
Célia Baroux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/625590/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The INDEPTH (Impact of Nuclear Domains on Gene Expression and Plant Traits) Academy: a community resource for plant science. Journal of Experimental Botany, 2022, , .	4.8	3
2	A procedure for Dex-induced gene transactivation in Arabidopsis ovules. Plant Methods, 2022, 18, 41.	4.3	2
3	Organ geometry channels reproductive cell fate in the Arabidopsis ovule primordium. ELife, 2021, 10, .	6.0	24
4	Three-dimensional genome organization in epigenetic regulations: cause or consequence?. Current Opinion in Plant Biology, 2021, 61, 102031.	7.1	4
5	Impact of Transposable Elements on Methylation and Gene Expression across Natural Accessions of <i>Brachypodium distachyon</i> . Genome Biology and Evolution, 2020, 12, 1994-2001.	2.5	20
6	Linker histones are fine-scale chromatin architects modulating developmental decisions in Arabidopsis. Genome Biology, 2019, 20, 157.	8.8	67
7	Probing the 3D architecture of the plant nucleus with microscopy approaches: challenges and solutions. Nucleus, 2019, 10, 181-212.	2.2	30
8	The SMC5/6 Complex Subunit NSE4A Is Involved in DNA Damage Repair and Seed Development. Plant Cell, 2019, 31, 1579-1597.	6.6	27
9	Seeds—An evolutionary innovation underlying reproductive success in flowering plants. Current Topics in Developmental Biology, 2019, 131, 605-642.	2.2	30
10	Cell-Type Specific Chromatin Analysis in Whole-Mount Plant Tissues by Immunostaining. Methods in Molecular Biology, 2018, 1675, 443-454.	0.9	10
11	Technical Review: Microscopy and Image Processing Tools to Analyze Plant Chromatin: Practical Considerations. Methods in Molecular Biology, 2018, 1675, 537-589.	0.9	16
12	Automated 3D Gene Position Analysis Using a Customized Imaris Plugin: XTFISHInsideNucleus. Methods in Molecular Biology, 2018, 1675, 591-613.	0.9	7
13	Transmission Electron Microscopy Imaging to Analyze Chromatin Density Distribution at the Nanoscale Level. Methods in Molecular Biology, 2018, 1675, 633-651.	0.9	6
14	Meeting report – INDEPTH kick-off meeting. Journal of Cell Science, 2018, 131, jcs220558.	2.0	4
15	Aberrant imprinting may underlie evolution of parthenogenesis. Scientific Reports, 2018, 8, 10626.	3.3	12
16	Non-random chromosome arrangement in triploid endosperm nuclei. Chromosoma, 2017, 126, 115-124.	2.2	16
17	Phylogeny-Based Systematization of Arabidopsis Proteins with Histone H1 Globular Domain. Plant Physiology, 2017, 174, 27-34.	4.8	28
18	PHO1 Exports Phosphate from the Chalazal Seed Coat to the Embryo in Developing Arabidopsis Seeds. Current Biology, 2017, 27, 2893-2900.e3.	3.9	31

CéLIA BAROUX

#	Article	IF	CITATIONS
19	3D Imaging of Whole-Mount Ovules at Cellular Resolution to Study Female Germline Development in Rice. Methods in Molecular Biology, 2017, 1669, 37-45.	0.9	4
20	Unreeling the chromatin thread: a genomic perspective on organization around the periphery of the Arabidopsis nucleus. Genome Biology, 2017, 18, 97.	8.8	5
21	Analysis of 3D Cellular Organization of Fixed Plant Tissues Using a User-guided Platform for Image Segmentation. Bio-protocol, 2017, 7, e2355.	0.4	8
22	Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development. PLoS Genetics, 2016, 12, e1005806.	3.5	20
23	Chromatin dynamics during cellular differentiation in the female reproductive lineage of flowering plants. Plant Journal, 2015, 83, 160-176.	5.7	43
24	Chromatin dynamics in pollen mother cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis. Frontiers in Plant Science, 2015, 6, 294.	3.6	52
25	The Maternal-to-Zygotic Transition in Flowering Plants. Current Topics in Developmental Biology, 2015, 113, 351-371.	2.2	32
26	Chromatin dynamics during plant sexual reproduction. Frontiers in Plant Science, 2014, 5, 354.	3.6	33
27	Meiotic chromosome movements in plants, a puppet show?. Frontiers in Plant Science, 2014, 5, 502.	3.6	0
28	An Efficient Method for Quantitative, Single-cell Analysis of Chromatin Modification and Nuclear Architecture in Whole-mount Ovules in Arabidopsis . Journal of Visualized Experiments, 2014, , e51530.	0.3	11
29	Chromatin reprogramming during the somatic-to-reproductive cell fate transition in plants. Development (Cambridge), 2013, 140, 4008-4019.	2.5	146
30	Parental contributions to the transcriptome of early plant embryos. Current Opinion in Genetics and Development, 2013, 23, 72-74.	3.3	16
31	Efficient and Rapid Isolation of Early-stage Embryos from Arabidopsis thaliana Seeds. Journal of Visualized Experiments, 2013, , .	0.3	13
32	Genomic Imprinting in the Arabidopsis Embryo Is Partly Regulated by PRC2. PLoS Genetics, 2013, 9, e1003862.	3.5	63
33	The Armadillo Repeat Gene <i>ZAK IXIK</i> Promotes <i>Arabidopsis</i> Early Embryo and Endosperm Development through a Distinctive Gametophytic Maternal Effect. Plant Cell, 2012, 24, 4026-4043.	6.6	19
34	Maternal Epigenetic Pathways Control Parental Contributions to Arabidopsis Early Embryogenesis. Cell, 2011, 145, 707-719.	28.9	193
35	Epigenetic regulation and reprogramming during gamete formation in plants. Current Opinion in Genetics and Development, 2011, 21, 124-133.	3.3	58
36	Regulation and Flexibility of Genomic Imprinting during Seed Development. Plant Cell, 2011, 23, 16-26.	6.6	124

CéLIA BAROUX

#	Article	IF	CITATIONS
37	Transcriptome Analysis of the Arabidopsis Megaspore Mother Cell Uncovers the Importance of RNA Helicases for Plant Germline Development. PLoS Biology, 2011, 9, e1001155.	5.6	119
38	Embryo and Endosperm Inherit Distinct Chromatin and Transcriptional States from the Female Gametes in <i>Arabidopsis</i> Â Â. Plant Cell, 2010, 22, 307-320.	6.6	160
39	The Maternal to Zygotic Transition in Animals and Plants. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 89-100.	1.1	104
40	Genomic Origin and Organization of the Allopolyploid Primula egaliksensis Investigated by in situ Hybridization. Annals of Botany, 2008, 101, 919-927.	2.9	28
41	The Triploid Endosperm Genome of Arabidopsis Adopts a Peculiar, Parental-Dosage-Dependent Chromatin Organization. Plant Cell, 2007, 19, 1782-1794.	6.6	85
42	Chromatin modification and remodeling during early seed development. Current Opinion in Genetics and Development, 2007, 17, 473-479.	3.3	50
43	Positive darwinian selection at the imprinted MEDEA locus in plants. Nature, 2007, 448, 349-352.	27.8	144
44	Dynamic regulatory interactions of Polycomb group genes: MEDEA autoregulation is required for imprinted gene expression in Arabidopsis. Genes and Development, 2006, 20, 1081-1086.	5.9	133
45	New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. Plant Journal, 2005, 41, 899-918.	5.7	195
46	Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant Journal, 2005, 44, 179-194.	5.7	496
47	Intrachromosomal excision of a hybrid Ds element induces large genomic deletions in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2969-2974.	7.1	35
48	Predictable activation of tissue-specific expression from a single gene locus using the pOp/LhG4 transactivation system in Arabidopsis. Plant Biotechnology Journal, 2004, 3, 91-101.	8.3	25
49	Nuclear fusions contribute to polyploidization of the gigantic nuclei in the chalazal endosperm of Arabidopsis. Planta, 2004, 220, 38-46.	3.2	24
50	Transposons and Tandem Repeats Are Not Involved in the Control of Genomic Imprinting at the MEDEA Locus in Arabidopsis. Cold Spring Harbor Symposia on Quantitative Biology, 2004, 69, 465-476.	1.1	31
51	6 Genomic imprinting during seed development. Advances in Genetics, 2002, 46, 165-214.	1.8	71
52	Evolutionary origins of the endosperm in flowering plants. Genome Biology, 2002, 3, reviews1026.1.	9.6	105
53	Paternally inherited transgenes are down-regulated but retain low activity during early embryogenesis in Arabidopsis. FEBS Letters, 2001, 509, 11-16.	2.8	59
54	Transactivation of BARNASE under the AtLTP1 promoter affects the basal pole of the embryo and shoot development of the adult plant in Arabidopsis. Plant Journal, 2001, 28, 503-515.	5.7	35