5595-5597.                                                                                                          | 1.5 | 46        |
| 238 | Hierarchical Macro-Mesoporous Silica Monolith. Materials Research Society Symposia Proceedings,<br>2004, 847, 525.                                                                                                                           | 0.1 | 0         |
| 239 | Three Dimensional Structure and Liquid Transport Behavior of Siloxane Gels with Co-continuous<br>Macropores. Materials Research Society Symposia Proceedings, 2004, 847, 454.                                                                | 0.1 | 0         |
| 240 | Development of a monolithic silica extraction tip for the analysis of proteins. Journal of<br>Chromatography A, 2004, 1043, 19-25.                                                                                                           | 1.8 | 96        |
| 241 | Structural formation of hybrid siloxane-based polymer monolith in confined spaces. Journal of<br>Separation Science, 2004, 27, 874-886.                                                                                                      | 1.3 | 109       |
| 242 | High-performance liquid chromatographic enantioseparations on capillary columns containing<br>monolithic silica modified with cellulose tris(3,5-dimethylphenylcarbamate). Journal of Separation<br>Science, 2004, 27, 905-911.              | 1.3 | 75        |
| 243 | Simple 2D-HPLC using a monolithic silica column for peptide separation. Journal of Separation Science, 2004, 27, 897-904.                                                                                                                    | 1.3 | 74        |
| 244 | Microanalysis for MDR1 ATPase by high-performance liquid chromatography with a titanium dioxide column. Analytical Biochemistry, 2004, 326, 262-266.                                                                                         | 1.1 | 42        |
| 245 | Three-dimensional observation of phase-separated siloxane sol–gel structures in confined spaces<br>using laser scanning confocal microscopy (LSCM). Colloids and Surfaces A: Physicochemical and<br>Engineering Aspects, 2004, 241, 215-224. | 2.3 | 33        |
| 246 | Morphology Control of Phase-Separation-Induced Aluminaâ^'Silica Macroporous Gels for<br>Rare-Earth-Doped Scattering Media. Journal of Physical Chemistry B, 2004, 108, 16670-16676.                                                          | 1.2 | 27        |
| 247 | Simple and Comprehensive Two-Dimensional Reversed-Phase HPLC Using Monolithic Silica Columns.<br>Analytical Chemistry, 2004, 76, 1273-1281.                                                                                                  | 3.2 | 139       |
| 248 | Spontaneous Formation of Hierarchical Macroâ^'Mesoporous Ethaneâ^'Silica Monolith. Chemistry of Materials, 2004, 16, 3652-3658.                                                                                                              | 3.2 | 148       |
| 249 | Fabrication of dye-infiltrated macroporous silica for laser amplification. Journal of Non-Crystalline Solids, 2004, 345-346, 438-442.                                                                                                        | 1.5 | 7         |
| 250 | Monolithic O/I-Hybrids with Hierarchically Ordered Meso- and Macropores. Materials Research<br>Society Symposia Proceedings, 2004, 847, .                                                                                                    | 0.1 | 2         |
| 251 | Formation of Interconnected Macropores in Sm2+-doped Silicate Glasses through Phase Separation:<br>Fabrication of Photosensitive and Dielectrically Disordered Materials. Chemistry Letters, 2004, 33,<br>1120-1121.                         | 0.7 | 5         |
| 252 | THREE-DIMENSIONAL OBSERVATION OF PHASE-SEPARATED SOL-GEL STRUCTURES USING LASER SCANNING CONFOCAL MICROSCOPY (LSCM). , 2004, , .                                                                                                             |     | 0         |

| #   | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Phase Separation in Methylsiloxane Sol-Gel Systems in a Small Confined Space. Journal of Sol-Gel<br>Science and Technology, 2003, 26, 157-160.                                                                | 1.1 | 18        |
| 254 | Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 567-570.                                                                                                                              | 1.1 | 42        |
| 255 | Phase Separation in Sol-Gel System Containing Mixture of 3- and 4-Functional Alkoxysilanes. Journal of<br>Sol-Gel Science and Technology, 2003, 26, 153-156.                                                  | 1.1 | 31        |
| 256 | Monolithic silica columns with chemically bonded ?-cyclodextrin as a stationary phase for<br>enantiomer separations of chiral pharmaceuticals. Analytical and Bioanalytical Chemistry, 2003, 377,<br>892-901. | 1.9 | 70        |
| 257 | Bonelike apatite formation on ethylene-vinyl alcohol copolymer modified with silane coupling agent and calcium silicate solutions. Biomaterials, 2003, 24, 1729-1735.                                         | 5.7 | 107       |
| 258 | Monolithic silica column for in-tube solid-phase microextraction coupled to high-performance liquid chromatography A, 2003, 985, 351-357.                                                                     | 1.8 | 94        |
| 259 | Interface-Directed Web-to-Pillar Transition of Microphase-Separated Siloxane Gels. Langmuir, 2003, 19, 9101-9103.                                                                                             | 1.6 | 12        |
| 260 | Monolithic Silica-Based Capillary Reversed-Phase Liquid Chromatography/Electrospray Mass<br>Spectrometry for Plant Metabolomics. Analytical Chemistry, 2003, 75, 6737-6740.                                   | 3.2 | 251       |
| 261 | Three-Dimensional Observation of Phase-Separated Silica-Based Gels Confined between Parallel Plates.<br>Langmuir, 2003, 19, 5581-5585.                                                                        | 1.6 | 36        |
| 262 | Macroporous Morphology Induced by Phase Separation in Sol-Gel Systems Derived from Titania<br>Colloid. Materials Research Society Symposia Proceedings, 2003, 788, 8141.                                      | 0.1 | 3         |
| 263 | Controlled Hierarchical Pore Structures in Ethylene-Bridged Polysilsesquioxane Gels. Materials<br>Research Society Symposia Proceedings, 2003, 788, 3101.                                                     | 0.1 | 3         |
| 264 | Macroporous Silica and Alkylene-Bridged Polysilsesquioxane Gels with Templated Nanopores.<br>Materials Research Society Symposia Proceedings, 2003, 788, 751.                                                 | 0.1 | 1         |
| 265 | Phase Separation in Alkylene-Bridged Polysilsesquioxane Sol-Gel Systems. Materials Research Society<br>Symposia Proceedings, 2002, 726, 1.                                                                    | 0.1 | 11        |
| 266 | Monolithic silica columns for high-efficiency separations by high-performance liquid<br>chromatography. Journal of Chromatography A, 2002, 960, 85-96.                                                        | 1.8 | 209       |
| 267 | Monolithic silica columns for high-efficiency chromatographic separations. Journal of<br>Chromatography A, 2002, 965, 35-49.                                                                                  | 1.8 | 478       |
| 268 | Monolithic silica columns with various skeleton sizes and through-pore sizes for capillary liquid chromatography A, 2002, 961, 53-63.                                                                         | 1.8 | 270       |
| 269 | Monolithic HPLC Silica Columns. Journal of Sol-Gel Science and Technology, 2002, 23, 185-187.                                                                                                                 | 1.1 | 22        |
| 270 | Peer Reviewed: Monolithic LC Columns. Analytical Chemistry, 2001, 73, 420 A-429 A.                                                                                                                            | 3.2 | 413       |

| #   | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Three-Dimensional Structure of a Sintered Macroporous Silica Gel. Langmuir, 2001, 17, 619-625.                                                                                                                                  | 1.6 | 45        |
| 272 | Formation of ordered macropores and templated nanopores in silica sol–gel system incorporated<br>with EO–PO–EO triblock copolymer. Colloids and Surfaces A: Physicochemical and Engineering<br>Aspects, 2001, 187-188, 117-122. | 2.3 | 55        |
| 273 | Chromatographic characterization of macroporous monolithic silica prepared via sol-gel process.<br>Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 187-188, 273-279.                                    | 2.3 | 53        |
| 274 | Macroporous morphology of titania films prepared by sol-gel dip-coating method from a system<br>containing poly(ethylene glycol) and poly(vinylpyrrolidone). Journal of Materials Research, 2001, 16,<br>58-66.                 | 1.2 | 26        |
| 275 | Phase Separation in Sol–Gel Process of Alkoxideâ€Derived Silicaâ€Zirconia in the Presence of Polyethylene<br>Oxide. Journal of the American Ceramic Society, 2001, 84, 1968-1976.                                               | 1.9 | 38        |
| 276 | Effect of Nonionic Surfactant on Phase Separation Behavior in Methylsiloxane Sol-Gel Systems<br>Kobunshi Ronbunshu, 2000, 57, 396-401.                                                                                          | 0.2 | 3         |
| 277 | Tailoring Mesopores in Monolithic Macroporous Silica for HPLC. Journal of High Resolution<br>Chromatography, 2000, 23, 106-110.                                                                                                 | 2.0 | 110       |
| 278 | Monolithic Silica Columns for HPLC, Micro-HPLC, and CEC. Journal of High Resolution Chromatography, 2000, 23, 111-116.                                                                                                          | 2.0 | 299       |
| 279 | A New Monolithic-Type HPLC Column For Fast Separations. Journal of High Resolution<br>Chromatography, 2000, 23, 93-99.                                                                                                          | 2.0 | 306       |
| 280 | Membrane Emulsification Using Sol-Gel Derived Macroporous Silica Glass. Journal of Sol-Gel Science and Technology, 2000, 19, 337-341.                                                                                           | 1.1 | 31        |
| 281 | Formation of Hierarchical Pore Structure in Silica Gel. Journal of Sol-Gel Science and Technology, 2000, 17, 191-210.                                                                                                           | 1.1 | 138       |
| 282 | Porous Cels Made by Phase Separation: Recent Progress and Future Directions. Journal of Sol-Gel<br>Science and Technology, 2000, 19, 65-70.                                                                                     | 1.1 | 41        |
| 283 | Macroporous Silicate Films by Dip-Coating. Journal of Sol-Gel Science and Technology, 2000, 19, 553-557.                                                                                                                        | 1.1 | 15        |
| 284 | Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 17, 7-18.                                                                                                                                                   | 1.1 | 65        |
| 285 | Preparation of Silicalite-1 Within Macroporous Silica Glass. Journal of Sol-Gel Science and Technology, 2000, 19, 769-773.                                                                                                      | 1.1 | 15        |
| 286 | Preparation and Chromatographic Application of Macroporous Silicate in a Capillary. Journal of Sol-Gel Science and Technology, 2000, 19, 371-375.                                                                               | 1.1 | 27        |
| 287 | Apatite Formation on Ethylene-Vinyl Alcohol Copolymer Modified with Silane Coupling Agent and Calcium Silicate. Key Engineering Materials, 2000, 192-195, 713-716.                                                              | 0.4 | 2         |
| 288 | Performance of a Monolithic Silica Column in a Capillary under Pressure-Driven and Electrodriven<br>Conditions. Analytical Chemistry, 2000, 72, 1275-1280.                                                                      | 3.2 | 316       |

| #   | Article                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Tailoring Mesopores in Monolithic Macroporous Silica for HPLC. , 2000, 23, 106.                                                                                                             |     | 1         |
| 290 | Tailoring Mesopores in Monolithic Macroporous Silica for HPLC. Journal of High Resolution<br>Chromatography, 2000, 23, 106-110.                                                             | 2.0 | 1         |
| 291 | Porous Gel Coatings Obtained by Phase Separation in ORMOSIL System. Materials Research Society Symposia Proceedings, 2000, 628, 1.                                                          | 0.1 | 2         |
| 292 | Sol–gel modification of silicone to induce apatite-forming ability. Biomaterials, 1999, 20, 79-84.                                                                                          | 5.7 | 50        |
| 293 | Apatite formation on ethylene-vinyl alcohol copolymer modified with silanol groups. , 1999, 47, 367-373.                                                                                    |     | 39        |
| 294 | Formation and Application of Hierarchical Pore Structure in Sol-Gel Systems Based on Phase<br>Separation. Journal of the Japan Society of Colour Material, 1999, 72, 178-183.               | 0.0 | 0         |
| 295 | Designing monolithic double-pore silica for high-speed liquid chromatography. Journal of<br>Chromatography A, 1998, 797, 133-137.                                                           | 1.8 | 167       |
| 296 | Performance of an octadecylsilylated continuous porous silica column in polypeptide separations.<br>Journal of Chromatography A, 1998, 828, 83-90.                                          | 1.8 | 113       |
| 297 | Designing Double Pore Structure in Alkoxy-Derived Silica Incorporated with Nonionic Surfactant.<br>Journal of Porous Materials, 1998, 5, 103-110.                                           | 1.3 | 41        |
| 298 | Structure Design of Double-Pore Silica and Its Application to HPLC. Journal of Sol-Gel Science and Technology, 1998, 13, 163-169.                                                           | 1.1 | 99        |
| 299 | Apatite formation on silica gel in simulated body fluid: effects of structural modification with solvent-exchange. Journal of Materials Science: Materials in Medicine, 1998, 9, 279-284.   | 1.7 | 62        |
| 300 | Effect of domain size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography. Journal of Chromatography A, 1998, 797, 121-131.   | 1.8 | 266       |
| 301 | Chromatographic Properties of Miniaturized Silica Rod Columns. Journal of High Resolution Chromatography, 1998, 21, 477-479.                                                                | 2.0 | 84        |
| 302 | SilicaROD™ — A new challenge in fast high-performance liquid chromatography separations. TrAC -<br>Trends in Analytical Chemistry, 1998, 17, 50-53.                                         | 5.8 | 118       |
| 303 | Structural study of mesoporous titania and titanium–stearic acid complex prepared from titanium alkoxide. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 3161-3168.       | 1.7 | 47        |
| 304 | Morphology Control of Macroporous Silica-Zirconia Gel Based on Phase Separation. Journal of the<br>Ceramic Society of Japan, 1998, 106, 772-777.                                            | 1.3 | 25        |
| 305 | Preparation of Macroporous Titania Films by a Solâ€Gel Dipâ€Coating Method from the System Containing Poly(ethylene glycol). Journal of the American Ceramic Society, 1998, 81, 2670-2676.  | 1.9 | 107       |
| 306 | Phase Separation in Silica Sol–Gel System Containing Poly(ethylene oxide) II. Effects of Molecular<br>Weight and Temperature. Bulletin of the Chemical Society of Japan, 1997, 70, 587-592. | 2.0 | 63        |

| #   | Article                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Phase Separation Process of Polymer—Incorporated Silica-Zirconia Sol-Gel System. Journal of Sol-Gel<br>Science and Technology, 1997, 8, 71-76.                                              | 1.1 | 1         |
| 308 | Pore Structure Control of Silica Gels Based on Phase Separation. Journal of Porous Materials, 1997, 4, 67-112.                                                                              | 1.3 | 732       |
| 309 | Phase separation process of polymer—Incorporated silica-zirconia sol-gel system. Journal of Sol-Gel<br>Science and Technology, 1997, 8, 71-76.                                              | 1.1 | 13        |
| 310 | Double pore silica gel monolith applied to liquid chromatography. Journal of Sol-Gel Science and Technology, 1997, 8, 547-552.                                                              | 1.1 | 69        |
| 311 | Effect of skeleton size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography. Journal of Chromatography A, 1997, 762, 135-146. | 1.8 | 324       |
| 312 | Octadecylsilylated Porous Silica Rods as Separation Media for Reversed-Phase Liquid Chromatography.<br>Analytical Chemistry, 1996, 68, 3498-3501.                                           | 3.2 | 872       |
| 313 | Apatite Formation on Various Silica Gels in a Simulated Body Fluid Containing Excessive Calcium Ion.<br>Journal of the Ceramic Society of Japan, 1996, 104, 399-404.                        | 1.3 | 14        |
| 314 | Apatite-forming ability of silicate ion dissolved from silica gels. , 1996, 32, 375-381.                                                                                                    |     | 53        |
| 315 | Apatite formation on silica gel in simulated body fluid: Its dependence on structures of silica gels prepared in different media. , 1996, 33, 145-151.                                      |     | 86        |
| 316 | Dependence of Apatite Formation on Silica Gel on Its Structure: Effect of Heat Treatment. Journal of the American Ceramic Society, 1995, 78, 1769-1774.                                     | 1.9 | 467       |
| 317 | Formation of porous gel morphology by phase separation in gelling alkoxy-derived silica. Affinity between silica polymers and solvent Journal of Non-Crystalline Solids, 1995, 181, 16-26.  | 1.5 | 29        |
| 318 | Formation of porous gel morphology by phase separation in gelling alkoxy-derived silica.<br>Phenomenological study. Journal of Non-Crystalline Solids, 1995, 185, 18-30.                    | 1.5 | 24        |
| 319 | Effects of aging and solvent exchange on pore structure of silica gels with interconnected macropores. Journal of Non-Crystalline Solids, 1995, 189, 66-76.                                 | 1.5 | 53        |
| 320 | Small-angle X-ray scattering study of nanopore evolution of macroporous silica gel by solvent exchange. Faraday Discussions, 1995, 101, 249.                                                | 1.6 | 36        |
| 321 | Phase separation kinetics in silica sol-gel system containing polyethylene oxide. I. Initial stage. Journal of Sol-Gel Science and Technology, 1994, 2, 227-231.                            | 1.1 | 16        |
| 322 | In situ observation of phase separation processes in gelling alkoxy-derived silica system by light scattering method. Journal of Sol-Gel Science and Technology, 1994, 3, 169-188.          | 1.1 | 33        |
| 323 | The role of hydrated silica, titania, and alumina in inducing apatite on implants. Journal of Biomedical<br>Materials Research Part B, 1994, 28, 7-15.                                      | 3.0 | 664       |
| 324 | Phase Separation in Silica Sol–Gel System Containing Poly(ethylene oxide). I. Phase Relation and Gel<br>Morphology. Bulletin of the Chemical Society of Japan, 1994, 67, 1327-1335.         | 2.0 | 144       |

| #   | Article                                                                                                                                                                                                                                                            | IF                | CITATIONS   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|
| 325 | Effects of ions in aqueous media on hydroxyapatite induction by silica gel and its relevance to<br>bioactivity of bioactive glasses and glass-ceramics. Journal of Applied Biomaterials: an Official Journal<br>of the Society for Biomaterials, 1993, 4, 221-229. | 1.1               | 103         |
| 326 | Induction and morphology of hydroxyapatite, precipitated from metastable simulated body fluids on sol-gel prepared silica. Biomaterials, 1993, 14, 963-968.                                                                                                        | 5.7               | 142         |
| 327 | Polymerization-induced phase separation in silica sol-gel systems containing formamide. Journal of<br>Sol-Gel Science and Technology, 1993, 1, 35-46.                                                                                                              | 1.1               | 61          |
| 328 | Process of formation of bone-like apatite layer on silica gel. Journal of Materials Science: Materials in<br>Medicine, 1993, 4, 127-131.                                                                                                                           | 1.7               | 156         |
| 329 | Phase separation in silica sol-gel system containing polyacrylic acid. III. Effect of catalytic condition.<br>Journal of Non-Crystalline Solids, 1992, 142, 36-44.                                                                                                 | 1.5               | 24          |
| 330 | Phase separation in silica sol-gel system containing polyacrylic acid. IV. Effect of chemical additives.<br>Journal of Non-Crystalline Solids, 1992, 142, 45-54.                                                                                                   | 1.5               | 22          |
| 331 | Modification of nanometer range pores in silica gels with interconnected macropores by solvent exchange. Journal of Non-Crystalline Solids, 1992, 145, 80-84.                                                                                                      | 1.5               | 10          |
| 332 | Dual-porosity silica gels by polymer-incorporated sol-gel process. Journal of Non-Crystalline Solids, 1992, 147-148, 291-295.                                                                                                                                      | 1.5               | 32          |
| 333 | Phase separation in silica sol-gel system containing polyacrylic acid I. Gel formaation behavior and effect of solvent composition. Journal of Non-Crystalline Solids, 1992, 139, 1-13.                                                                            | 1.5               | 292         |
| 334 | Phase separation in silica sol-gel system containing polyacrylic acid II. Effects of molecular weight and temperature. Journal of Non-Crystalline Solids, 1992, 139, 14-24.                                                                                        | 1.5               | 121         |
| 335 | Small-Angle X-ray Scattering Study of Gelling Silica-Organic Polymer Solution: Systems Containing Poly(Sodium Styrenesulfonate). Journal of the American Ceramic Society, 1992, 75, 971-975.                                                                       | 1.9               | 14          |
| 336 | Apatite Formation Induced by Silica Gel in a Simulated Body Fluid. Journal of the American Ceramic<br>Society, 1992, 75, 2094-2097.                                                                                                                                | 1.9               | 486         |
| 337 | Pore surface characteristics of macroporous silica gels prepared from polymer-containing solution.<br>Journal of Non-Crystalline Solids, 1991, 134, 39-46.                                                                                                         | 1.5               | 37          |
| 338 | Small-Angle X-Ray Scattering Study on Sol–Gel Transition of Mixtures of Colloidal Silica and Organic<br>Polymer. Bulletin of the Chemical Society of Japan, 1991, 64, 1283-1288.                                                                                   | 2.0               | 10          |
| 339 | Phase Separation in Gelling Silica-Organic Polymer Solution: Systems Containing Poly(sodium) Tj ETQq1 1 0.7843                                                                                                                                                     | 814 rgBT /<br>1.9 | Overlock 10 |
| 340 | Effect of stress on water corrosion of borate glass. Journal of Non-Crystalline Solids, 1989, 112, 377-380.                                                                                                                                                        | 1.5               | 3           |
| 341 | Crystallization of silica gels containing sodium poly-4-styrene sulfonate. Journal of Non-Crystalline<br>Solids, 1989, 108, 157-162.                                                                                                                               | 1.5               | 13          |
| 342 | The Effect of Two-dimensional Compressive Stress on the Dissolution Rate of Glass in Water. Journal of the Ceramic Society of Japan, 1989, 97, 365-369.                                                                                                            | 1.3               | 4           |

| #   | Article                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 343 | Adsorption of alcohol vapors on alkoxide-derived silica gels. Journal of Non-Crystalline Solids, 1988, 100, 399-403.                                                 | 1.5 | 7         |
| 344 | Sorption of Alcohol Vapors in a Disubstituted Polyacetylene. Polymer Journal, 1987, 19, 293-296.                                                                     | 1.3 | 37        |
| 345 | Permeation of gases in poly(1-(trimethylsilyl)-1-propyne) Kobunshi Ronbunshu, 1986, 43, 747-753.                                                                     | 0.2 | 57        |
| 346 | Porous polymerâ€derived ceramics: Flexible morphological and compositional controls through sol–gel chemistry. Journal of the American Ceramic Society, 0, , .       | 1.9 | 10        |
| 347 | Mechanical and thermal properties of porous polyimide monoliths crosslinked with aromatic and aliphatic triamines. Journal of Sol-Gel Science and Technology, 0, , . | 1.1 | 1         |