Xun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6255545/publications.pdf

Version: 2024-02-01

244 21,926 77 139
papers citations h-index g-index

254 22847 times ranked citing authors

254 all docs 254 docs citations

#	Article	IF	CITATIONS
1	Recent Progress of Subâ€Nanometric Materials in Photothermal Energy Conversion. Advanced Science, 2022, 9, e2104225.	11.2	23
2	Tailoring Layer Number of 2D Porphyrinâ€Based MOFs Towards Photocoupled Electroreduction of CO ₂ . Advanced Materials, 2022, 34, e2107293.	21.0	45
3	Polyoxometalate-based materials: quasi-homogeneous single-atom catalysts with atomic-precision structures. Journal of Materials Chemistry A, 2022, 10, 5758-5770.	10.3	17
4	Superâ€Hybrid Transition Metal Sulfide Nanoarrays of Co ₃ S ₄ Nanosheet/Pâ€Doped WS ₂ Nanosheet/Co ₉ S ₈ Nanoparticle with Ptâ€Like Activities for Robust Allâ€pH Hydrogen Evolution. Advanced Functional Materials, 2022, 32, .	14.9	52
5	Self-assembly of polyoxometalate clusters into two-dimensional clusterphene structures featuring hexagonal pores. Nature Chemistry, 2022, 14, 433-440.	13.6	72
6	2D Ï€â€conjugated metal–organic frameworks for CO ₂ electroreduction. SmartMat, 2022, 3, 54-67.	10.7	31
7	Tempering force with mercy: An innovative peri-implant ligament with combined osteointegration and energy-dissipation. Nano Research, 2022, 15, 4466-4467.	10.4	2
8	Architecting Hybrid Donor–Acceptor Dendritic Nanosheets Based on Polyoxometalate and Porphyrin for Highâ€Yield Solar Water Purification. Advanced Functional Materials, 2022, 32, .	14.9	24
9	Functionally Guided Precise Synthesis of Manganous Oxideâ€Polyoxometalate 2D Hybrid Subâ€1 nm Nanosheet Superstructures. Small Structures, 2022, 3, .	12.0	7
10	Sub-nanometric materials: Electron transfer, delocalization, and beyond. Chem Catalysis, 2022, 2, 1257-1266.	6.1	18
11	Promoting oxygen reduction <i>via</i> coordination environment modulation through secondary metal-atom incorporation. Journal of Materials Chemistry A, 2022, 10, 19626-19634.	10.3	9
12	Circularly and Linearly Polarized Luminescence from AIE Luminogens Induced by Superâ€Aligned Assemblies of Subâ€1 nm Nanowires. Angewandte Chemie - International Edition, 2022, 61, .	13.8	5
13	Dimensionalâ€Transformation of Ternaryâ€Alloy through the Manipulation of Reduction Kinetics. Advanced Functional Materials, 2022, 32, .	14.9	2
14	Locking volatile organic molecules by subnanometer inorganic nanowire-based organogels. Science, 2022, 377, 100-104.	12.6	65
15	Enhancing CO ₂ Electrocatalysis on 2D Porphyrinâ€Based Metal–Organic Framework Nanosheets Coupled with Visibleâ€Light. Small Methods, 2021, 5, e2000991.	8.6	50
16	Surface organic ligand-passivated quantum dots: toward high-performance light-emitting diodes with long lifetimes. Journal of Materials Chemistry C, 2021, 9, 2483-2490.	5.5	18
17	Sphagnum Inspired g ₃ N ₄ Nano/Microspheres with Smaller Bandgap in Heterojunction Membranes for Sunlightâ€Driven Water Purification. Small, 2021, 17, e2007122.	10.0	43
18	Polyoxometalates Facilitating Synthesis of Subnanometer Nanowires. Advanced Functional Materials, 2021, 31, 2100703.	14.9	33

#	Article	IF	CITATIONS
19	Reversible Transformation between CsPbBr ₃ Perovskite Nanowires and Nanorods with Polarized Optoelectronic Properties. Advanced Functional Materials, 2021, 31, 2011251.	14.9	29
20	Water Purification: Sphagnum Inspired g ₃ N ₄ Nano/Microspheres with Smaller Bandgap in Heterojunction Membranes for Sunlightâ€Driven Water Purification (Small 12/2021). Small, 2021, 17, 2170054.	10.0	1
21	Singleâ€Unitâ€Cell Catalysis of CO ₂ Electroreduction over Subâ€1 nm Cu ₉ S ₅ Nanowires. Advanced Energy Materials, 2021, 11, 2100272.	19.5	29
22	Subâ€Nanometer Nanobelts Based on Titanium Dioxide/Zirconium Dioxide–Polyoxometalate Heterostructures. Advanced Materials, 2021, 33, e2100576.	21.0	42
23	Clusterâ€assembled materials: Ordered structures with advanced properties. InformaÄnÃ-Materiály, 2021, 3, 854-868.	17.3	17
24	Boosting CO ₂ Electroreduction via the Synergistic Effect of Tuning Cationic Clusters and Visibleâ€Light Irradiation. Advanced Materials, 2021, 33, e2101886.	21.0	21
25	Temperatureâ€Responsive Selfâ€Assembly of Single Polyoxometalates Clusters Driven by Hydrogen Bonds. Advanced Functional Materials, 2021, 31, 2103561.	14.9	12
26	Super-aligned films of sub-1 nm Bi2O3-polyoxometalate nanowires as interlayers in lithium-sulfur batteries. Science China Materials, 2021, 64, 2949-2957.	6.3	27
27	Single-Crystal Inorganic Helical Architectures Induced by Asymmetrical Defects in Sub-Nanometric Wires. Journal of the American Chemical Society, 2021, 143, 9858-9865.	13.7	26
28	CsPbX ₃ â€ITO (X = Cl, Br, I) Nanoâ€Heterojunctions: Voltage Tuned Positive to Negative Photoresponse. Small, 2021, 17, e2101403.	10.0	15
29	A General Strategy to Synthesize Ultrathin Palladium/Transition Metal Alloy Nanowires: Anti-Poisoned Electrocatalytic Performance for the Oxygen Reduction Reaction in Acidic and Alkaline Media. Journal of Physical Chemistry C, 2021, 125, 14646-14655.	3.1	14
30	Redoxâ€Mediated Ambient Electrolytic Nitrogen Reduction for Hydrazine and Ammonia Generation. Angewandte Chemie, 2021, 133, 18869-18875.	2.0	3
31	Helical Microporous Nanorods Assembled by Polyoxometalate Clusters for the Photocatalytic Oxidation of Toluene. Angewandte Chemie - International Edition, 2021, 60, 17404-17409.	13.8	39
32	Redoxâ€Mediated Ambient Electrolytic Nitrogen Reduction for Hydrazine and Ammonia Generation. Angewandte Chemie - International Edition, 2021, 60, 18721-18727.	13.8	35
33	Helical Microporous Nanorods Assembled by Polyoxometalate Clusters for the Photocatalytic Oxidation of Toluene. Angewandte Chemie, 2021, 133, 17544-17549.	2.0	2
34	Polyoxometalate Interlayered Zinc–Metallophthalocyanine Molecular Layer Sandwich as Photocoupled Electrocatalytic CO ₂ Reduction Catalyst. Journal of the American Chemical Society, 2021, 143, 13721-13730.	13.7	49
35	Ni(OH) ₂ -Polyoxometalate Cluster Hybrid Superstructures. Chemistry of Materials, 2021, 33, 7100-7105.	6.7	9
36	Ultrathin PdAuBiTe Nanosheets as Highâ€Performance Oxygen Reduction Catalysts for a Direct Methanol Fuel Cell Device. Advanced Materials, 2021, 33, e2103383.	21.0	61

#	Article	IF	Citations
37	ZnO–POM Cluster Sub-1 nm Nanosheets as Robust Catalysts for the Oxidation of Thioethers at Room Temperature. Journal of the American Chemical Society, 2021, 143, 16217-16225.	13.7	56
38	Ternary hybrid CuO-PMA-Ag sub-1 nm nanosheet heterostructures. Chemical Science, 2021, 12, 11490-11494.	7.4	7
39	Auâ€Polyoxometalates Aâ€Bâ€Aâ€B Type Copolymerâ€Analogue Subâ€1 nm Nanowires. Small, 2021, 17, e2006.	2 60. .o	22
40	Cluster–Nuclei Coassembled One-Dimensional Subnanometer Heteronanostructures. Nano Letters, 2021, 21, 9845-9852.	9.1	11
41	Chiral Conformation of Subnanometric Materials. ACS Nano, 2021, 15, 17247-17256.	14.6	7
42	An Efficient Cobalt Phosphide Electrocatalyst Derived from Cobalt Phosphonate Complex for Allâ€pH Hydrogen Evolution Reaction and Overall Water Splitting in Alkaline Solution. Small, 2020, 16, e1900550.	10.0	132
43	Freeâ€Standing CoOâ€POM Janusâ€like Ultrathin Nanosheets. Angewandte Chemie - International Edition, 2020, 59, 8497-8501.	13.8	32
44	Freeâ€Standing CoOâ€POM Janusâ€like Ultrathin Nanosheets. Angewandte Chemie, 2020, 132, 8575-8579.	2.0	13
45	Atomic-Level Nanorings (A-NRs) Therapeutic Agent for Photoacoustic Imaging and Photothermal/Photodynamic Therapy of Cancer. Journal of the American Chemical Society, 2020, 142, 1735-1739.	13.7	121
46	Chirality Evolution from Sub-1 Nanometer Nanowires to the Macroscopic Helical Structure. Journal of the American Chemical Society, 2020, 142, 1375-1381.	13.7	47
47	Recent progress in pyrolyzed carbon materials as electrocatalysts for the oxygen reduction reaction. Inorganic Chemistry Frontiers, 2020, 7, 28-36.	6.0	34
48	Van der Waals Integrated Hybrid POMâ€Zirconia Flexible Beltâ€Like Superstructures. Advanced Materials, 2020, 32, e1906794.	21.0	37
49	The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: A state-of-the-art review. Chemical Engineering Journal, 2020, 391, 123601.	12.7	155
50	Freestanding Millimeterâ€Scale Porphyrinâ€Based Monoatomic Layers with 0.28â€nm Thickness for CO ₂ Electrocatalysis. Angewandte Chemie - International Edition, 2020, 59, 18954-18959.	13.8	44
51	Freestanding Millimeterâ€Scale Porphyrinâ€Based Monoatomic Layers with 0.28 nm Thickness for CO 2 Electrocatalysis. Angewandte Chemie, 2020, 132, 19116-19121.	2.0	4
52	Noble metal nanoclusters-decorated NiFe layered double hydroxide superstructure as nanoreactors for selective hydrogenation catalysis. Nanoscale, 2020, 12, 17780-17785.	5.6	3
53	Perovskite Nanoâ∈Heterojunctions: Synthesis, Structures, Properties, Challenges, and Prospects. Small Structures, 2020, 1, 2000009.	12.0	52
54	Hybrid MoO ₃ –Polyoxometallate Sub-1 nm Nanobelt Superstructures. Journal of the American Chemical Society, 2020, 142, 17557-17563.	13.7	46

#	Article	IF	CITATIONS
55	Nanoconfined Waterâ€Molecule Channels for Highâ€Yield Solar Vapor Generation under Weaker Sunlight. Advanced Materials, 2020, 32, e2001544.	21.0	94
56	Sub-One-Nanometer Nanomaterials Showing Polymer-Analogue Properties. , 2020, 2, 639-643.		22
57	Water Delivery Channel Design in Solar Evaporator for Efficient and Durable Water Evaporation with Salt Rejection. ACS Sustainable Chemistry and Engineering, 2020, 8, 7753-7761.	6.7	69
58	POMâ€Incorporated CoO Nanowires for Enhanced Photocatalytic Syngas Production from CO ₂ . Angewandte Chemie - International Edition, 2020, 59, 15527-15531.	13.8	62
59	Heterogeneous Catalysts with Wellâ€Defined Active Metal Sites toward CO ₂ Electrocatalytic Reduction. Advanced Energy Materials, 2020, 10, 2001142.	19.5	66
60	POMâ€Incorporated CoO Nanowires for Enhanced Photocatalytic Syngas Production from CO 2. Angewandte Chemie, 2020, 132, 15657-15661.	2.0	7
61	Polyoxometalate–Zirconia Coassembled Microdumbbells for Efficient Capture of Iodine. , 2020, 2, 461-465.		15
62	Electrocatalysis: A Core Technique for a Sustainable Future. Chemistry - A European Journal, 2020, 26, 3897-3897.	3.3	11
63	Heterostructural CsPbX ₃ -PbS (X = Cl, Br, I) Quantum Dots with Tunable Vis–NIR Dual Emission. Journal of the American Chemical Society, 2020, 142, 4464-4471.	13.7	107
64	Ultrasmall Pdâ€Cuâ€Pt Trimetallic Twin Icosahedrons Boost the Electrocatalytic Performance of Glycerol Oxidation at the Operating Temperature of Fuel Cells. Advanced Functional Materials, 2020, 30, 1908235.	14.9	89
65	Puffing quaternary FexCoyNi1-x-yP nanoarray via kinetically controlled alkaline etching for robust overall water splitting. Science China Materials, 2020, 63, 1054-1064.	6.3	35
66	Bridging the Macroworld to Micro/Nanomaterials: Multidisciplinary Science at Tsinghua University. Small, 2020, 16, e2000856.	10.0	0
67	Polyoxometalate Clusters: Sub-nanometer Building Blocks for Construction of Advanced Materials. Matter, 2020, 2, 816-841.	10.0	99
68	The Synthesis of Sub-Nano-Thick Pd Nanobelt–Based Materials for Enhanced Hydrogen Evolution Reaction Activity. CCS Chemistry, 2020, 2, 642-654.	7.8	14
69	The Synthesis of Sub-Nano-Thick Pd Nanobelt–Based Materials for Enhanced Hydrogen Evolution Reaction Activity. CCS Chemistry, 2020, 2, 642-654.	7.8	7
70	Secondaryâ€Component Incorporated Hollow MOFs and Derivatives for Catalytic and Energyâ€Related Applications. Advanced Materials, 2019, 31, e1800743.	21.0	129
71	Incorporation of clusters within inorganic materials through their addition during nucleation steps. Nature Chemistry, 2019, 11, 839-845.	13.6	104
72	Trimetallic palladium–copper–cobalt alloy wavy nanowires improve ethanol electrooxidation in alkaline medium. Nanoscale, 2019, 11, 19448-19454.	5.6	29

#	Article	IF	CITATIONS
73	A redox targeting-based material recycling strategy for spent lithium ion batteries. Energy and Environmental Science, 2019, 12, 2672-2677.	30.8	106
74	Self-Assembly of Ultrathin Nanocrystals to Multidimensional Superstructures. Langmuir, 2019, 35, 10246-10266.	3.5	17
75	Highly Flexible and Stretchable Nanowire Superlattice Fibers Achieved by Springâ€Like Structure of Subâ€1 nm Nanowires. Advanced Functional Materials, 2019, 29, 1903477.	14.9	20
76	Single molecule–mediated assembly of polyoxometalate single-cluster rings and their three-dimensional superstructures. Science Advances, 2019, 5, eaax1081.	10.3	61
77	Photo- and thermo-coupled electrocatalysis in carbon dioxide and methane conversion. Science China Materials, 2019, 62, 1369-1373.	6.3	25
78	Cluster–Nuclei Coassembled into Two-Dimensional Hybrid CuO-PMA Sub-1 nm Nanosheets. Journal of the American Chemical Society, 2019, 141, 18754-18758.	13.7	58
79	Visible-light-switched electron transfer over single porphyrin-metal atom center for highly selective electroreduction of carbon dioxide. Nature Communications, 2019, 10, 3844.	12.8	121
80	Boosting the ORR performance of modified carbon black <i>via</i> C–O bonds. Chemical Science, 2019, 10, 2118-2123.	7.4	26
81	Hybrid nanostructures of pit-rich TiO ₂ nanocrystals with Ru loading and N doping for enhanced solar water splitting. Chemical Communications, 2019, 55, 2781-2784.	4.1	12
82	2-Methylimidazole assisted ultrafast synthesis of carboxylate-based metal–organic framework nano-structures in aqueous medium at room temperature. Science Bulletin, 2019, 64, 1103-1109.	9.0	11
83	An Allâ€Inorganic Colloidal Nanocrystal Flexible Polarizer. Angewandte Chemie - International Edition, 2019, 58, 8730-8735.	13.8	39
84	An Allâ€Inorganic Colloidal Nanocrystal Flexible Polarizer. Angewandte Chemie, 2019, 131, 8822-8827.	2.0	16
85	Edgeâ€Exposed Molybdenum Disulfide with Nâ€Doped Carbon Hybridization: A Hierarchical Hollow Electrocatalyst for Carbon Dioxide Reduction. Advanced Energy Materials, 2019, 9, 1900072.	19.5	62
86	Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chemical Society Reviews, 2019, 48, 2518-2534.	38.1	483
87	A bifunctional MoS ₂ -based solar evaporator for both efficient water evaporation and clean freshwater collection. Journal of Materials Chemistry A, 2019, 7, 11177-11185.	10.3	105
88	Phase Control in Inorganic Nanocrystals through Finely Tuned Growth at an Ultrathin Scale. Accounts of Chemical Research, 2019, 52, 780-790.	15.6	27
89	Bio-inspired synthesis of mesoporous HfO2 nanoframes as reactors for piezotronic polymerization and Suzuki coupling reactions. Nanoscale, 2019, 11, 5240-5246.	5.6	6
90	Redox Targeting-Based Vanadium Redox-Flow Battery. ACS Energy Letters, 2019, 4, 3028-3035.	17.4	63

#	Article	IF	CITATIONS
91	Unique 1D Cd _{1â^'} <i>_x</i> Zn <i>_x</i> S@Oâ€MoS ₂ /NiO <i>_x Nanohybrids: Highly Efficient Visibleâ€Lightâ€Driven Photocatalytic Hydrogen Evolution via Integrated Structural Regulation. Small, 2019, 15, e1804115.</i>	diò.o	64
92	Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts. Nano Research, 2019, 12, 1327-1331.	10.4	53
93	Simple, Low-Dose, Durable, and Carbon-Nanotube-Based Floating Solar Still for Efficient Desalination and Purification. ACS Sustainable Chemistry and Engineering, 2019, 7, 3925-3932.	6.7	63
94	Oxygenâ€Defected Molybdenum Oxides Hierarchical Nanostructure Constructed by Atomicâ€Level Thickness Nanosheets as an Efficient Absorber for Solar Steam Generation. Solar Rrl, 2019, 3, 1800277.	5.8	62
95	Solvothermal Synthesis of Nanomaterials. World Scientific Series in Nanoscience and Nanotechnology, 2019, , 23-58.	0.1	O
96	Surface Oxidation of AuNi Heterodimers to Achieve High Activities toward Hydrogen/Oxygen Evolution and Oxygen Reduction Reactions. Small, 2018, 14, e1703749.	10.0	60
97	Iron Hydroxide-Modified Nickel Hydroxylphosphate Single-Wall Nanotubes as Efficient Electrocatalysts for Oxygen Evolution Reactions. ACS Applied Materials & Samp; Interfaces, 2018, 10, 9407-9414.	8.0	38
98	Multimetallic nanosheets: synthesis and applications in fuel cells. Chemical Society Reviews, 2018, 47, 6175-6200.	38.1	171
99	Composition-driven shape evolution to Cu-rich PtCu octahedral alloy nanocrystals as superior bifunctional catalysts for methanol oxidation and oxygen reduction reaction. Nanoscale, 2018, 10, 4670-4674.	5.6	82
100	Zirconium–Porphyrinâ€Based Metal–Organic Framework Hollow Nanotubes for Immobilization of Nobleâ€Metal Single Atoms. Angewandte Chemie, 2018, 130, 3551-3556.	2.0	102
101	Zirconium–Porphyrinâ€Based Metal–Organic Framework Hollow Nanotubes for Immobilization of Nobleâ€Metal Single Atoms. Angewandte Chemie - International Edition, 2018, 57, 3493-3498.	13.8	341
102	The formation of (NiFe)S ₂ pyrite mesocrystals as efficient pre-catalysts for water oxidation. Chemical Science, 2018, 9, 2762-2767.	7.4	60
103	Mimic the Photosystem II for Water Oxidation in Neutral Solution: A Case of Co ₃ O ₄ . Advanced Energy Materials, 2018, 8, 1702313.	19.5	18
104	Biotechnology smart control over stem cell fate commitment at nanoscale. Science China Materials, 2018, 61, 435-436.	6.3	0
105	Nanosheetâ€Assembled Hierarchical Carbon Nanoframeworks Bearing a Multiactive Center for Oxygen Reduction Reaction. Small Methods, 2018, 2, 1800068.	8.6	28
106	Metallic Transition-Metal Dichalcogenide Nanocatalysts for Energy Conversion. CheM, 2018, 4, 1510-1537.	11.7	141
107	Polarized Optoelectronics of CsPbX $<$ sub $>3sub> (X = Cl, Br, I) Perovskite Nanoplates with Tunable Size and Thickness. Advanced Functional Materials, 2018, 28, 1800283.$	14.9	63
108	Ultrathin 2D Zirconium Metal–Organic Framework Nanosheets: Preparation and Application in Photocatalysis. Small, 2018, 14, e1703929.	10.0	171

#	Article	IF	Citations
109	Theoretical investigations of transport properties of organic solvents in cation-functionalized graphene oxide membranes: Implications for drug delivery. Nano Research, 2018, 11, 254-263.	10.4	7
110	Three-dimensional macroscale assembly of Pd nanoclusters. Nano Research, 2018, 11, 3175-3181.	10.4	3
111	Probing Ligand-Induced Cooperative Orbital Redistribution That Dominates Nanoscale Molecule–Surface Interactions with One-Unit-Thin TiO ₂ Nanosheets. Nano Letters, 2018, 18, 7809-7815.	9.1	30
112	Ultrathin Tungsten Bronze Nanowires with Efficient Photo-to-Thermal Conversion Behavior. Chemistry of Materials, 2018, 30, 8727-8731.	6.7	28
113	Trimetallic Sulfide Mesoporous Nanospheres as Superior Electrocatalysts for Rechargeable Zn–Air Batteries. Advanced Energy Materials, 2018, 8, 1801839.	19.5	101
114	Dendritic defect-rich palladium–copper–cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nature Communications, 2018, 9, 3702.	12.8	204
115	Green and Size-Specific Synthesis of Stable Fe–Cu Oxides as Earth-Abundant Adsorbents for Malachite Green Removal. ACS Sustainable Chemistry and Engineering, 2018, 6, 9229-9236.	6.7	7 9
116	Metal–Organic Framework Based Microcapsules. Angewandte Chemie, 2018, 130, 10305-10309.	2.0	15
117	Metal–Organic Framework Based Microcapsules. Angewandte Chemie - International Edition, 2018, 57, 10148-10152.	13.8	64
118	Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nature Communications, 2018, 9, 2452.	12.8	431
119	The Subâ€Nanometer Scale as a New Focus in Nanoscience. Advanced Materials, 2018, 30, e1802031.	21.0	99
120	Synthesis of self-assembled PtPdAg nanostructures with a high catalytic activity for oxygen reduction reactions. Nanoscale, 2018, 10, 17140-17147.	5.6	11
121	Microporous 2D NiCoFe phosphate nanosheets supported on Ni foam for efficient overall water splitting in alkaline media. Nanoscale, 2018, 10, 12975-12980.	5.6	94
122	Molecule Channels Directed by Cationâ€Decorated Graphene Oxide Nanosheets and Their Application as Membrane Reactors. Advanced Materials, 2017, 29, 1606093.	21.0	83
123	Multi-node CdS hetero-nanowires grown with defect-rich oxygen-doped MoS2 ultrathin nanosheets for efficient visible-light photocatalytic H2 evolution. Nano Research, 2017, 10, 1377-1392.	10.4	104
124	Composition-controllable synthesis of defect-rich PtPdCu nanoalloys with hollow cavities as superior electrocatalysts for alcohol oxidation. Materials Chemistry Frontiers, 2017, 1, 1217-1222.	5.9	29
125	Monodispersed sub-5.0 nm PtCu nanoalloys as enhanced bifunctional electrocatalysts for oxygen reduction reaction and ethanol oxidation reaction. Nanoscale, 2017, 9, 2963-2968.	5.6	85
126	Au/Ni12P5 core/shell single-crystal nanoparticles as oxygen evolution reaction catalyst. Nano Research, 2017, 10, 3103-3112.	10.4	48

#	Article	IF	Citations
127	Trimetallic PtCoFe Alloy Monolayer Superlattices as Bifunctional Oxygen-Reduction and Ethanol-Oxidation Electrocatalysts. Small, 2017, 13, 1700250.	10.0	42
128	Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting. Nature Communications, 2017, 8, 15377.	12.8	284
129	Modifying Commercial Carbon with Trace Amounts of ZIF to Prepare Derivatives with Superior ORR Activities. Advanced Materials, 2017, 29, 1701354.	21.0	94
130	Competitive Coordination Strategy to Finely Tune Pore Environment of Zirconium-Based Metal–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2017, 9, 22732-22738.	8.0	36
131	Cobalt carbonate hydroxide superstructures for oxygen evolution reactions. Chemical Communications, 2017, 53, 8010-8013.	4.1	74
132	Sub-1 nm Nanowire Based Superlattice Showing High Strength and Low Modulus. Journal of the American Chemical Society, 2017, 139, 8579-8585.	13.7	47
133	Shape controlled synthesis of porous tetrametallic PtAgBiCo nanoplates as highly active and methanol-tolerant electrocatalyst for oxygen reduction reaction. Chemical Science, 2017, 8, 4292-4298.	7.4	52
134	Porous Tetrametallic PtCuBiMn Nanosheets with a High Catalytic Activity and Methanol Tolerance Limit for Oxygen Reduction Reactions. Advanced Materials, 2017, 29, 1604994.	21.0	84
135	Titanocene dichloride (Cp ₂ TiCl ₂) as a precursor for template-free fabrication of hollow TiO ₂ nanostructures with enhanced photocatalytic hydrogen production. Nanoscale, 2017, 9, 2074-2081.	5.6	24
136	Highly Active and Durable Pt ₇₂ Ru ₂₈ Porous Nanoalloy Assembled with Subâ€4.0 nm Particles for Methanol Oxidation. Advanced Energy Materials, 2017, 7, 1601593.	19.5	81
137	3D self-assembly of ultrafine molybdenum carbide confined in N-doped carbon nanosheets for efficient hydrogen production. Nanoscale, 2017, 9, 15895-15900.	5.6	45
138	One-pot synthesis of dendritic Pt ₃ Ni nanoalloys as nonenzymatic electrochemical biosensors with high sensitivity and selectivity for dopamine detection. Nanoscale, 2017, 9, 10998-11003.	5.6	30
139	Nickel Diselenide Ultrathin Nanowires Decorated with Amorphous Nickel Oxide Nanoparticles for Enhanced Water Splitting Electrocatalysis. Small, 2017, 13, 1701487.	10.0	99
140	Finely Composition-Tunable Synthesis of Ultrafine Wavy PtRu Nanowires as Effective Electrochemical Sensors for Dopamine Detection. Langmuir, 2017, 33, 8070-8075.	3.5	25
141	Mesoporous ZrO ₂ Nanoframes for Biomass Upgrading. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26897-26906.	8.0	24
142	Cesium Lead Halide Perovskite Quantum Dots as a Photoluminescence Probe for Metal Ions. Advanced Materials, 2017, 29, 1700150.	21.0	112
143	Silver nanocrystal-decorated polyoxometalate single-walled nanotubes as nanoreactors for desulfurization catalysis at room temperature. Nanoscale, 2017, 9, 13334-13340.	5.6	28
144	Atomic-level molybdenum oxide nanorings with full-spectrum absorption and photoresponsive properties. Nature Communications, 2017, 8, 1559.	12.8	81

#	Article	IF	Citations
145	Hierarchical CoS/MoS ₂ and Co ₃ 5 ₄ /MoS ₂ /Ni ₂ P nanotubes for efficient electrocatalytic hydrogen evolution in alkaline media. Journal of Materials Chemistry A, 2017, 5, 25410-25419.	10.3	66
146	Fast and scalable synthesis of uniform zirconium-, hafnium-based metal–organic framework nanocrystals. Nanoscale, 2017, 9, 19209-19215.	5.6	74
147	Surface Confinement Etching and Polarization Matter: A New Approach To Prepare Ultrathin PtAgCo Nanosheets for Hydrogen-Evolution Reactions. Chemistry of Materials, 2017, 29, 6329-6335.	6.7	49
148	Fullereneâ€Like Nickel Oxysulfide Hollow Nanospheres as Bifunctional Electrocatalysts for Water Splitting. Small, 2017, 13, 1602637.	10.0	39
149	Preface for special issue: Tsinghua-NTU Bilateral Workshop for Young Scientists. Science China Materials, 2017, 60, 1025-1025.	6.3	0
150	Polyoxometalate Clusterâ€Incorporated Metalâ€Organic Framework Hierarchical Nanotubes. Small, 2016, 12, 2982-2990.	10.0	60
151	Generalized Synthesis of Hierarchical Transition Metal Dichalcogenide Nanosheets from Polyoxometalates. ChemNanoMat, 2016, 2, 665-670.	2.8	2
152	Electrostatic Interactionâ€Directed Growth of Nickel Phosphate Singleâ€Walled Nanotubes for High Performance Oxygen Evolution Reaction Catalysts. Small, 2016, 12, 2969-2974.	10.0	42
153	Epitaxy of Radial Highâ€Energyâ€Facetted Ultrathin TiO ₂ Nanosheets onto Nanowires for Enhanced Photoreactivities. Advanced Functional Materials, 2016, 26, 1580-1589.	14.9	43
154	Competitive coordination strategy for the synthesis of hierarchical-pore metal–organic framework nanostructures. Chemical Science, 2016, 7, 7101-7105.	7.4	125
155	Sub-2.0-nm Ru and composition-tunable RuPt nanowire networks. Nano Research, 2016, 9, 3066-3074.	10.4	24
156	Ultra-small Tetrametallic Pt-Pd-Rh-Ag Nanoframes with Tunable Behavior for Direct Formic Acid/Methanol Oxidation. Small, 2016, 12, 5261-5268.	10.0	52
157	Ni-Decorated Molybdenum Carbide Hollow Structure Derived from Carbon-Coated Metal–Organic Framework for Electrocatalytic Hydrogen Evolution Reaction. Chemistry of Materials, 2016, 28, 6313-6320.	6.7	207
158	Crystallinity-induced shape evolution of Pt–Ag nanosheets from branched nanocrystals. Chemical Communications, 2016, 52, 10547-10550.	4.1	19
159	A facile and general strategy for the synthesis of porous flowerlike Pt-based nanocrystals as effective electrocatalysts for alcohol oxidation. Nanoscale, 2016, 8, 14705-14710.	5.6	58
160	Nanoparticle Decorated Ultrathin Porous Nanosheets as Hierarchical Co3O4 Nanostructures for Lithium Ion Battery Anode Materials. Scientific Reports, 2016, 6, 20592.	3.3	68
161	Sub-1 nm Nickel Molybdate Nanowires as Building Blocks of Flexible Paper and Electrochemical Catalyst for Water Oxidation. Small, 2016, 12, 1006-1012.	10.0	30
162	Controlled Synthesis of Hollow Co–Mo Mixed Oxide Nanostructures and Their Electrocatalytic and Lithium Storage Properties. Chemistry of Materials, 2016, 28, 2417-2423.	6.7	104

#	Article	IF	CITATIONS
163	Chemistry and properties at a sub-nanometer scale. Chemical Science, 2016, 7, 3978-3991.	7.4	61
164	Surfactant encapsulated palladium-polyoxometalates: controlled assembly and their application as single-atom catalysts. Chemical Science, 2016, 7, 1011-1015.	7.4	84
165	Face the Edges: Catalytic Active Sites of Nanomaterials. Advanced Science, 2015, 2, 1500085.	11.2	145
166	Wellâ€Defined Metal–Organicâ€Framework Hollow Nanostructures for Catalytic Reactions Involving Gases. Advanced Materials, 2015, 27, 5365-5371.	21.0	162
167	Ultrathin 2D Nanolayer of RuO ₂ Effectively Enhances Charge Separation in the Photochemical Processes of TiO ₂ . Small, 2015, 11, 4469-4474.	10.0	12
168	Rational synthesis and the structure-property relationships of nanoheterostructures: a combinative study of experiments and theory. NPG Asia Materials, 2015, 7, e164-e164.	7.9	20
169	Chemically synthetic graphdiynes: application in energy conversion fields and the beyond. Science China Materials, 2015, 58, 347-348.	6.3	7
170	Atomically Thick Ptâ€Cu Nanosheets: Selfâ€Assembled Sandwich and Nanoringâ€Like Structures. Advanced Materials, 2015, 27, 2013-2018.	21.0	106
171	Three-dimensional architectures constructed using two-dimensional nanosheets. Science China Chemistry, 2015, 58, 1792-1799.	8.2	19
172	Highly Flexible Subâ€1 nm Tungsten Oxide Nanobelts as Efficient Desulfurization Catalysts. Small, 2015, 11, 1144-1149.	10.0	68
173	Nanocrystals of Uranium Oxide: Controlled Synthesis and Enhanced Electrochemical Performance of Hydrogen Evolution by Ce Doping. Small, 2015, 11, 2624-2630.	10.0	20
174	Tuning the growth of metal-organic framework nanocrystals by using polyoxometalates as coordination modulators. Science China Materials, 2015, 58, 370-377.	6.3	65
175	Nanostructure formation via post growth of particles. CrystEngComm, 2015, 17, 6796-6808.	2.6	12
176	Zinc Sulfide Nanosheetâ€Based Hybrid Superlattices with Tunable Architectures Showing Enhanced Photoelectrochemical Properties. Small, 2015, 11, 3909-3915.	10.0	11
177	Edge overgrowth of spiral bimetallic hydroxides ultrathin-nanosheets for water oxidation. Chemical Science, 2015, 6, 3572-3576.	7.4	49
178	Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property. Chemical Society Reviews, 2015, 44, 3056-3078.	38.1	421
179	General synthesis of inorganic single-walled nanotubes. Nature Communications, 2015, 6, 8756.	12.8	61
180	Synthesis of Mo-based nanostructures from organic-inorganic hybrid with enhanced electrochemical for water splitting. Science China Materials, 2015, 58, 775-784.	6.3	23

#	Article	IF	CITATIONS
181	Three-dimensional hierarchical Pt-Cu superstructures. Nano Research, 2015, 8, 832-838.	10.4	73
182	Strong metal-support interaction in size-controlled monodisperse palladium-hematite nano-heterostructures during a liquid-solid heterogeneous catalysis. Science China Materials, 2014, 57, 34-41.	6.3	19
183	Threeâ€Dimensional Assembly of Singleâ€Layered MoS ₂ . Advanced Materials, 2014, 26, 964-969.	21.0	415
184	Self-assembly of TiO2 nanoparticles into chains, films and honeycomb networks. CrystEngComm, 2014, 16, 1584.	2.6	18
185	A 1D/2D Helical CdS/ZnIn ₂ S ₄ Nanoâ€Heterostructure. Angewandte Chemie - International Edition, 2014, 53, 2339-2343.	13.8	232
186	Hydroxyapatite nanocrystals: colloidal chemistry, assembly and their biological applications. Inorganic Chemistry Frontiers, 2014, 1, 215-225.	6.0	37
187	Rapid synthesis of mesoporous Ni _x Co _{3â^2x} (PO ₄) ₂ hollow shells showing enhanced electrocatalytic and supercapacitor performance. Journal of Materials Chemistry A, 2014, 2, 20182-20188.	10.3	101
188	Hierarchical Zn/Niâ€MOFâ€2 Nanosheetâ€Assembled Hollow Nanocubes for Multicomponent Catalytic Reactions. Angewandte Chemie - International Edition, 2014, 53, 12517-12521.	13.8	222
189	Wellâ€Defined Metal–Organic Framework Hollow Nanocages. Angewandte Chemie - International Edition, 2014, 53, 429-433.	13.8	300
190	A Monolayer Polyoxometalate Superlattice. Advanced Materials, 2014, 26, 4339-4344.	21.0	36
191	Inorganic Nanostructures with Sizes down to $1\mathrm{nm}$: A Macromolecule Analogue. Journal of the American Chemical Society, 2013, 135, 11115-11124.	13.7	101
192	Promoting the catalytic efficiency of a catalyst by a solvothermal method. RSC Advances, 2013, 3, 5819.	3.6	5
193	Ultrathin nanostructures: smaller size with new phenomena. Chemical Society Reviews, 2013, 42, 5577.	38.1	149
194	Self-Adjustable Crystalline Inorganic Nanocoils. Journal of the American Chemical Society, 2013, 135, 6834-6837.	13.7	56
195	Fine Tuning of the Structure of Pt–Cu Alloy Nanocrystals by Glycineâ€Mediated Sequential Reduction Kinetics. Small, 2013, 9, 3063-3069.	10.0	95
196	Surface-specific interaction by structure-match confined pure high-energy facet of unstable TiO2(B) polymorph. Scientific Reports, 2013, 3, 1411.	3.3	51
197	Formamide: an efficient solvent to synthesize water-soluble and sub-ten-nanometer nanocrystals. Nanoscale, 2013, 5, 4495.	5.6	28
198	Ultrathin Pt–Cu Nanosheets and Nanocones. Journal of the American Chemical Society, 2013, 135, 18304-18307.	13.7	305

#	Article	IF	Citations
199	Polyoxometalate-based Supramolecular Gel. Scientific Reports, 2013, 3, 1833.	3.3	40
200	MoO _{3â€"<i>x</i>} â€Based Hybrids with Tunable Localized Surface Plasmon Resonances: Chemical Oxidation Driving Transformation from Ultrathin Nanosheets to Nanotubes. Chemistry - A European Journal, 2012, 18, 15283-15287.	3.3	192
201	Crystal growth by leaps and bounds based on self-assembly: insight from titania. CrystEngComm, 2012, 14, 7648.	2.6	8
202	Shape control of Pd-based nanocrystals via quasi-solid-state reactions. RSC Advances, 2012, 2, 3204.	3.6	3
203	Surfactant-encapsulated polyoxometalate building blocks: controlled assembly and their catalytic properties. Dalton Transactions, 2012, 41, 9832.	3.3	93
204	Ultrathin Caâ€PO ₄ â€CO ₃ Solidâ€Solution Nanowires: A Controllable Synthesis and Fullâ€Color Emission by Rareâ€Earth Doping. Chemistry - A European Journal, 2012, 18, 13702-13711.	3.3	21
205	From cluster assembly to ultrathin nanocrystals and complex nanostructures. Science China Chemistry, 2012, 55, 2257-2271.	8.2	12
206	α-MnO2 nanowires as building blocks for the construction of 3D macro-assemblies. Chemical Communications, 2012, 48, 5925.	4.1	29
207	Sizeâ€Dependent Surface Activity of Rutile and Anatase TiO ₂ Nanocrystals: Facile Surface Modification and Enhanced Photocatalytic Performance. Chemistry - A European Journal, 2012, 18, 4759-4765.	3.3	30
208	Multivalent assembly of ultrasmall nanoparticles: One-, two-, and three-dimensional architectures of 2 nm gold nanoparticles. Nano Research, 2012, 5, 283-291.	10.4	27
209	Acquired pH-responsive and reversible enrichment of organic dyes by peroxide modified ultrathin TiO2 nanosheets. Chemical Communications, 2011, 47, 11456.	4.1	27
210	Ni3Si2O5(OH)4 multi-walled nanotubes with tunable magnetic properties and their application as anode materials for lithium batteries. Nano Research, 2011, 4, 882-890.	10.4	131
211	Construction of Amphiphilic Polyoxometalate Mesostructures as a Highly Efficient Desulfurization Catalyst. Advanced Materials, 2011, 23, 1130-1135.	21.0	139
212	Polyoxometalate Nanocone Nanoreactors: Magnetic Manipulation and Enhanced Catalytic Performance. Angewandte Chemie - International Edition, 2011, 50, 3187-3192.	13.8	136
213	Fine tuning of the dimensionality of zinc silicate nanostructures and their application as highly efficient absorbents for toxic metal ions. Nano Research, 2010, 3, 581-593.	10.4	91
214	Large-scale synthesis of metastable TiO2(B) nanosheets with atomic thickness and their photocatalytic properties. Chemical Communications, 2010, 46, 6801.	4.1	203
215	Assembling Polyoxometalate Clusters into Advanced Nanoarchitectures. Chemistry of Materials, 2010, 22, 3511-3518.	6.7	67
216	Pd–Pt random alloy nanocubes with tunable compositions and their enhanced electrocatalytic activities. Chemical Communications, 2010, 46, 1491.	4.1	132

#	Article	IF	Citations
217	Seed Displacement, Epitaxial Synthesis of Rh/Pt Bimetallic Ultrathin Nanowires for Highly Selective Oxidizing Ethanol to CO ₂ . Chemistry of Materials, 2010, 22, 2395-2402.	6.7	87
218	Noble Metal Nanocrystalâ€Incorporated Fullereneâ€Like Polyoxometalate Based Microspheres. Advanced Functional Materials, 2009, 19, 860-865.	14.9	38
219	Fine tuning of the sizes and phases of ZrO2 nanocrystals. Nano Research, 2009, 2, 891.	10.4	79
220	Size- and Surface-Determined Transformations: From Ultrathin InOOH Nanowires to Uniform c-In ₂ O ₃ Nanowires. Inorganic Chemistry, 2009, 48, 3890-3895.	4.0	57
221	Cluster-Based Self-Assembly: Reversible Formation of Polyoxometalate Nanocones and Nanotubes. Chemistry of Materials, 2009, 21, 3745-3751.	6.7	86
222	Magnesium Silicate Hollow Nanostructures as Highly Efficient Absorbents for Toxic Metal lons. Journal of Physical Chemistry C, 2009, 113, 10441-10445.	3.1	99
223	Combinatorial two-dimensional architectures from nanocrystal building blocks: controlled assembly and their applications. Journal of Materials Chemistry, 2009, 19, 3572.	6.7	8
224	Combinatorial Hierarchically Ordered 2D Architectures Selfâ€assembled from Nanocrystal Building Blocks. Advanced Materials, 2008, 20, 3702-3708.	21.0	31
225	Multiâ€functionalized Inorganic–Organic Rare Earth Hybrid Microcapsules. Advanced Materials, 2008, 20, 3739-3744.	21.0	43
226	Covalent-like Interactions between Artificial Atoms inside Silver Supercrystals. Inorganic Chemistry, 2008, 47, 543-547.	4.0	6
227	Monodisperse nanocrystals: general synthesis, assembly, and their applications. Chemical Communications, 2007, , 2901.	4.1	174
228	Template-Free Synthesis and Characterization of Single-Phase Voided Poly(<i>o</i> -anisidine) and Polyaniline Colloidal Spheres. Chemistry of Materials, 2007, 19, 5773-5778.	6.7	38
229	Interface-Mediated Growth of Monodispersed Nanostructures. Accounts of Chemical Research, 2007, 40, 635-643.	15.6	155
230	Synthesis and Characterization of Sulfide and Selenide Colloidal Semiconductor Nanocrystals. Langmuir, 2006, 22, 7364-7368.	3.5	32
231	Synthesis and Characterization of Ternary NH4Ln2F7 (Ln = Y, Ho, Er, Tm, Yb, Lu) Nanocages. European Journal of Inorganic Chemistry, 2006, 2006, 2186-2191.	2.0	22
232	Hydrothermal Synthesis of Rare-Earth Fluoride Nanocrystals. Inorganic Chemistry, 2006, 45, 6661-6665.	4.0	307
233	Nearly Monodisperse Cu2O and CuO Nanospheres:Â Preparation and Applications for Sensitive Gas Sensors. Chemistry of Materials, 2006, 18, 867-871.	6.7	1,053
234	Solution-Based Synthetic Strategies for 1-D Nanostructures. Inorganic Chemistry, 2006, 45, 7522-7534.	4.0	170

#	Article	IF	CITATIONS
235	Solution-based routes to transition-metal oxide one-dimensional nanostructures. Pure and Applied Chemistry, 2006, 78, 45-64.	1.9	35
236	A general strategy for nanocrystal synthesis. Nature, 2005, 437, 121-124.	27.8	2,439
237	Thermally Stable Silicate Nanotubes. Angewandte Chemie - International Edition, 2004, 43, 2017-2020.	13.8	113
238	Fullerene-Like Rare-Earth Nanoparticles. Angewandte Chemie, 2003, 115, 3621-3624.	2.0	11
239	Rare-Earth-Compound Nanowires, Nanotubes, and Fullerene-Like Nanoparticles: Synthesis, Characterization, and Properties. Chemistry - A European Journal, 2003, 9, 5627-5635.	3.3	348
240	Fullerene-Like Rare-Earth Nanoparticles. Angewandte Chemie - International Edition, 2003, 42, 3497-3500.	13.8	134
241	Rational synthesis of α-MnO2 single-crystal nanorods. Chemical Communications, 2002, , 764-765.	4.1	224
242	Synthesis and Characterization of Lanthanide Hydroxide Single-Crystal Nanowires. Angewandte Chemie - International Edition, 2002, 41, 4790-4793.	13.8	439
243	Selected-Control Hydrothermal Synthesis of \hat{l}_{\pm} - and \hat{l}^2 -MnO2Single Crystal Nanowires. Journal of the American Chemical Society, 2002, 124, 2880-2881.	13.7	1,003
244	Circularly and Linearly Polarized Luminescence from AIE Luminogens Induced by Superâ€aligned Assemblies of Subâ€1 nm Nanowires. Angewandte Chemie, 0, , .	2.0	0