Johannes Lelieveld

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/625662/publications.pdf Version: 2024-02-01

		2543	3647
517	46,145	96	180
papers	citations	h-index	g-index
831 all docs	831 docs citations	831 times ranked	28708 citing authors

#	Article	IF	CITATIONS
1	The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 2015, 525, 367-371.	13.7	4,052
2	Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. Journal of Geophysical Research, 2001, 106, 28371-28398.	3.3	1,199
3	Role of mineral aerosol as a reactive surface in the global troposphere. Journal of Geophysical Research, 1996, 101, 22869-22889.	3.3	997
4	Global Air Pollution Crossroads over the Mediterranean. Science, 2002, 298, 794-799.	6.0	920
5	Atmospheric oxidation capacity sustained by a tropical forest. Nature, 2008, 452, 737-740.	13.7	864
6	The Indian Ocean Experiment: Widespread Air Pollution from South and Southeast Asia. Science, 2001, 291, 1031-1036.	6.0	687
7	COVID-19 lockdowns cause global air pollution declines. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18984-18990.	3.3	621
8	What controls tropospheric ozone?. Journal of Geophysical Research, 2000, 105, 3531-3551.	3.3	577
9	Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. European Heart Journal, 2019, 40, 1590-1596.	1.0	570
10	The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere. Atmospheric Chemistry and Physics, 2006, 6, 5067-5104.	1.9	528
11	Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7192-7197.	3.3	515
12	Transient Climate Change Simulations with a Coupled Atmosphere–Ocean GCM Including the Tropospheric Sulfur Cycle. Journal of Climate, 1999, 12, 3004-3032.	1.2	467
13	Evaluation of emissions and air quality in megacities. Atmospheric Environment, 2008, 42, 1593-1606.	1.9	434
14	Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective. Cardiovascular Research, 2020, 116, 1910-1917.	1.8	427
15	Climate change and impacts in the Eastern Mediterranean and the Middle East. Climatic Change, 2012, 114, 667-687.	1.7	425
16	Atmospheric pollutant outflow from southern Asia: a review. Atmospheric Chemistry and Physics, 2010, 10, 11017-11096.	1.9	419
17	Influences of cloud photochemical processes on tropospheric ozone. Nature, 1990, 343, 227-233.	13.7	392
18	Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus, Series B: Chemical and Physical Meteorology, 1998, 50, 128-150.	0.8	389

#	Article	IF	CITATIONS
19	Aerosol Health Effects from Molecular to Global Scales. Environmental Science & Technology, 2017, 51, 13545-13567.	4.6	384
20	The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry. Journal of Geophysical Research, 1998, 103, 10673-10696.	3.3	368
21	A 1°×1° resolution data set of historical anthropogenic trace gas emissions for the period 1890-1990. Global Biogeochemical Cycles, 2001, 15, 909-928.	1.9	364
22	The role of clouds in tropospheric photochemistry. Journal of Atmospheric Chemistry, 1991, 12, 229-267.	1.4	358
23	Simulation of the tropospheric sulfur cycle in a global climate model. Atmospheric Environment, 1996, 30, 1693-1707.	1.9	348
24	Human health risks in megacities due to air pollution. Atmospheric Environment, 2010, 44, 4606-4613.	1.9	315
25	Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus, Series B: Chemical and Physical Meteorology, 2022, 50, 128.	0.8	311
26	Small Interannual Variability of Global Atmospheric Hydroxyl. Science, 2011, 331, 67-69.	6.0	306
27	Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Climatic Change, 2016, 137, 245-260.	1.7	301
28	Biogeochemical cycling of carbon, water, energy, trace gases, and aerosols in Amazonia: The LBA-EUSTACH experiments. Journal of Geophysical Research, 2002, 107, LBA 33-1.	3.3	295
29	Global distribution of particle phase state in atmospheric secondary organic aerosols. Nature Communications, 2017, 8, 15002.	5.8	295
30	Civil Aircraft for the regular investigation of the atmosphere based on an instrumented container: The new CARIBIC system. Atmospheric Chemistry and Physics, 2007, 7, 4953-4976.	1.9	289
31	Inverse modeling of methane sources and sinks using the adjoint of a global transport model. Journal of Geophysical Research, 1999, 104, 26137-26160.	3.3	286
32	Transport impacts on atmosphere and climate: Land transport. Atmospheric Environment, 2010, 44, 4772-4816.	1.9	285
33	Technical Note: The Modular Earth Submodel System (MESSy) - a new approach towards Earth System Modeling. Atmospheric Chemistry and Physics, 2005, 5, 433-444.	1.9	282
34	Technical note: The new comprehensive atmospheric chemistry module MECCA. Atmospheric Chemistry and Physics, 2005, 5, 445-450.	1.9	273
35	Technical note: A new comprehensive SCAVenging submodel for global atmospheric chemistry modelling. Atmospheric Chemistry and Physics, 2006, 6, 565-574.	1.9	265
36	Effects of gaseous and solid constituents of air pollution on endothelial function. European Heart Journal, 2018, 39, 3543-3550.	1.0	263

#	Article	IF	CITATIONS
37	Regional and global contributions of air pollution to risk of death from COVID-19. Cardiovascular Research, 2020, 116, 2247-2253.	1.8	262
38	Global tropospheric hydroxyl distribution, budget and reactivity. Atmospheric Chemistry and Physics, 2016, 16, 12477-12493.	1.9	255
39	Transport of biomass burning smoke to the upper troposphere by deep convection in the equatorial region. Geophysical Research Letters, 2001, 28, 951-954.	1.5	234
40	Dry deposition parameterization in a chemistry general circulation model and its influence on the distribution of reactive trace gases. Journal of Geophysical Research, 1995, 100, 20999.	3.3	231
41	Global distribution of the effective aerosol hygroscopicity parameter for CCN activation. Atmospheric Chemistry and Physics, 2010, 10, 5241-5255.	1.9	230
42	European scientific assessment of the atmospheric effects of aircraft emissions. Atmospheric Environment, 1998, 32, 2329-2418.	1.9	228
43	Emission estimates and trends (1990–2000) for megacity Delhi and implications. Atmospheric Environment, 2004, 38, 5663-5681.	1.9	215
44	Role of Deep Cloud Convection in the Ozone Budget of the Troposphere. Science, 1994, 264, 1759-1761.	6.0	208
45	Ambient Air Pollution Increases the Risk of Cerebrovascular and Neuropsychiatric Disorders through Induction of Inflammation and Oxidative Stress. International Journal of Molecular Sciences, 2020, 21, 4306.	1.8	190
46	The Comparative Reactivity Method – a new tool to measure total OH Reactivity in ambient air. Atmospheric Chemistry and Physics, 2008, 8, 2213-2227.	1.9	188
47	Gas/aerosol partitioning: 1. A computationally efficient model. Journal of Geophysical Research, 2002, 107, ACH 16-1.	3.3	185
48	lsoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget. Atmospheric Chemistry and Physics, 2007, 7, 2855-2879.	1.9	181
49	Long-term (2001–2012) concentrations of fine particulate matter (PM _{2.5}) and the impact on human health in Beijing, China. Atmospheric Chemistry and Physics, 2015, 15, 5715-5725.	1.9	181
50	Model calculated global, regional and megacity premature mortality due to air pollution. Atmospheric Chemistry and Physics, 2013, 13, 7023-7037.	1.9	179
51	Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1). Geoscientific Model Development, 2010, 3, 391-412.	1.3	178
52	The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate. Atmospheric Chemistry and Physics, 2012, 12, 1239-1253.	1.9	178
53	The Palaeoanthropocene – The beginnings of anthropogenic environmental change. Anthropocene, 2013, 3, 83-88.	1.6	178
54	Sulfate Cooling Effect on Climate Through In-Cloud Oxidation of Anthropogenic SO2. Science, 1992, 258, 117-120.	6.0	176

#	Article	IF	CITATIONS
55	On the role of hydroxyl radicals in the self-cleansing capacity of the troposphere. Atmospheric Chemistry and Physics, 2004, 4, 2337-2344.	1.9	176
56	Hydroxyl radical buffered by isoprene oxidation over tropical forests. Nature Geoscience, 2012, 5, 190-193.	5.4	170
57	Seasonal variations of a mixing layer in the lowermost stratosphere as identified by the CO-O3correlation from in situ measurements. Journal of Geophysical Research, 2002, 107, ACL 1-1-ACL 1-11.	3.3	169
58	Global OH trend inferred from methylchloroform measurements. Journal of Geophysical Research, 1998, 103, 10697-10711.	3.3	166
59	Increasing Ozone over the Atlantic Ocean. Science, 2004, 304, 1483-1487.	6.0	165
60	Lightning and convection parameterisations – uncertainties in global modelling. Atmospheric Chemistry and Physics, 2007, 7, 4553-4568.	1.9	163
61	Aerosol optical depth trend over the Middle East. Atmospheric Chemistry and Physics, 2016, 16, 5063-5073.	1.9	163
62	Regional pollution potentials of megacities and other major population centers. Atmospheric Chemistry and Physics, 2007, 7, 3969-3987.	1.9	161
63	Impact of climate change on the water resources of the eastern Mediterranean and Middle East region: Modeled 21st century changes and implications. Water Resources Research, 2011, 47, .	1.7	161
64	Impact of agricultural emission reductions on fine-particulate matter and public health. Atmospheric Chemistry and Physics, 2017, 17, 12813-12826.	1.9	160
65	Stability of tropospheric hydroxyl chemistry. Journal of Geophysical Research, 2002, 107, ACH 17-1-ACH 17-11.	3.3	158
66	Improved simulation of isoprene oxidation chemistry with the ECHAM5/MESSy chemistry-climate model: lessons from the GABRIEL airborne field campaign. Atmospheric Chemistry and Physics, 2008, 8, 4529-4546.	1.9	158
67	Model Calculations of Aerosol Transmission and Infection Risk of COVID-19 in Indoor Environments. International Journal of Environmental Research and Public Health, 2020, 17, 8114.	1.2	158
68	The European carbon balance. Part 4: integration of carbon and other traceâ€gas fluxes. Global Change Biology, 2010, 16, 1451-1469.	4.2	157
69	Distribution and budget of O3in the troposphere calculated with a chemistry general circulation model. Journal of Geophysical Research, 1995, 100, 20983.	3.3	154
70	A dry deposition parameterization for sulfur oxides in a chemistry and general circulation model. Journal of Geophysical Research, 1998, 103, 5679-5694.	3.3	151
71	Climate effects of atmospheric methane. Chemosphere, 1993, 26, 739-768.	4.2	150
72	Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity. Atmospheric Chemistry and Physics, 2014, 14, 4679-4713.	1.9	148

#	Article	IF	CITATIONS
73	Title is missing!. Journal of Atmospheric Chemistry, 2001, 38, 133-166.	1.4	145
74	The impact of traffic emissions on atmospheric ozone and OH: results from QUANTIFY. Atmospheric Chemistry and Physics, 2009, 9, 3113-3136.	1.9	143
75	Extreme precipitation events in the Middle East: Dynamics of the Active Red Sea Trough. Journal of Geophysical Research D: Atmospheres, 2013, 118, 7087-7108.	1.2	143
76	The role of environmental variables on <i>Aedes albopictus</i> biology and chikungunya epidemiology. Pathogens and Global Health, 2013, 107, 224-241.	1.0	140
77	Influence of different convection parameterisations in a GCM. Atmospheric Chemistry and Physics, 2006, 6, 5475-5493.	1.9	139
78	Model study of the influence of cross-tropopause O3 transports on tropospheric O3 levels. Tellus, Series B: Chemical and Physical Meteorology, 1997, 49, 38-55.	0.8	138
79	Tracer correlations in the northern high latitude lowermost stratosphere: Influence of cross-tropopause mass exchange. Geophysical Research Letters, 2000, 27, 97-100.	1.5	138
80	Modeled global effects of airborne desert dust on air quality and premature mortality. Atmospheric Chemistry and Physics, 2014, 14, 957-968.	1.9	138
81	Saharan dust in Brazil and Suriname during the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) - Cooperative LBA Regional Experiment (CLAIRE) in March 1998. Journal of Geophysical Research, 2001, 106, 14919-14934.	3.3	131
82	Summertime free-tropospheric ozone pool over the eastern Mediterranean/Middle East. Atmospheric Chemistry and Physics, 2014, 14, 115-132.	1.9	131
83	Climate Change and Weather Extremes in the Eastern Mediterranean and Middle East. Reviews of Geophysics, 2022, 60, .	9.0	131
84	Distributions and regional budgets of aerosols and their precursors simulated with the EMAC chemistry-climate model. Atmospheric Chemistry and Physics, 2012, 12, 961-987.	1.9	130
85	Global chemical weather forecasts for field campaign planning: predictions and observations of large-scale features during MINOS, CONTRACE, and INDOEX. Atmospheric Chemistry and Physics, 2003, 3, 267-289.	1.9	128
86	The representation of emissions from megacities in global emission inventories. Atmospheric Environment, 2008, 42, 703-719.	1.9	128
87	Importance of mineral cations and organics in gas-aerosol partitioning of reactive nitrogen compounds: case study based on MINOS results. Atmospheric Chemistry and Physics, 2006, 6, 2549-2567.	1.9	127
88	Strong air pollution causes widespread haze louds over China. Journal of Geophysical Research, 2010, 115, .	3.3	127
89	OH Reactivity Measurements within a Boreal Forest: Evidence for Unknown Reactive Emissions. Environmental Science & Technology, 2010, 44, 6614-6620.	4.6	127
90	Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: airborne measurements. Atmospheric Chemistry and Physics, 2010, 10, 3759-3773.	1.9	122

#	Article	IF	CITATIONS
91	The summer circulation over the eastern Mediterranean and the Middle East: influence of the South Asian monsoon. Climate Dynamics, 2013, 40, 1103-1123.	1.7	121
92	Airborne observations of dust aerosol over the North Atlantic Ocean during ACE 2: Indications for heterogeneous ozone destruction. Journal of Geophysical Research, 2000, 105, 15263-15275.	3.3	120
93	Model study of the influence of cross-tropopause O ₃ transports on tropospheric O ₃ levels. Tellus, Series B: Chemical and Physical Meteorology, 2022, 49, 38.	0.8	116
94	Significant concentrations of nitryl chloride observed in rural continental Europe associated with the influence of sea salt chloride and anthropogenic emissions. Geophysical Research Letters, 2012, 39,	1.5	116
95	A comparison of scavenging and deposition processes in global models: results from the WCRP Cambridge Workshop of 1995. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 1025-1056.	0.8	113
96	A multi-model, multi-scenario, and multi-domain analysis of regional climate projections for the Mediterranean. Regional Environmental Change, 2019, 19, 2621-2635.	1.4	113
97	Mainz Isoprene Mechanism 2 (MIM2): an isoprene oxidation mechanism for regional and global atmospheric modelling. Atmospheric Chemistry and Physics, 2009, 9, 2751-2777.	1.9	112
98	High spatial and temporal resolution measurements of primary organics and their oxidation products over the tropical forests of Surinam. Atmospheric Environment, 2000, 34, 1161-1165.	1.9	111
99	Title is missing!. Journal of Atmospheric Chemistry, 2001, 38, 167-185.	1.4	111
100	Summertime total OH reactivity measurements from boreal forest during HUMPPA-COPEC 2010. Atmospheric Chemistry and Physics, 2012, 12, 8257-8270.	1.9	111
101	Can the variability in tropospheric OH be deduced from measurements of 1,1,1-trichloroethane (methyl) Tj ETQq1	1 <u>.9</u> .7843	14.rgBT /Ov 110
102	Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: comparison of measurements with the box model MECCA. Atmospheric Chemistry and Physics, 2010, 10, 9705-9728.	1.9	110
103	Trend analysis in aerosol optical depths and pollutant emission estimates between 2000 and 2009. Atmospheric Environment, 2012, 51, 75-85.	1.9	110
104	Stratospheric dryness: model simulations and satellite observations. Atmospheric Chemistry and Physics, 2007, 7, 1313-1332.	1.9	109
105	Observation and modelling of HO _x radicals in a boreal forest. Atmospheric Chemistry and Physics, 2014, 14, 8723-8747.	1.9	109
106	Interannual variability and trend of CH4lifetime as a measure for OH changes in the 1979–1993 time period. Journal of Geophysical Research, 2003, 108, .	3.3	108
107	The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences. Atmospheric Chemistry and Physics, 2011, 11, 10599-10618.	1.9	108
108	Direct observation of OH formation from stabilised Criegee intermediates. Physical Chemistry Chemical Physics, 2014, 16, 19941-19951.	1.3	108

#	Article	IF	CITATIONS
109	Global soil-biogenic NOxemissions and the role of canopy processes. Journal of Geophysical Research, 2002, 107, ACH 9-1.	3.3	107
110	Comprehensive two-dimensional gas chromatography (GC × GC) measurements of volatile organic compounds in the atmosphere. Atmospheric Chemistry and Physics, 2003, 3, 665-682.	1.9	106
111	Role of the NO ₃ radicals in oxidation processes in the eastern Mediterranean troposphere during the MINOS campaign. Atmospheric Chemistry and Physics, 2004, 4, 169-182.	1.9	106
112	Estimating health and economic benefits of reductions in air pollution from agriculture. Science of the Total Environment, 2018, 622-623, 1304-1316.	3.9	106
113	Severe ozone air pollution in the Persian Gulf region. Atmospheric Chemistry and Physics, 2009, 9, 1393-1406.	1.9	105
114	Intercomparison of temperature and precipitation data sets based on observations in the Mediterranean and the Middle East. Journal of Geophysical Research, 2012, 117, .	3.3	105
115	Global cloud and precipitation chemistry and wet deposition: tropospheric model simulations with ECHAM5/MESSy1. Atmospheric Chemistry and Physics, 2007, 7, 2733-2757.	1.9	104
116	Observed and simulated global distribution and budget of atmospheric C ₂ -C ₅ alkanes. Atmospheric Chemistry and Physics, 2010, 10, 4403-4422.	1.9	104
117	Observations and model calculations of trace gas scavenging in a dense Saharan dust plume during MINATROC. Atmospheric Chemistry and Physics, 2005, 5, 1787-1803.	1.9	103
118	Impact of Manaus City on the Amazon Green Ocean atmosphere: ozone production, precursor sensitivity and aerosol load. Atmospheric Chemistry and Physics, 2010, 10, 9251-9282.	1.9	103
119	Projected changes in heat wave characteristics in the eastern Mediterranean and the Middle East. Regional Environmental Change, 2016, 16, 1863-1876.	1.4	103
120	Indirect chemical effects of methane on climate warming. Nature, 1992, 355, 339-342.	13.7	101
121	Continuing emissions of methyl chloroform from Europe. Nature, 2003, 421, 131-135.	13.7	100
122	Climatology and Dynamics of the Summer Etesian Winds over the Eastern Mediterranean*. Journals of the Atmospheric Sciences, 2013, 70, 3374-3396.	0.6	100
123	Impact of future land use and land cover changes on atmospheric chemistry limate interactions. Journal of Geophysical Research, 2010, 115, .	3.3	99
124	Global modeling of SOA formation from dicarbonyls, epoxides, organic nitrates and peroxides. Atmospheric Chemistry and Physics, 2012, 12, 4743-4774.	1.9	98
125	Nocturnal nitrogen oxides at a rural mountain-site in south-western Germany. Atmospheric Chemistry and Physics, 2010, 10, 2795-2812.	1.9	97
126	Methane formation in aerobic environments. Environmental Chemistry, 2009, 6, 459.	0.7	96

#	Article	IF	CITATIONS
127	A three-dimensional chemistry/general circulation model simulation of anthropogenically derived ozone in the troposphere and its radiative climate forcing. Journal of Geophysical Research, 1997, 102, 23389-23401.	3.3	95
128	Oxygenated compounds in aged biomass burning plumes over the Eastern Mediterranean: evidence for strong secondary production of methanol and acetone. Atmospheric Chemistry and Physics, 2005, 5, 39-46.	1.9	95
129	Simulating organic species with the global atmospheric chemistry general circulation model ECHAM5/MESSy1: a comparison of model results with observations. Atmospheric Chemistry and Physics, 2007, 7, 2527-2550.	1.9	95
130	Gas/aerosol partitioning 2. Global modeling results. Journal of Geophysical Research, 2002, 107, ACH 17-1.	3.3	94
131	Chemists can help to solve the air-pollution health crisis. Nature, 2017, 551, 291-293.	13.7	93
132	Human Impacts on Atmospheric Chemistry. Annual Review of Earth and Planetary Sciences, 2001, 29, 17-45.	4.6	92
133	Age-dependent health risk from ambient air pollution: a modelling and data analysis of childhood mortality in middle-income and low-income countries. Lancet Planetary Health, The, 2018, 2, e292-e300.	5.1	92
134	Implementing the US air quality standard for PM2.5 worldwide can prevent millions of premature deaths per year. Environmental Health, 2016, 15, 88.	1.7	91
135	New Directions: Megacities and global change. Atmospheric Environment, 2005, 39, 391-393.	1.9	90
136	Aerosol analysis using a Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS): a new approach to study processing of organic aerosols. Atmospheric Chemistry and Physics, 2010, 10, 2257-2267.	1.9	90
137	Low methane leakage from gas pipelines. Nature, 2005, 434, 841-842.	13.7	89
138	Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai-ichi nuclear accident. Atmospheric Chemistry and Physics, 2013, 13, 1425-1438.	1.9	88
139	Economic crisis detected from space: Air quality observations over Athens/Greece. Geophysical Research Letters, 2013, 40, 458-463.	1.5	88
140	Global risk of radioactive fallout after major nuclear reactor accidents. Atmospheric Chemistry and Physics, 2012, 12, 4245-4258.	1.9	87
141	The impact of monsoon outflow from India and Southeast Asia in the upper troposphere over the eastern Mediterranean. Atmospheric Chemistry and Physics, 2003, 3, 1589-1608.	1.9	86
142	Impact of HONO on global atmospheric chemistry calculated with an empirical parameterization in the EMAC model. Atmospheric Chemistry and Physics, 2012, 12, 9977-10000.	1.9	86
143	The South Asian monsoon—pollution pump and purifier. Science, 2018, 361, 270-273.	6.0	85
144	Deep convective injection of boundary layer air into the lowermost stratosphere at midlatitudes. Atmospheric Chemistry and Physics, 2003, 3, 739-745.	1.9	84

#	Article	IF	CITATIONS
145	Characterisation of an inlet pre-injector laser-induced fluorescence instrument for the measurement of atmospheric hydroxyl radicals. Atmospheric Measurement Techniques, 2014, 7, 3413-3430.	1.2	83
146	Estimating the atmospheric concentration of Criegee intermediates and their possible interference in a FAGE-LIF instrument. Atmospheric Chemistry and Physics, 2017, 17, 7807-7826.	1.9	82
147	Evidence for a recurring eastern North America upper tropospheric ozone maximum during summer. Journal of Geophysical Research, 2007, 112, .	3.3	81
148	Modelled suppression of boundary-layer clouds by plants in a CO2-rich atmosphere. Nature Geoscience, 2012, 5, 701-704.	5.4	81
149	Constraints on instantaneous ozone production rates and regimes during DOMINO derived using in-situ OH reactivity measurements. Atmospheric Chemistry and Physics, 2012, 12, 7269-7283.	1.9	81
150	Model projected heat extremes and air pollution in the eastern Mediterranean and Middle East in the twenty-first century. Regional Environmental Change, 2014, 14, 1937-1949.	1.4	81
151	Technical Note: The MESSy-submodel AIRSEA calculating the air-sea exchange of chemical species. Atmospheric Chemistry and Physics, 2006, 6, 5435-5444.	1.9	79
152	Environmental risk factors and cardiovascular diseases: a comprehensive expert review. Cardiovascular Research, 2022, 118, 2880-2902.	1.8	78
153	Simulation of preindustrial atmospheric methane to constrain the global source strength of natural wetlands. Journal of Geophysical Research, 2000, 105, 17243-17255.	3.3	77
154	Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties. Atmospheric Chemistry and Physics, 2012, 12, 11057-11083.	1.9	77
155	Analysis of European ozone trends in the period 1995–2014. Atmospheric Chemistry and Physics, 2018, 18, 5589-5605.	1.9	77
156	The modeling of tropospheric methane: How well can point measurements be reproduced by a global model?. Journal of Geophysical Research, 2000, 105, 8981-9002.	3.3	76
157	Surface and boundary layer exchanges of volatile organic compounds, nitrogen oxides and ozone during the GABRIEL campaign. Atmospheric Chemistry and Physics, 2008, 8, 6223-6243.	1.9	76
158	Effects of business-as-usual anthropogenic emissions on air quality. Atmospheric Chemistry and Physics, 2012, 12, 6915-6937.	1.9	76
159	Tropospheric ozone simulation with a chemistry-general circulation model: Influence of higher hydrocarbon chemistry. Journal of Geophysical Research, 2000, 105, 22697-22712.	3.3	74
160	A new interactive chemistry-climate model: 1. Present-day climatology and interannual variability of the middle atmosphere using the model and 9 years of HALOE/UARS data. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	74
161	Radiative forcing due to tropospheric ozone and sulfate aerosols. Journal of Geophysical Research, 1997, 102, 28079-28100.	3.3	73
162	Aerosol optical properties and large-scale transport of air masses: Observations at a coastal and a semiarid site in the eastern Mediterranean during summer 1998. Journal of Geophysical Research, 2001, 106, 9807-9826.	3.3	73

#	Article	IF	CITATIONS
163	Ground-based PTR-MS measurements of reactive organic compounds during the MINOS campaign in Crete, July–August 2001. Atmospheric Chemistry and Physics, 2003, 3, 925-940.	1.9	73
164	Present and future projections of habitat suitability of the Asian tiger mosquito, a vector of viral pathogens, from global climate simulation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130554.	1.8	71
165	On the role of tropopause folds in summertime tropospheric ozone over the eastern Mediterranean and the Middle East. Atmospheric Chemistry and Physics, 2016, 16, 14025-14039.	1.9	71
166	Estimating N ₂ O ₅ uptake coefficients using ambient measurements of NO ₃ , N ₂ O ₅ , ClNO ₂ and particle-phase nitrate. Atmospheric Chemistry and Physics, 2016, 16, 13231-13249.	1.9	71
167	Spatiotemporal variability and contribution of different aerosol types to the aerosol optical depth over the Eastern Mediterranean. Atmospheric Chemistry and Physics, 2016, 16, 13853-13884.	1.9	71
168	Costs and benefits of agricultural ammonia emission abatement options for compliance with European air quality regulations. Environmental Sciences Europe, 2019, 31, .	2.6	71
169	Atmosphere-biosphere trace gas exchanges simulated with a single-column model. Journal of Geophysical Research, 2002, 107, ACH 8-1.	3.3	70
170	Photochemistry of the African troposphere: Influence of biomass-burning emissions. Journal of Geophysical Research, 2000, 105, 14513-14530.	3.3	69
171	Diel cycles of isoprenoids in the emissions of Norway spruce, four Scots pine chemotypes, and in Boreal forest ambient air during HUMPPA-COPEC-2010. Atmospheric Chemistry and Physics, 2012, 12, 7215-7229.	1.9	69
172	Daytime formation of nitrous acid at a coastal remote site in Cyprus indicating a common ground source of atmospheric HONO and NO. Atmospheric Chemistry and Physics, 2016, 16, 14475-14493.	1.9	69
173	In-situ measurement of reactive hydrocarbons at Hohenpeissenberg with comprehensive two-dimensional gas chromatography (GC×GC-FID): use in estimating HO and NO ₃ . Atmospheric Chemistry and Physics, 2007, 7, 1-14.	1.9	68
174	Oxidation photochemistry in the Southern Atlantic boundary layer: unexpected deviations of photochemical steady state. Atmospheric Chemistry and Physics, 2011, 11, 8497-8513.	1.9	68
175	Effects of mineral dust on global atmospheric nitrate concentrations. Atmospheric Chemistry and Physics, 2016, 16, 1491-1509.	1.9	68
176	Global health burden of ambient PM2.5 and the contribution of anthropogenic black carbon and organic aerosols. Environment International, 2022, 159, 107020.	4.8	68
177	Simulation of global sulfate distribution and the influence on effective cloud drop radii with a coupled photochemistry sulfur cycle model. Tellus, Series B: Chemical and Physical Meteorology, 1998, 50, 224-242.	0.8	67
178	On the segregation of chemical species in a clear boundary layer over heterogeneous land surfaces. Atmospheric Chemistry and Physics, 2011, 11, 10681-10704.	1.9	67
179	Peroxyacetyl nitrate (PAN) and peroxyacetic acid (PAA) measurements by iodide chemical ionisation mass spectrometry: first analysis of results in the boreal forest and implications for the measurement of PAN fluxes. Atmospheric Chemistry and Physics, 2013, 13, 1129-1139.	1.9	67
180	Air pollution declines during COVID-19 lockdowns mitigate the global health burden. Environmental Research, 2021, 192, 110403.	3.7	67

#	Article	IF	CITATIONS
181	Mirror image hydrocarbons from Tropical and Boreal forests. Atmospheric Chemistry and Physics, 2007, 7, 973-980.	1.9	66
182	On the temporal and spatial variation of ozone in Cyprus. Science of the Total Environment, 2014, 476-477, 677-687.	3.9	66
183	Dynamics of tropical–extratropical interactions and extreme precipitation events in Saudi Arabia in autumn, winter and spring. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 1862-1880.	1.0	66
184	Terrestrial sources and distribution of atmospheric sulphur. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352, 149-158.	1.8	65
185	Mid-21st century climate and weather extremes in Cyprus as projected by six regional climate models. Regional Environmental Change, 2011, 11, 441-457.	1.4	65
186	WRF-Chem simulated surface ozone over south Asia during the pre-monsoon: effects of emission inventories and chemical mechanisms. Atmospheric Chemistry and Physics, 2017, 17, 14393-14413.	1.9	65
187	Flux estimates of isoprene, methanol and acetone from airborne PTR-MS measurements over the tropical rainforest during the GABRIEL 2005 campaign. Atmospheric Chemistry and Physics, 2009, 9, 4207-4227.	1.9	64
188	Modelling of the nighttime nitrogen and sulfur chemistry in size resolved droplets of an orographic cloud. Journal of Atmospheric Chemistry, 1995, 20, 89-116.	1.4	63
189	Anthropogenic sources of VOC in a football stadium: Assessing human emissions in the atmosphere. Atmospheric Environment, 2013, 77, 1052-1059.	1.9	62
190	Chemical characteristics assigned to trajectory clusters during the MINOS campaign. Atmospheric Chemistry and Physics, 2003, 3, 459-468.	1.9	61
191	Business-as-usual will lead to super and ultra-extreme heatwaves in the Middle East and North Africa. Npj Climate and Atmospheric Science, 2021, 4, .	2.6	61
192	Two-years of NO ₃ radical observations in the boundary layer over the Eastern Mediterranean. Atmospheric Chemistry and Physics, 2007, 7, 315-327.	1.9	60
193	ORACLE (v1.0): module to simulate the organic aerosol composition and evolution in the atmosphere. Geoscientific Model Development, 2014, 7, 3153-3172.	1.3	60
194	Chemical perturbation of the lowermost stratosphere through exchange with the troposphere. Geophysical Research Letters, 1997, 24, 603-606.	1.5	59
195	Influence of the North Atlantic Oscillation on air pollution transport. Atmospheric Chemistry and Physics, 2012, 12, 869-877.	1.9	59
196	On the linkage between the Asian summer monsoon and tropopause fold activity over the eastern Mediterranean and the Middle East. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3202-3221.	1.2	59
197	Abrupt recent trend changes in atmospheric nitrogen dioxide over the Middle East. Science Advances, 2015, 1, e1500498.	4.7	59
198	Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2103-2118.	1.2	59

#	Article	IF	CITATIONS
199	Global impact of mineral dust on cloud droplet number concentration. Atmospheric Chemistry and Physics, 2017, 17, 5601-5621.	1.9	59
200	Overview of the trace gas measurements on board the Citation aircraft during the intensive field phase of INDOEX. Journal of Geophysical Research, 2001, 106, 28453-28467.	3.3	58
201	Evaluating aerosol optical properties observed by ground-based and satellite remote sensing over the Mediterranean and the Middle East in 2006. Atmospheric Research, 2011, 99, 415-433.	1.8	58
202	Direct Kinetic Study of OH and O ₃ Formation in the Reaction of CH ₃ C(O)O ₂ with HO ₂ . Journal of Physical Chemistry A, 2014, 118, 974-985.	1.1	58
203	Dust–air pollution dynamics over the eastern Mediterranean. Atmospheric Chemistry and Physics, 2015, 15, 9173-9189.	1.9	58
204	Enhanced growth rate of atmospheric particles from sulfuric acid. Atmospheric Chemistry and Physics, 2020, 20, 7359-7372.	1.9	58
205	Radiative signature of absorbing aerosol over the eastern Mediterranean basin. Atmospheric Chemistry and Physics, 2014, 14, 7213-7231.	1.9	57
206	Perspective: cardiovascular disease and the Covid-19 pandemic. Basic Research in Cardiology, 2020, 115, 32.	2.5	57
207	Formaldehyde over the eastern Mediterranean during MINOS: Comparison of airborne in-situ measurements with 3D-model results. Atmospheric Chemistry and Physics, 2003, 3, 851-861.	1.9	56
208	Opposite OH reactivity and ozone cycles in the Amazon rainforest and megacity Beijing: Subversion of biospheric oxidant control by anthropogenic emissions. Atmospheric Environment, 2016, 125, 112-118.	1.9	56
209	Natural gas shortages during the "coal-to-gas―transition in China have caused a large redistribution of air pollution in winter 2017. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31018-31025.	3.3	56
210	Variable lifetimes and loss mechanisms for NO ₃ and N ₂ O ₅ during the DOMINO campaign: contrasts between marine, urban and continental air. Atmospheric Chemistry and Physics, 2011, 11, 10853-10870.	1.9	55
211	Distribution of hydrogen peroxide and formaldehyde over Central Europe during the HOOVER project. Atmospheric Chemistry and Physics, 2011, 11, 4391-4410.	1.9	55
212	Strong sesquiterpene emissions from Amazonian soils. Nature Communications, 2018, 9, 2226.	5.8	55
213	Heart healthy cities: genetics loads the gun but the environment pulls the trigger. European Heart Journal, 2021, 42, 2422-2438.	1.0	55
214	Physical and chemical characteristics of aerosols over the Negev Desert (Israel) during summer 1996. Journal of Geophysical Research, 2001, 106, 4871-4890.	3.3	54
215	Multiscale modeling of air pollutants dynamics in the northwestern Mediterranean basin during a typical summertime episode. Journal of Geophysical Research, 2006, 111, .	3.3	54
216	Air quality modelling in the summer over the eastern Mediterranean using WRF-Chem: chemistry and aerosol mechanism intercomparison. Atmospheric Chemistry and Physics, 2018, 18, 1555-1571.	1.9	54

#	Article	IF	CITATIONS
217	Revisiting future extreme precipitation trends in the Mediterranean. Weather and Climate Extremes, 2021, 34, 100380.	1.6	54
218	Simulation of global sulfate distribution and the influence on effective cloud drop radii with a coupled photochemistry sulfur cycle model. Tellus, Series B: Chemical and Physical Meteorology, 2022, 50, 224.	0.8	53
219	Title is missing!. Journal of Atmospheric Chemistry, 2001, 38, 115-132.	1.4	53
220	Tropical and extratropical tropospheric air in the lowermost stratosphere over Europe: A CO-based budget. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	53
221	Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO. Applied Physics B: Lasers and Optics, 2008, 92, 419-430.	1.1	53
222	The added value of convection permitting simulations of extreme precipitation events over the eastern Mediterranean. Atmospheric Research, 2017, 191, 20-33.	1.8	53
223	Emission of nitrous acid from soil and biological soil crusts represents an important source of HONO in the remote atmosphere in Cyprus. Atmospheric Chemistry and Physics, 2018, 18, 799-813.	1.9	52
224	Chemical and meteorological influences on the lifetime of NO ₃ at a semi-rural mountain site during PARADE. Atmospheric Chemistry and Physics, 2016, 16, 4867-4883.	1.9	51
225	Global combustion sources of organic aerosols: model comparison with 84ÂAMS factor-analysis data sets. Atmospheric Chemistry and Physics, 2016, 16, 8939-8962.	1.9	51
226	Airborne Measurements of Trace Organic Species in the Upper Troposphere Over Europe: the Impact of Deep Convection. Environmental Chemistry, 2006, 3, 244.	0.7	51
227	Influence of stratosphere-troposphere exchange on tropospheric ozone over the tropical Indian Ocean during the winter monsoon. Journal of Geophysical Research, 2000, 105, 15403-15416.	3.3	50
228	Influence of summertime deep convection on formaldehyde in the middle and upper troposphere over Europe. Journal of Geophysical Research, 2006, 111, .	3.3	50
229	Origin of anthropogenic hydrocarbons and halocarbons measured in the summertime european outflow (on Crete in 2001). Atmospheric Chemistry and Physics, 2003, 3, 1223-1235.	1.9	49
230	Consistent simulation of bromine chemistry from the marine boundary layer to the stratosphere – Part 2: Bromocarbons. Atmospheric Chemistry and Physics, 2008, 8, 5919-5939.	1.9	49
231	Tropospheric OH and stratospheric OH and Cl concentrations determined from CH4, CH3Cl, and SF6 measurements. Npj Climate and Atmospheric Science, 2018, 1, .	2.6	49
232	Reformulating atmospheric aerosol thermodynamics and hygroscopic growth into fog, haze and clouds. Atmospheric Chemistry and Physics, 2007, 7, 3163-3193.	1.9	48
233	EMAC model evaluation and analysis of atmospheric aerosol properties and distribution with a focus on the Mediterranean region. Atmospheric Research, 2012, 114-115, 38-69.	1.8	48
234	A two-channel thermal dissociation cavity ring-down spectrometer for the detection of ambient NO ₂ , RO ₂ NO ₂ and RONO ₂ . Atmospheric Measurement Techniques, 2016, 9, 553-576.	1.2	48

#	Article	IF	CITATIONS
235	Identification of Tropicalâ€Extratropical Interactions and Extreme Precipitation Events in the Middle East Based On Potential Vorticity and Moisture Transport. Journal of Geophysical Research D: Atmospheres, 2018, 123, 861-881.	1.2	48
236	Tropospheric O3distribution over the Indian Ocean during spring 1995 evaluated with a chemistry-climate model. Journal of Geophysical Research, 1999, 104, 13881-13893.	3.3	47
237	Chemistry, transport and dry deposition of trace gases in the boundary layer over the tropical Atlantic Ocean and the Guyanas during the GABRIEL field campaign. Atmospheric Chemistry and Physics, 2007, 7, 3933-3956.	1.9	47
238	Multi-day ozone production potential of volatile organic compounds calculated with a tagging approach. Atmospheric Environment, 2011, 45, 4082-4090.	1.9	47
239	Comparison of WRF Model Physics Parameterizations over the MENA-CORDEX Domain. American Journal of Climate Change, 2014, 03, 490-511.	0.5	47
240	Differences between the MODIS Collection 6 and 5.1 aerosol datasets over the greater Mediterranean region. Atmospheric Environment, 2016, 147, 310-319.	1.9	46
241	Exploring the economy-wide effects of agriculture on air quality and health: Evidence from Europe. Science of the Total Environment, 2019, 663, 889-900.	3.9	46
242	A model study of ozone in the eastern Mediterranean free troposphere during MINOS (August 2001). Atmospheric Chemistry and Physics, 2003, 3, 1199-1210.	1.9	45
243	Characterization of a boreal convective boundary layer and its impact on atmospheric chemistry during HUMPPA-COPEC-2010. Atmospheric Chemistry and Physics, 2012, 12, 9335-9353.	1.9	45
244	Direct measurement of NO ₃ radical reactivity in a boreal forest. Atmospheric Chemistry and Physics, 2018, 18, 3799-3815.	1.9	45
245	Halogenated organic species over the tropical South American rainforest. Atmospheric Chemistry and Physics, 2008, 8, 3185-3197.	1.9	44
246	Clean air in the Anthropocene. Faraday Discussions, 2017, 200, 693-703.	1.6	44
247	Reduction of environmental pollutants for prevention of cardiovascular disease: it's time to act. European Heart Journal, 2020, 41, 3989-3997.	1.0	44
248	Large-Scale Modelling of the Environmentally-Driven Population Dynamics of Temperate Aedes albopictus (Skuse). PLoS ONE, 2016, 11, e0149282.	1.1	44
249	Estimating the contribution of monsoonâ€related biogenic production to methane emissions from South Asia using CARIBIC observations. Geophysical Research Letters, 2012, 39, .	1.5	43
250	Net ozone production and its relationship to nitrogen oxides and volatile organic compounds in the marine boundary layer around the Arabian Peninsula. Atmospheric Chemistry and Physics, 2020, 20, 6769-6787.	1.9	43
251	Variability-lifetime relationship for organic trace gases: A novel aid to compound identification and estimation of HO concentrations. Journal of Geophysical Research, 2000, 105, 20473-20486.	3.3	42
252	Aerosol production and growth in the upper free troposphere. Journal of Geophysical Research, 2000, 105, 24751-24762.	3.3	42

#	Article	IF	CITATIONS
253	A five-channel cavity ring-down spectrometer for the detection of NO ₂ , NO ₃ , N ₂ O ₅ , total peroxy nitrates and total alkyl nitrates. Atmospheric Measurement Techniques, 2016, 9, 5103-5118.	1.2	42
254	Role of soil moisture in the amplification of climate warming in the eastern Mediterranean and the Middle East. Climate Research, 2014, 59, 27-37.	0.4	42
255	Airborne aerosol measurements in the tropopause region and the dependence of new particle formation on preexisting particle number concentration. Journal of Geophysical Research, 1998, 103, 31255-31263.	3.3	41
256	Estimating methane releases from natural gas production and transmission in Russia. Atmospheric Environment, 1999, 33, 3291-3299.	1.9	41
257	Cross-tropopause transport over the eastern Mediterranean. Journal of Geophysical Research, 2003, 108, .	3.3	41
258	Aircraft measurements of O3, HNO3and N2O in the winter Arctic lower stratosphere during the Stratosphere-Troposphere Experiment by Aircraft Measurements (STREAM) 1. Journal of Geophysical Research, 1995, 100, 11245.	3.3	40
259	GC×GC measurements of C ₇ -C ₁₁ aromatic and n-alkane hydrocarbons on Crete, in air from Eastern Europe during the MINOS campaign. Atmospheric Chemistry and Physics, 2003, 3, 1461-1475.	1.9	40
260	The IPAC-NC field campaign: a pollution and oxidization pool in the lower atmosphere over Huabei, China. Atmospheric Chemistry and Physics, 2012, 12, 3883-3908.	1.9	40
261	Using total OH reactivity to assess isoprene photooxidation via measurement and model. Atmospheric Environment, 2014, 89, 453-463.	1.9	40
262	Shipborne measurements of total OH reactivity around the Arabian Peninsula and its role in ozone chemistry. Atmospheric Chemistry and Physics, 2019, 19, 11501-11523.	1.9	40
263	Trend reversal from high-to-low and from rural-to-urban ozone concentrations over Europe. Atmospheric Environment, 2019, 213, 25-36.	1.9	40
264	Guidelines for Modeling and Reporting Health Effects of Climate Change Mitigation Actions. Environmental Health Perspectives, 2020, 128, 115001.	2.8	40
265	Spatio-temporal patterns of recent and future climate extremes in the eastern Mediterranean and Middle East region. Natural Hazards and Earth System Sciences, 2014, 14, 1565-1577.	1.5	39
266	Impact of natural aerosols on atmospheric radiation and consequent feedbacks with the meteorological and photochemical state of the atmosphere. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1463-1491.	1.2	39
267	Heat-related cardiovascular mortality risk in Cyprus: a case-crossover study using a distributed lag non-linear model. Environmental Health, 2015, 14, 39.	1.7	39
268	Revised mineral dust emissions in the atmospheric chemistry–climate model EMAC (MESSy 2.52) Tj ETQq0 0 0	rgBT /Ove	erlggk 10 Tf 5
269	Impact of Amazonian deforestation on atmospheric chemistry. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	38

270HO_x budgets during HOxComp: A case study of HO_x chemistry under
NO_xâ€limited conditions. Journal of Geophysical Research, 2012, 117, .3.338

#	Article	IF	CITATIONS
271	Distribution of methane in the tropical upper troposphere measured by CARIBIC and CONTRAIL aircraft. Journal of Geophysical Research, 2012, 117, .	3.3	38
272	Ozone and carbon monoxide over India during the summer monsoon: regional emissions and transport. Atmospheric Chemistry and Physics, 2016, 16, 3013-3032.	1.9	38
273	Observations of high concentrations of total reactive nitrogen (NOy) and nitric acid (HNO3) in the lower Arctic stratosphere during the Stratosphere-Troposphere Experiment by Aircraft Measurements (STREAM) II campaign in February 1995. Journal of Geophysical Research, 1997, 102, 23559-23571.	3.3	37
274	Chlorine activation and ozone destruction in the northern lowermost stratosphere. Journal of Geophysical Research, 1999, 104, 8201-8213.	3.3	37
275	Formation of HNO3and NO3â^'in the anthropogenically-influenced eastern Mediterranean marine boundary layer. Geophysical Research Letters, 2006, 33, .	1.5	37
276	Technical Note: Simulation of detailed aerosol chemistry on the global scale using MECCA-AERO. Atmospheric Chemistry and Physics, 2007, 7, 2973-2985.	1.9	37
277	Application of SCIAMACHY and MOPITT CO total column measurements to evaluate model results over biomass burning regions and Eastern China. Atmospheric Chemistry and Physics, 2011, 11, 6083-6114.	1.9	37
278	Seasonal measurements of total OH reactivity emission rates from Norway spruce in 2011. Biogeosciences, 2013, 10, 4241-4257.	1.3	37
279	Modeling the chemistry of the marine boundary layer: Sulphate formation and the role of sea-salt aerosol particles. Journal of Geophysical Research, 2000, 105, 11671-11698.	3.3	36
280	Day and night-time formation of organic nitrates at a forested mountain site in south-west Germany. Atmospheric Chemistry and Physics, 2017, 17, 4115-4130.	1.9	36
281	Source analysis of carbon monoxide pollution during INDOEX 1999. Journal of Geophysical Research, 2001, 106, 28481-28495.	3.3	35
282	Case study of the diurnal variability of chemically active species with respect to boundary layer dynamics during DOMINO. Atmospheric Chemistry and Physics, 2012, 12, 5329-5341.	1.9	35
283	Sensitivity of aerosol radiative effects to different mixing assumptions in the AEROPT 1.0 submodel of the EMAC atmospheric-chemistry–climate model. Geoscientific Model Development, 2014, 7, 2503-2516.	1.3	35
284	Volatile organic compounds (VOCs) in photochemically aged air from the eastern and western Mediterranean. Atmospheric Chemistry and Physics, 2017, 17, 9547-9566.	1.9	35
285	Oxidation processes in the eastern Mediterranean atmosphere: evidence from the modelling of HO _{<i>x</i>} measurements over Cyprus. Atmospheric Chemistry and Physics, 2018, 18, 10825-10847.	1.9	35
286	Predictions of diffusion rates of large organic molecules in secondary organic aerosols using the Stokes–Einstein and fractional Stokes–Einstein relations. Atmospheric Chemistry and Physics, 2019, 19, 10073-10085.	1.9	35
287	Non-methane hydrocarbon (C ₂ –C ₈) sources and sinks around the Arabian Peninsula. Atmospheric Chemistry and Physics, 2019, 19, 7209-7232.	1.9	35
288	Highly elevated carbon monoxide concentrations in the upper troposphere and lowermost stratosphere at northern midlatitudes during the STREAM II summer campaign in 1994. Chemosphere, 1999, 1, 233-248.	1.2	34

#	Article	IF	CITATIONS
289	In situ measurements of microphysical properties and trace gases in two cumulonimbus anvils over western Europe. Journal of Geophysical Research, 1999, 104, 12221-12226.	3.3	34
290	Identification of methanogenic pathways in anaerobic digesters using stable carbon isotopes. Engineering in Life Sciences, 2010, 10, 509-514.	2.0	34
291	Impact of mineral dust on cloud formation in a Saharan outflow region. Atmospheric Chemistry and Physics, 2012, 12, 11383-11393.	1.9	34
292	Changing risk factors that contribute to premature mortality from ambient air pollution between 2000 and 2015. Environmental Research Letters, 2020, 15, 074010.	2.2	33
293	Chemistry-transport model comparison with ozone observations in the midlatitude lowermost stratosphere. Journal of Geophysical Research, 2001, 106, 17479-17496.	3.3	32
294	Model analysis of trace gas measurements and pollution impact during INDOEX. Journal of Geophysical Research, 2001, 106, 28469-28480.	3.3	32
295	Airborne in-situ measurements of vertical, seasonal and latitudinal distributions of carbon dioxide over Europe. Atmospheric Chemistry and Physics, 2008, 8, 6395-6403.	1.9	32
296	Global and regional impacts of HONO on the chemical composition of clouds and aerosols. Atmospheric Chemistry and Physics, 2014, 14, 1167-1184.	1.9	32
297	Variations in O ₃ , CO, and CH ₄ over the Bay of Bengal during the summer monsoon season: shipborne measurements and model simulations. Atmospheric Chemistry and Physics, 2017, 17, 257-275.	1.9	32
298	Ozone Chemistry Changes in the Troposphere and Consequent Radiative Forcing of Climate. , 1995, , 227-258.		32
299	The "exposome―concept – how environmental risk factors influence cardiovascular health. Acta Biochimica Polonica, 2019, 66, 269-283.	0.3	32
300	Model study of a stratospheric intrusion event at lower midlatitudes associated with the development of a cutoff low. Journal of Geophysical Research, 1999, 104, 1717-1727.	3.3	31
301	QUALITAS: A mid-infrared spectrometer for sensitive trace gas measurements based on quantum cascade lasers in CW operation. Review of Scientific Instruments, 2005, 76, 075102.	0.6	31
302	A nasty surprise in the greenhouse. Nature, 2006, 443, 405-406.	13.7	31
303	Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes. Atmospheric Chemistry and Physics, 2017, 17, 3799-3821.	1.9	31
304	Consistent simulation of bromine chemistry from the marine boundary layer to the stratosphere – Part 1: Model description, sea salt aerosols and pH. Atmospheric Chemistry and Physics, 2008, 8, 5899-5917.	1.9	30
305	Measurements of 13C/12C Methane from Anaerobic Digesters: Comparison of Optical Spectrometry with Continuous-Flow Isotope Ratio Mass Spectrometry. Environmental Science & amp; Technology, 2010, 44, 5067-5073.	4.6	30
306	Spatial and temporal variation in domestic biofuel consumption rates and patterns in Zimbabwe: implications for atmospheric trace gas emission. Biomass and Bioenergy, 1999, 16, 311-332.	2.9	29

#	Article	IF	CITATIONS
307	Non-microbial methane formation in oxic soils. Biogeosciences, 2012, 9, 5291-5301.	1.3	29
308	Direct measurements of NO ₃ reactivity in and above the boundary layer of a mountaintop site: identification of reactive trace gases and comparison with OH reactivity. Atmospheric Chemistry and Physics, 2018, 18, 12045-12059.	1.9	29
309	Title is missing!. Journal of Atmospheric Chemistry, 1997, 26, 275-310.	1.4	28
310	Simulation of Extratropical Synoptic-Scale Stratosphere–Troposphere Exchange Using a Coupled Chemistry GCM: Sensitivity to Horizontal Resolution. Journals of the Atmospheric Sciences, 2000, 57, 2824-2838.	0.6	28
311	Measurement of aerosol sulfuric acid: 2. Pronounced layering in the free troposphere during the second Aerosol Characterization Experiment (ACE 2). Journal of Geophysical Research, 2001, 106, 31975-31990.	3.3	28
312	Identification of an El Niño-Southern Oscillation signal in a multiyear global simulation of tropospheric ozone. Journal of Geophysical Research, 2001, 106, 10389-10402.	3.3	28
313	Methyl chloride and other chlorocarbons in polluted air during INDOEX. Journal of Geophysical Research, 2002, 107, INX2 14-1.	3.3	28
314	Trace gas transport in the 1999/2000 Arctic winter: comparison of nudged GCM runs with observations. Atmospheric Chemistry and Physics, 2004, 4, 81-93.	1.9	28
315	Winter and summer characterization of biogenic enantiomeric monoterpenes and anthropogenic BTEX compounds at a Mediterranean Stone Pine forest site. Journal of Atmospheric Chemistry, 2011, 68, 233-250.	1.4	28
316	Aerosol water parameterisation: aÂsingle parameter framework. Atmospheric Chemistry and Physics, 2016, 16, 7213-7237.	1.9	28
317	Insights into HO _{<i>x</i>} and RO _{<i>x</i>} chemistry in the boreal forest via measurement of peroxyacetic acid, peroxyacetic nitric anhydride (PAN) and hydrogen peroxide. Atmospheric Chemistry and Physics. 2018, 18, 13457-13479.	1.9	28
318	Alkyl nitrates in the boreal forest: formation via the NO ₃ -, OH- and O ₃ -induced oxidation of biogenic volatile organic compounds and ambient lifetimes. Atmospheric Chemistry and Physics, 2019, 19, 10391-10403.	1.9	28
319	Diurnal ozone cycle in the tropical and subtropical marine boundary layer. Journal of Geophysical Research, 2000, 105, 11547-11559.	3.3	27
320	Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean – potential impacts. Atmospheric Chemistry and Physics, 2010, 10, 5797-5822.	1.9	27
321	Trend estimates of AERONET-observed and model-simulated AOTs between 1993 and 2013. Atmospheric Environment, 2016, 125, 33-47.	1.9	27
322	Assessing the effect of marine isoprene and ship emissions on ozone, using modelling and measurements from the South Atlantic Ocean. Environmental Chemistry, 2010, 7, 171.	0.7	26
323	Heat wave characteristics in the eastern Mediterranean and Middle East using extreme value theory. Climate Research, 2015, 63, 99-113.	0.4	26
324	Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation. Nature, 2022, 605, 483-489.	13.7	26

#	Article	IF	CITATIONS
325	Ozone production and transports in the tropical Atlantic region during the biomass burning season. Journal of Geophysical Research, 1997, 102, 10637-10651.	3.3	25
326	The global effects of Asian haze [air pollution]. IEEE Spectrum, 1999, 36, 50-54.	0.5	25
327	Chemistry-transport modeling of the satellite observed distribution of tropical troposheric ozone. Atmospheric Chemistry and Physics, 2002, 2, 103-120.	1.9	25
328	Model simulations and aircraft measurements of vertical, seasonal and latitudinal O ₃ and CO distributions over Europe. Atmospheric Chemistry and Physics, 2006, 6, 339-348.	1.9	25
329	Influence of corona discharge on the ozone budget in the tropical free troposphere: a case study of deep convection during GABRIEL. Atmospheric Chemistry and Physics, 2014, 14, 8917-8931.	1.9	25
330	Secondary ozone peaks in the troposphere over the Himalayas. Atmospheric Chemistry and Physics, 2017, 17, 6743-6757.	1.9	25
331	Direct radiative effect of dust–pollution interactions. Atmospheric Chemistry and Physics, 2019, 19, 7397-7408.	1.9	25
332	Global and national assessment of the incidence of asthma in children and adolescents from major sources of ambient NO ₂ . Environmental Research Letters, 2021, 16, 035020.	2.2	25
333	On the origin of elevated surface ozone concentrations at Izana Observatory, Tenerife during late March 1996. Geophysical Research Letters, 2000, 27, 3699-3702.	1.5	24
334	New Directions: Watching over tropospheric hydroxyl (OH)â~†. Atmospheric Environment, 2006, 40, 5741-5743.	1.9	24
335	Theoretical Study on the Formation of H- and O-Atoms, HONO, OH, NO, and NO ₂ from the Lowest Lying Singlet and Triplet States in <i>Ortho</i> -Nitrophenol Photolysis. International Journal of Chemical Kinetics, 2016, 48, 785-795.	1.0	24
336	ORACLE 2-DÂ(v2.0): an efficient module to compute the volatility and oxygen content of organic aerosol with a global chemistry–climate model. Geoscientific Model Development, 2018, 11, 3369-3389.	1.3	24
337	Modeling the aerosol chemical composition of the tropopause over the Tibetan Plateau during the Asian summer monsoon. Atmospheric Chemistry and Physics, 2019, 19, 11587-11612.	1.9	24
338	A new marine biogenic emission: methane sulfonamide (MSAM), dimethyl sulfide (DMS), and dimethyl sulfone (DMSO ₂) measured in air over the Arabian Sea. Atmospheric Chemistry and Physics, 2020, 20, 6081-6094.	1.9	24
339	The Red Sea Deep Water is a potent source of atmospheric ethane and propane. Nature Communications, 2020, 11, 447.	5.8	24
340	Metrics for the sustainable development goals: renewable energy and transportation. Palgrave Communications, 2019, 5, .	4.7	24
341	Ozone depletion in the late winter lower Arctic stratosphere: Observations and model results. Journal of Geophysical Research, 1997, 102, 10815-10828.	3.3	23
342	Particle production in the lowermost stratosphere by convective lifting of the tropopause. Journal of Geophysical Research, 1999, 104, 23935-23940.	3.3	23

#	Article	IF	CITATIONS
343	Removal of the potent greenhouse gas NF3 by reactions with the atmospheric oxidants O(1D), OH and O3. Physical Chemistry Chemical Physics, 2011, 13, 18600.	1.3	23
344	Shipborne measurements of ClNO ₂ in the Mediterranean Sea and around the Arabian Peninsula during summer. Atmospheric Chemistry and Physics, 2019, 19, 12121-12140.	1.9	23
345	Performance of Land Surface Schemes in the WRF Model for Climate Simulations over the MENA-CORDEX Domain. Earth Systems and Environment, 2020, 4, 647-665.	3.0	23
346	N2O and O3relationship in the lowermost stratosphere: A diagnostic for mixing processes as represented by a three-dimensional chemistry-transport model. Journal of Geophysical Research, 2000, 105, 17279-17290.	3.3	22
347	The role of blocking in the summer 2014 collapse of Etesians over the eastern Mediterranean. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6777-6792.	1.2	22
348	Aerosol physicochemical effects on CCN activation simulated with the chemistry-climate model EMAC. Atmospheric Environment, 2017, 162, 127-140.	1.9	22
349	Light-induced protein nitration and degradation with HONOÂemission. Atmospheric Chemistry and Physics, 2017, 17, 11819-11833.	1.9	22
350	An aircraft gas chromatograph–mass spectrometer System for Organic Fast Identification Analysis (SOFIA): design, performance and a case study of Asian monsoon pollution outflow. Atmospheric Measurement Techniques, 2017, 10, 5089-5105.	1.2	22
351	Evaluation of EU air quality standards through modeling and the FAIRMODE benchmarking methodology. Air Quality, Atmosphere and Health, 2019, 12, 73-86.	1.5	22
352	Near equatorial CO and O3profiles over the Indian Ocean during the winter monsoon: High O3levels in the middle troposphere and interhemispheric exchange. Journal of Geophysical Research, 2002, 107, INX2 6-1.	3.3	21
353	Chemical processes related to net ozone tendencies in the free troposphere. Atmospheric Chemistry and Physics, 2017, 17, 10565-10582.	1.9	21
354	A 3-D evaluation of the MACC reanalysis dust product over Europe, northern Africa and Middle East using CALIOP/CALIPSO dust satellite observations. Atmospheric Chemistry and Physics, 2018, 18, 8601-8620.	1.9	21
355	Chemical ionization quadrupole mass spectrometer with an electrical discharge ion source for atmospheric trace gas measurement. Atmospheric Measurement Techniques, 2019, 12, 1935-1954.	1.2	21
356	Disease burden and excess mortality from coal-fired power plant emissions in Europe. Environmental Research Letters, 2021, 16, 045010.	2.2	21
357	Direct radiative forcing of biomass burning aerosols from the extensive Australian wildfires in 2019–2020. Environmental Research Letters, 2021, 16, 044041.	2.2	21
358	The Unmanned Systems Research Laboratory (USRL): A New Facility for UAV-Based Atmospheric Observations. Atmosphere, 2021, 12, 1042.	1.0	21
359	Synoptic tracer gradients in the upper troposphere over central Canada during the Stratosphere-Troposphere Experiments by Aircraft Measurements 1998 summer campaign. Journal of Geophysical Research, 2002, 107, ACH 5-1.	3.3	20
360	Effects of climate change on the yield of winter wheat in the eastern Mediterranean and Middle East. Climate Research, 2016, 69, 129-141.	0.4	20

#	Article	IF	CITATIONS
361	A large-scale stochastic spatiotemporal model for Aedes albopictus-borne chikungunya epidemiology. PLoS ONE, 2017, 12, e0174293.	1.1	20
362	Uncertainties in estimates of mortality attributable to ambient PM 2.5 in Europe. Environmental Research Letters, 2018, 13, 064029.	2.2	20
363	Environmental Factors Such as Noise and Air Pollution and Vascular Disease. Antioxidants and Redox Signaling, 2020, 33, 581-601.	2.5	20
364	Sulfur and nitrogen levels in the North Atlantic Ocean's atmosphere: A synthesis of field and modeling results. Global Biogeochemical Cycles, 1992, 6, 77-100.	1.9	19
365	Measurements of aerosol optical depth above 3570 m asl in the North Atlantic free troposphere: results from ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 678-693.	0.8	19
366	Detection of lightning-produced NO in the midlatitude upper troposphere during STREAM 1998. Journal of Geophysical Research, 2001, 106, 27777-27785.	3.3	19
367	Chemical ozone loss in the tropopause region on subvisible ice clouds, calculated with a chemistry-transport model. Journal of Geophysical Research, 2002, 107, ACH 5-1.	3.3	19
368	HO _x measurements in the summertime upper troposphere over Europe: a comparison of observations to a box model and a 3-D model. Atmospheric Chemistry and Physics, 2013, 13, 10703-10720.	1.9	19
369	Global risk from the atmospheric dispersion of radionuclides by nuclear power plant accidents in the coming decades. Atmospheric Chemistry and Physics, 2014, 14, 4607-4616.	1.9	19
370	Intercomparison of boundary layer parameterizations for summer conditions in the eastern Mediterranean island of Cyprus using the WRF - ARW model. Atmospheric Research, 2018, 208, 45-59.	1.8	19
371	Pyruvic acid in the boreal forest: gas-phase mixing ratios and impact on radical chemistry. Atmospheric Chemistry and Physics, 2020, 20, 3697-3711.	1.9	19
372	Influence of aromatics on tropospheric gas-phase composition. Atmospheric Chemistry and Physics, 2021, 21, 2615-2636.	1.9	19
373	The Toba supervolcano eruption caused severe tropical stratospheric ozone depletion. Communications Earth & Environment, 2021, 2, .	2.6	19
374	The temporal evolution of the ratio HNO3/NOyin the Arctic lower stratosphere from January to March 1997. Geophysical Research Letters, 1999, 26, 1125-1128.	1.5	18
375	Technical Note: Temporal change in averaging kernels as a source of uncertainty in trend estimates of carbon monoxide retrieved from MOPITT. Atmospheric Chemistry and Physics, 2013, 13, 11307-11316.	1.9	18
376	Global-scale combustion sources of organic aerosols: sensitivity to formation and removal mechanisms. Atmospheric Chemistry and Physics, 2017, 17, 7345-7364.	1.9	18
377	Winter AOD trend changes over the Eastern Mediterranean and Middle East region. International Journal of Climatology, 2021, 41, 5516-5535.	1.5	18
378	Interannual variability of the Indian winter monsoon circulation and consequences for pollution levels. Journal of Geophysical Research, 2002, 107, ACH 2-1.	3.3	17

#	Article	IF	CITATIONS
379	Hydrogen peroxide in the marine boundary layer over the South Atlantic during the OOMPH cruise in March 2007. Atmospheric Chemistry and Physics, 2015, 15, 6971-6980.	1.9	17
380	High-resolution measurements and simulation of stratospheric and tropospheric intrusions in the vicinity of the polar jet stream. Geophysical Research Letters, 2002, 29, 18-1.	1.5	16
381	Measurement of ambient NO ₃ reactivity: design, characterization and first deployment of a new instrument. Atmospheric Measurement Techniques, 2017, 10, 1241-1258.	1.2	16
382	Global tropospheric effects of aromatic chemistry with the SAPRC-11 mechanism implemented in GEOS-Chem versionÂ9-02. Geoscientific Model Development, 2019, 12, 111-130.	1.3	16
383	Updated Assessment of Temperature Extremes over the Middle East–North Africa (MENA) Region from Observational and CMIP5 Data. Atmosphere, 2020, 11, 813.	1.0	16
384	Shipborne measurements of methane and carbon dioxide in the Middle East and Mediterranean areas and the contribution from oil and gas emissions. Atmospheric Chemistry and Physics, 2021, 21, 12443-12462.	1.9	16
385	How alkaline compounds control atmospheric aerosol particle acidity. Atmospheric Chemistry and Physics, 2021, 21, 14983-15001.	1.9	16
386	Polycyclic aromatic hydrocarbons (PAHs) and their alkylated, nitrated and oxygenated derivatives in the atmosphere over the Mediterranean and Middle East seas. Atmospheric Chemistry and Physics, 2022, 22, 8739-8766.	1.9	16
387	Model study of stratospheric chlorine activation and ozone loss during the 1996/1997 winter. Journal of Geophysical Research, 2000, 105, 28961-28977.	3.3	15
388	The impact of model grid zooming on tracer transport in the 1999/2000 Arctic polar vortex. Atmospheric Chemistry and Physics, 2003, 3, 1833-1847.	1.9	15
389	Corrigendum to "Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1)" published in Geosci. Model Dev., 3, 391–412, 2010. Geoscientific Model Development, 2010, 3, 413-413.	1.3	15
390	New representation of water activity based on a single solute specific constant to parameterize the hygroscopic growth of aerosols in atmospheric models. Atmospheric Chemistry and Physics, 2012, 12, 5429-5446.	1.9	15
391	The influence of the tropical rainforest on atmospheric CO and CO2 as measured by aircraft over Surinam, South America. Chemosphere, 2001, 3, 157-170.	1.2	14
392	Empirical evidence of a positive climate forcing of aerosols at elevated albedo. Atmospheric Research, 2019, 229, 269-279.	1.8	14
393	Upper tropospheric CH ₄ and CO affected by the South Asian summer monsoon during the Oxidation Mechanism Observations mission. Atmospheric Chemistry and Physics, 2019, 19, 1915-1939.	1.9	14
394	Diurnal variability, photochemical production and loss processes of hydrogen peroxide in the boundary layer over Europe. Atmospheric Chemistry and Physics, 2019, 19, 11953-11968.	1.9	14
395	Measurements of carbonyl compounds around the Arabian Peninsula: overview and model comparison. Atmospheric Chemistry and Physics, 2020, 20, 10807-10829.	1.9	14
396	Weaker cooling by aerosols due to dust–pollution interactions. Atmospheric Chemistry and Physics, 2020, 20, 15285-15295.	1.9	14

#	Article	IF	CITATIONS
397	Modification of a conventional photolytic converter for improving aircraft measurements of NO ₂ via chemiluminescence. Atmospheric Measurement Techniques, 2021, 14, 6759-6776.	1.2	14
398	Global Distribution of the Phase State and Mixing Times within Secondary Organic Aerosol Particles in the Troposphere Based on Room-Temperature Viscosity Measurements. ACS Earth and Space Chemistry, 2021, 5, 3458-3473.	1.2	14
399	Quantifying the transport of subcloud layer reactants by shallow cumulus clouds over the Amazon. Journal of Geophysical Research D: Atmospheres, 2013, 118, 13,041.	1.2	13
400	Trapping, chemistry, and export of trace gases in the South Asian summer monsoon observed during CARIBIC flights in 2008. Atmospheric Chemistry and Physics, 2016, 16, 3609-3629.	1.9	13
401	A climate-driven and field data-assimilated population dynamics model of sand flies. Scientific Reports, 2019, 9, 2469.	1.6	13
402	Airborne observations of dry particle absorption and scattering properties over the northern Indian Ocean. Journal of Geophysical Research, 2002, 107, INX2 34-1.	3.3	12
403	Reactive organic species in the northern extratropical lowermost stratosphere: Seasonal variability and implications for OH. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	12
404	Stable carbon isotopes of methane for realâ€ŧime process monitoring in anaerobic digesters. Engineering in Life Sciences, 2014, 14, 153-160.	2.0	12
405	Influence of local production and vertical transport on the organic aerosol budget over Paris. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8276-8296.	1.2	12
406	Modelling study of the atmospheric composition over Cyprus. Atmospheric Pollution Research, 2018, 9, 257-269.	1.8	12
407	Implementation of a comprehensive ice crystal formation parameterization for cirrus and mixed-phase clouds in the EMAC model (based on MESSy 2.53). Geoscientific Model Development, 2018, 11, 4021-4041.	1.3	12
408	Laser-induced fluorescence-based detection of atmospheric nitrogen dioxide and comparison of different techniques during the PARADEÂ2011 field campaign. Atmospheric Measurement Techniques, 2019, 12, 1461-1481.	1.2	12
409	Air quality modelling over the Eastern Mediterranean: Seasonal sensitivity to anthropogenic emissions. Atmospheric Environment, 2020, 222, 117119.	1.9	12
410	Including vegetation dynamics in an atmospheric chemistry-enabled general circulation model: linking LPJ-GUESS (v4.0) with the EMAC modelling system (v2.53). Geoscientific Model Development, 2020, 13, 1285-1309.	1.3	12
411	Natural sea-salt emissions moderate the climate forcing of anthropogenic nitrate. Atmospheric Chemistry and Physics, 2020, 20, 771-786.	1.9	12
412	Aerosol Trends during the Dusty Season over Iran. Remote Sensing, 2021, 13, 1045.	1.8	12
413	Reactive nitrogen around the Arabian Peninsula and in the Mediterranean Sea during the 2017 AQABA ship campaign. Atmospheric Chemistry and Physics, 2021, 21, 7473-7498.	1.9	12
414	Central role of nitric oxide in ozone production in the upper tropical troposphere over the Atlantic Ocean and western Africa. Atmospheric Chemistry and Physics, 2021, 21, 8195-8211.	1.9	12

#	ARTICLE	IF	CITATIONS
415	lodide CIMS and <i>m</i> â^• <i>z</i> 62: the detection of HNO ₃ as NO ₃ ^{â^`} in the presence of PAN, peroxyacetic acid and ozone. Atmospheric Measurement Techniques, 2021, 14, 5319-5332.	1.2	12
416	Assessment of pollutant fluxes across the frontiers of the Federal Republic of Germany on the basis of aircraft measurements. Atmospheric Environment, 1989, 23, 939-951.	1.1	11
417	Altitude distribution of tropospheric ozone over the northern hemisphere during 1996, simulated with a chemistry-general circulation model at two different horizontal resolutions. Journal of Geophysical Research, 2001, 106, 17453-17469.	3.3	11
418	Analyzing atmospheric trace gases and aerosols using passenger aircraft. Eos, 2005, 86, 77.	0.1	11
419	Does acetone react with HO ₂ in the upper-troposphere?. Atmospheric Chemistry and Physics, 2012, 12, 1339-1351.	1.9	11
420	Meteorology during the DOMINO campaign and its connection with trace gases and aerosols. Atmospheric Chemistry and Physics, 2014, 14, 2325-2342.	1.9	11
421	Calibration of an airborne HO _{<i>x</i>} instrument using the All Pressure Altitude-based Calibrator for HO _{<i>x</i>} Experimentation	1.2	11
422	(APACHE): Atmospheric Measurement Techniques, 2020, 13, 2711-2731. Measurement report: Photochemical production and loss rates of formaldehyde and ozone across Europe. Atmospheric Chemistry and Physics, 2021, 21, 18413-18432.	1.9	11
423	Black carbon aerosol reductions during COVID-19 confinement quantified by aircraft measurements over Europe. Atmospheric Chemistry and Physics, 2022, 22, 8683-8699.	1.9	11
424	Air pollution, chronic smoking, and mortality. European Heart Journal, 2019, 40, 3204-3204.	1.0	10
425	Air pollution, the underestimated cardiovascular risk factor. European Heart Journal, 2020, 41, 904-905.	1.0	10
426	Evolution of NO ₃ reactivity during the oxidation of isoprene. Atmospheric Chemistry and Physics, 2020, 20, 10459-10475.	1.9	10
427	Measurement of NO _{<i>x</i>} and NO _{<i>y</i>} with a thermal dissociation cavity ring-down spectrometer (TD-CRDS): instrument characterisation and first deployment. Atmospheric Measurement Techniques. 2020. 13. 5739-5761.	1.2	10
428	Projected Air Temperature Extremes and Maximum Heat Conditions Over the Middle-East-North Africa (MENA) Region. Earth Systems and Environment, 2022, 6, 343-359.	3.0	10
429	Reply [to "Comment on "Global OH trend inferred from methylchloroform measurements―by Maarten Krol et al.â€]. Journal of Geophysical Research, 2001, 106, 23159-23164.	3.3	9
430	Profile information on CO from SCIAMACHY observations using cloud slicing and comparison with model simulations. Atmospheric Chemistry and Physics, 2014, 14, 1717-1732.	1.9	9
431	Kinetics of the OH + NO ₂ reaction: effect of water vapour an new parameterization for global modelling. Atmospheric Chemistry and Physics, 2020, 20, 3091-3105.	d 1.9	9
432	Stratosphere-Troposphere Exchange and its role in the budget of tropospheric ozone. , 1996, , 173-190.		9

#	Article	IF	CITATIONS
433	Model Analysis of Stratosphere-Troposphere Exchange of Ozone and Its Role in the Tropospheric Ozone Budget. , 2000, , 25-43.		9
434	Tropospheric ozone over a tropical Atlantic station in the Northern Hemisphere: Paramaribo, Surinam (60N, 550W). Tellus, Series B: Chemical and Physical Meteorology, 2004, 56, 21-34.	0.8	8
435	A missing sink for radicals. Nature, 2010, 466, 925-926.	13.7	8
436	The influence of deep convection on HCHO and H ₂ O ₂ in the upper troposphere over Europe. Atmospheric Chemistry and Physics, 2017, 17, 11835-11848.	1.9	8
437	Customized framework of the WRF model for regional climate simulation over the Eastern NILE basin. Theoretical and Applied Climatology, 2018, 134, 1135-1151.	1.3	8
438	Variability of aerosol-cloud interactions induced by different cloud droplet nucleation schemes. Atmospheric Research, 2021, 250, 105367.	1.8	8
439	The Monitoring Nitrous Oxide Sources (MIN2OS) satellite project. Remote Sensing of Environment, 2021, 266, 112688.	4.6	8
440	Impact of the South Asian monsoon outflow on atmospheric hydroperoxides in the upper troposphere. Atmospheric Chemistry and Physics, 2020, 20, 12655-12673.	1.9	8
441	Physical Activity in Polluted Air—Net Benefit or Harm to Cardiovascular Health? A Comprehensive Review. Antioxidants, 2021, 10, 1787.	2.2	8
442	Revision of the convective transport module CVTRANS 2.4 in the EMAC atmospheric chemistry–climate model. Geoscientific Model Development, 2015, 8, 2435-2445.	1.3	7
443	Trapping of HCl and oxidised organic trace gases in growing ice at temperatures relevant to cirrus clouds. Atmospheric Chemistry and Physics, 2019, 19, 11939-11951.	1.9	7
444	Bias Correction of RCM Precipitation by TIN-Copula Method: A Case Study for Historical and Future Simulations in Cyprus. Climate, 2020, 8, 85.	1.2	7
445	Cold cloud microphysical process rates in a global chemistry–climate model. Atmospheric Chemistry and Physics, 2021, 21, 1485-1505.	1.9	7
446	Atomic emission detector with gas chromatographic separation and cryogenic pre-concentration (CryoTrap–GC–AED) for atmospheric trace gas measurements. Atmospheric Measurement Techniques, 2021, 14, 1817-1831.	1.2	7
447	Evaluation of WRF-Chem modelÂ(v3.9.1.1) real-time air quality forecasts over the Eastern Mediterranean. Geoscientific Model Development, 2022, 15, 4129-4146.	1.3	7
448	Detecting tropical convection using AVHRR satellite data. Journal of Geophysical Research, 1999, 104, 9213-9228.	3.3	6
449	Atmospheric Dispersion of Radioactivity from Nuclear Power Plant Accidents: Global Assessment and Case Study for the Eastern Mediterranean and Middle East. Energies, 2014, 7, 8338-8354.	1.6	6
450	Atmospheric chemistry, sources and sinks of carbon suboxide, C ₃ O ₂ . Atmospheric Chemistry and Physics, 2017, 17, 8789-8804.	1.9	6

#	Article	IF	CITATIONS
451	A modeling study of the regional representativeness of surface ozone variation at the WMO/GAW background stations in China. Atmospheric Environment, 2020, 242, 117672.	1.9	6
452	Sensitivity of simulated climate over the MENA region related to different land surface schemes in the WRF model. Theoretical and Applied Climatology, 2020, 141, 1431-1449.	1.3	6
453	Multi-Phase Processes in the Atmospheric Sulfur Cycle. , 1993, , 305-331.		6
454	Tropospheric ozone over a tropical Atlantic station in the Northern Hemisphere: Paramaribo, Surinam (6¼N, 55¼W). Tellus, Series B: Chemical and Physical Meteorology, 2004, 56, 21-34.	0.8	6
455	Prevalence of SARS-CoV-2 in Pregnant Women Assessed by RT-PCR in Franconia, Germany: First Results of the SCENARIO Study (SARS-CoV-2 prEvalence in pregNAncy and at biRth In FrancOnia). Geburtshilfe Und Frauenheilkunde, 2022, 82, 226-234.	0.8	6
456	Tropospheric ozone production and chemical regime analysis during the COVID-19 lockdown over Europe. Atmospheric Chemistry and Physics, 2022, 22, 6151-6165.	1.9	6
457	A dynamically structured matrix population model for insect life histories observed under variable environmental conditions. Scientific Reports, 2022, 12, .	1.6	6
458	The European carbon balance. Part 4: integration of carbon and other trace-gas fluxes. Global Change Biology, 2009, 16, 2399-2399.	4.2	5
459	A comparison of gridded datasets of precipitation and temperature over the Eastern Nile Basin region. Euro-Mediterranean Journal for Environmental Integration, 2020, 5, 1.	0.6	5
460	Kinetic and mechanistic study of the reaction between methane sulfonamide (CH ₃ S(O) ₂ NH< and OH. Atmospheric Chemistry and Physics, 2020, 20, 2695-2707.	sub& as np;g	t;2
461	Optimizing Regional Climate Model Output for Hydro-Climate Applications in the Eastern Nile Basin. Earth Systems and Environment, 2021, 5, 185-200.	3.0	5
462	Model simulations of atmospheric methane (1997–2016) and their evaluation using NOAA and AGAGE surface and IAGOS-CARIBIC aircraft observations. Atmospheric Chemistry and Physics, 2020, 20, 5787-5809.	1.9	5
463	Formation and dissipation dynamics of the Asian tropopause aerosol layer. Environmental Research Letters, 2021, 16, 014015.	2.2	5
464	Reaction between CH& t;sub>3& t;/sub>C(O)OOH (peracetic acid) and OH in the gas phase: a combined experimental and theoretical study of the kinetics and mechanism. Atmospheric Chemistry and Physics, 2020, 20, 13541-13555.	1.9	5
465	Assessment of transboundary mass fluxes of air pollutants by aircraft measurements: A preliminary survey with reference to a case study. Atmospheric Environment, 1987, 21, 2133-2143.	1.1	4
466	Pollution plumes observed by aircraft over North China during the IPAC-NC field campaign. Science Bulletin, 2013, 58, 4329-4336.	1.7	4
467	Comment on "Global risk of radioactive fallout after major nuclear reactor accidents" by Lelieveld et al. (2012). Atmospheric Chemistry and Physics, 2013, 13, 31-34.	1.9	4
468	Accelerating simulations using REDCHEM_v0.0 for atmospheric chemistry mechanism reduction. Geoscientific Model Development, 2018, 11, 3391-3407.	1.3	4

#	Article	IF	CITATIONS
469	Contribution of airborne desert dust to air quality and cardiopulmonary disease. European Heart Journal, 2019, 40, 2377-2378.	1.0	4
470	Measurement report: In situ observations of deep convection without lightning during the tropical cyclone Florence 2018. Atmospheric Chemistry and Physics, 2021, 21, 7933-7945.	1.9	4
471	Climate-model-informed deep learning of global soil moisture distribution. Geoscientific Model Development, 2021, 14, 4429-4441.	1.3	4
472	Fate of the nitrate radical at the summit of a semi-rural mountain site in Germany assessed with direct reactivity measurements. Atmospheric Chemistry and Physics, 2022, 22, 7051-7069.	1.9	4
473	Aerosol multiphase equilibrium composition: results of a parameterization applied to a global chemistry/tracer transport model. Journal of Aerosol Science, 1999, 30, S877.	1.8	3
474	Mechanisms of Climate Variability, Air Quality and Impacts of Atmospheric Constituents in the Mediterranean Region. Advances in Global Change Research, 2013, , 119-156.	1.6	3
475	Two new submodels for the Modular Earth Submodel System (MESSy): New Aerosol Nucleation (NAN) and small ions (IONS) version 1.0. Geoscientific Model Development, 2018, 11, 4987-5001.	1.3	3
476	Effects of Meteorology Nudging in Regional Hydroclimatic Simulations of the Eastern Mediterranean. Atmosphere, 2018, 9, 470.	1.0	3
477	Evaluation of A Regional Climate Model for the Eastern Nile Basin: Terrestrial and Atmospheric Water Balance. Atmosphere, 2019, 10, 736.	1.0	3
478	Inappropriate evaluation of methodology and biases by P. Morfeld and T.C. Erren. Cardiovascular Research, 2020, 116, e102-e102.	1.8	3
479	Measurement report: Observation-based formaldehyde production rates and their relation to OH reactivity around the Arabian Peninsula. Atmospheric Chemistry and Physics, 2021, 21, 17373-17388.	1.9	3
480	Kinetics of OH + SO ₂ + M: temperature-dependent coefficients in the fall-off regime and the influence of water vapour. Atmospheric Chemistry and Physics, 2022, 22, 4969-4984.	rate 1.9	3
481	Error analysis of a heterodyne submillimeter sounder for the detection of stratospheric trace gases. Applied Optics, 2000, 39, 5518.	2.1	2
482	Retrieving cloud top structure from infrared satellite data. Journal of Geophysical Research, 2000, 105, 15663-15671.	3.3	2
483	Why not take the train? Trans-Siberian atmospheric chemistry observations across central and East Asia. Eos, 2002, 83, 509.	0.1	2
484	A case study of rapid mixing across the extratropical tropopause based on Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrumented Container (CARIBIC) observations. Journal of Geophysical Research, 2005, 110, .	3.3	2
485	A Reverse Ozone Hole on Mars. Angewandte Chemie - International Edition, 2008, 47, 9804-9807.	7.2	2
486	A Scaling Law for the Urban Heat Island Phenomenon: Deductions From Field Measurements and		2

486 Comparisons With Existing Results From Laboratory Experiments. , 2014, , .

#	Article	IF	CITATIONS
487	Traffic-related environmental risk factors and their impact on oxidative stress and cardiovascular health. , 2020, , 489-510.		2
488	Evaluation of the coupled high-resolution atmospheric chemistry model system MECO(n) using in situ and MAX-DOAS NO ₂ measurements. Atmospheric Measurement Techniques, 2021, 14, 5241-5269.	1.2	2
489	TINâ€Copula biasâ€correction method for modelâ€derived maximum temperature in the MENA region. International Journal of Climatology, 0, , .	1.5	2
490	Ozone and aerosols over the Tibetan Plateau. , 2022, , 287-302.		2
491	Land-Atmosphere Coupling: The Feedback of Soil Moisture into Surface Temperature in Eastern Mediterranean and Middle East. Springer Atmospheric Sciences, 2013, , 833-839.	0.4	2
492	Assessment of Climate Change Extremes Over the Eastern Mediterranean and Middle East Region Using the Hadley Centre PRECIS Regional Climate Model. Springer Atmospheric Sciences, 2013, , 547-554.	0.4	2
493	Variability analyses, site characterization, and regional [OH] estimates using trace gas measurements from the NOAA Global Greenhouse Gas Reference Network. Elementa, 2016, 4, .	1.1	2
494	Modeling of Heterogeneous Chemistry in the Global Troposphere. , 1994, , 73-95.		2
495	Reply [to "Comment on â€~Tropospheric O3distribution over the Indian Ocean during spring 1995 evaluated with a chemistry-climate model' by A. T. J. de Laat et al.â€]. Journal of Geophysical Research, 2001, 106, 1369-1371.	3.3	1
496	Atmospheric chemistry and the biosphere: general discussion. Faraday Discussions, 2017, 200, 195-228.	1.6	1
497	The air we breathe: Past, present, and future: general discussion. Faraday Discussions, 2017, 200, 501-527.	1.6	1
498	Comparative Forecasts of a Local Area Model (WRF) in Summer for Cyprus. Springer Atmospheric Sciences, 2017, , 151-157.	0.4	1
499	Impact of pyruvic acid photolysis on acetaldehyde and peroxy radical formation in the boreal forest: theoretical calculations and model results. Atmospheric Chemistry and Physics, 2021, 21, 14333-14349.	1.9	1
500	SO2 Dry Deposition Parameterization in a Chemistry-General Circulation Model: Model Description and Development. , 1996, , 325-332.		1
501	The Indian Ocean Experiment: Widespread Air Pollution from South and Southeast Asia. SpringerBriefs on Pioneers in Science and Practice, 2016, , 197-209.	0.2	1
502	Rate Coefficients for OH + NO (+N ₂) in the Fall-off Regime and the Impact of Water Vapor. Journal of Physical Chemistry A, 2022, 126, 3863-3872.	1.1	1
503	Comment on "Cloud condensation nuclei in the Amazon Basin: "Marine―conditions over a continent?â€ , by G. C. Roberts et al Geophysical Research Letters, 2003, 30, .	1.5	0
504	Increasing spatial resolution of CHIRPS rainfall datasets for Cyprus with artificial neural networks. , 2016, , .		0

#	Article	IF	CITATIONS
505	Atmospheric chemistry processes: general discussion. Faraday Discussions, 2017, 200, 353-378.	1.6	0
506	New tools for atmospheric chemistry: general discussion. Faraday Discussions, 2017, 200, 663-691.	1.6	0
507	Impact of ozone and inlet design on the quantification of isoprene-derived organic nitrates by thermal dissociation cavity ring-down spectroscopy (TD-CRDS). Atmospheric Measurement Techniques, 2021, 14, 5501-5519.	1.2	0
508	Clobal health burden of PM2.5, black and organic carbon aerosols. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
509	Modeling air pollution by atmospheric desert. , 2021, , 555-581.		0
510	Stratosphere—Troposphere Interactions in a Chemistry-Climate Model. , 2009, , 327-347.		0
511	Desert Dust Particle Distribution: From Global to Regional Scales. NATO Science for Peace and Security Series C: Environmental Security, 2011, , 607-611.	0.1	0
512	On the Segregation of Chemical Species in a Clear Boundary Layer Over Heterogeneous Surface Conditions. NATO Science for Peace and Security Series C: Environmental Security, 2014, , 541-546.	0.1	0
513	Investigating the Coherence Between a Global and a Limited Area Model for Dust Particle Production and Distribution in N-Africa. Springer Proceedings in Complexity, 2014, , 289-293.	0.2	0
514	Multiphase Atmospheric Chemistry: Implications for Climate. , 1994, , 57-69.		0
515	Reducing Air Pollution: Avoidable Health Burden. , 2020, , 105-117.		0
516	Das Exposom charakterisiert die Auswirkungen unserer Umwelt auf Stoffwechsel und Gesundheit. Aktuelle Kardiologie, 2021, 10, 502-508.	0.0	0
517	Luftverschmutzung und Herz-Kreislauf-Erkrankungen. Aktuelle Kardiologie, 2021, 10, 510-515.	0.0	0