
Michael R Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6253914/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasmonic protein electricity generator. Nanoscale Horizons, 2022, 7, 220-234.	8.0	0
2	Sustaining Electron Transfer Pathways Extends Biohybrid Photoelectrode Stability to Years. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8
3	Rücktitelbild: Stabilisierung von Elektronentransferwegen erlaubt Stabilitävon Biohybridâ€Photoelektroden über Jahre (Angew. Chem. 24/2022). Angewandte Chemie, 2022, 134, .	2.0	0
4	1200% enhancement of solar energy conversion by engineering three dimensional arrays of flexible biophotoelectrochemical cells in a fixed footprint encompassed by Johnson solid shaped optical well. Nano Energy, 2021, 79, 105424.	16.0	10
5	Photosynthesis Purple Bacteria: Photosynthetic Reaction Centers. , 2021, , 315-332.		3
6	High-Efficiency Excitation Energy Transfer in Biohybrid Quantum Dot–Bacterial Reaction Center Nanoconjugates. Journal of Physical Chemistry Letters, 2021, 12, 5448-5455.	4.6	10
7	Dynamic Stark Effect in Two-Dimensional Spectroscopy Revealing Modulation of Ultrafast Charge Separation in Bacterial Reaction Centers by an Inherent Electric Field. Journal of Physical Chemistry Letters, 2021, 12, 5526-5533.	4.6	3
8	Temperature dependence of nanosecond charge recombination in mutant Rhodobacter sphaeroides reaction centers: modelling of the protein dynamics. Photochemical and Photobiological Sciences, 2021, 20, 913-922.	2.9	1
9	Antagonistic Effects of Point Mutations on Charge Recombination and a New View of Primary Charge Separation in Photosynthetic Proteins. Journal of Physical Chemistry B, 2021, 125, 8742-8756.	2.6	1
10	Dynamics of diverse coherences in primary charge separation of bacterial reaction center at 77ÂK revealed by wavelet analysis. Photosynthesis Research, 2021, , 1.	2.9	1
11	In situ spectroelectrochemical investigation of a biophotoelectrode based on photoreaction centers embedded in a redox hydrogel. Electrochimica Acta, 2020, 330, 135190.	5.2	12
12	Bio-photocapacitive tactile sensors as a touch-to-audio braille reader and solar capacitor. Materials Horizons, 2020, 7, 866-876.	12.2	37
13	Small-residue packing motifs modulate the structure and function of a minimal de novo membrane protein. Scientific Reports, 2020, 10, 15203.	3.3	5
14	Insight into Electron Transfer from a Redox Polymer to a Photoactive Protein. Journal of Physical Chemistry B, 2020, 124, 11123-11132.	2.6	9
15	Minding the Gap between Plant and Bacterial Photosynthesis within a Self-Assembling Biohybrid Photosystem. ACS Nano, 2020, 14, 4536-4549.	14.6	15
16	Self-powered all weather sensory systems powered by Rhodobacter sphaeroides protein solar cells. Biosensors and Bioelectronics, 2020, 165, 112423.	10.1	20
17	High-pressure tuning of primary photochemistry in bacterial photosynthesis: membrane-bound versus detergent-isolated reaction centers. Photosynthesis Research, 2020, 144, 209-220.	2.9	4
18	High-Pressure Modulation of Primary Photosynthetic Reactions. Journal of Physical Chemistry B, 2020, 124, 718-726.	2.6	2

MICHAEL R JONES

#	Article	IF	CITATIONS
19	Polychromatic solar energy conversion in pigment-protein chimeras that unite the two kingdoms of (bacterio)chlorophyll-based photosynthesis. Nature Communications, 2020, 11, 1542.	12.8	27
20	Optical Shading Induces an Inâ€Plane Potential Gradient in a Semiartificial Photosynthetic System Bringing Photoelectric Synergy. Advanced Energy Materials, 2019, 9, 1901449.	19.5	22
21	High-Performance UV Enhancer Molecules Coupled with Photosynthetic Proteins for Ultra-Low-Intensity UV Detection. CheM, 2019, 5, 1847-1860.	11.7	28
22	Biodegradable Protein-Based Photoelectrochemical Cells with Biopolymer Composite Electrodes That Enable Recovery of Valuable Metals. ACS Sustainable Chemistry and Engineering, 2019, 7, 8834-8841.	6.7	23
23	Both electronic and vibrational coherences are involved in primary electron transfer in bacterial reaction center. Nature Communications, 2019, 10, 933.	12.8	42
24	Photosynthetic apparatus of Rhodobacter sphaeroides exhibits prolonged charge storage. Nature Communications, 2019, 10, 902.	12.8	40
25	Mechanisms of Selfâ€Assembly and Energy Harvesting in Tuneable Conjugates of Quantum Dots and Engineered Photovoltaic Proteins. Small, 2019, 15, e1804267.	10.0	15
26	A Mechanoresponsive Phaseâ€Changing Electrolyte Enables Fabrication of Highâ€Output Solidâ€State Photobioelectrochemical Devices from Pigmentâ€Protein Multilayers. Advanced Materials, 2018, 30, 1704073.	21.0	43
27	Vibronic Coherence in the Charge Separation Process of the <i>Rhodobacter sphaeroides</i> Reaction Center. Journal of Physical Chemistry Letters, 2018, 9, 1827-1832.	4.6	32
28	Biohybrid Photoproteinâ€Semiconductor Cells with Deepâ€Lying Redox Shuttles Achieve a 0.7 V Photovoltage. Advanced Functional Materials, 2018, 28, 1703689.	14.9	42
29	Engineered photoproteins that give rise to photosynthetically-incompetent bacteria are effective as photovoltaic materials for biohybrid photoelectrochemical cells. Faraday Discussions, 2018, 207, 307-327.	3.2	10
30	Modelling of the cathodic and anodic photocurrents from Rhodobacter sphaeroides reaction centres immobilized on titanium dioxide. Photosynthesis Research, 2018, 138, 103-114.	2.9	10
31	Photosynthetic Bioelectronic Sensors for Touch Perception, UVâ€Detection, and Nanopower Generation: Toward Selfâ€Powered Eâ€Skins. Advanced Materials, 2018, 30, e1802290.	21.0	62
32	Reaction Centers as Nanoscale Photovoltaic Devices. , 2018, , 109-140.		2
33	Hydrogen bonds in the vicinity of the special pair of the bacterial reaction center probed by hydrostatic high-pressure absorption spectroscopy. Biophysical Chemistry, 2017, 231, 27-33.	2.8	13
34	Cytochrome <i>c</i> Provides an Electron-Funneling Antenna for Efficient Photocurrent Generation in a Reaction Center Biophotocathode. ACS Applied Materials & Interfaces, 2017, 9, 23379-23388.	8.0	39
35	Tandem Solar Cells: Enhanced Output from Biohybrid Photoelectrochemical Transparent Tandem Cells Integrating Photosynthetic Proteins Genetically Modified for Expanded Solar Energy Harvesting (Adv. Energy Mater. 7/2017). Advanced Energy Materials, 2017, 7, .	19.5	1
36	Enhanced Output from Biohybrid Photoelectrochemical Transparent Tandem Cells Integrating Photosynthetic Proteins Genetically Modified for Expanded Solar Energy Harvesting. Advanced Energy Materials, 2017, 7, 1601821.	19.5	49

MICHAEL R JONES

#	Article	IF	CITATIONS
37	The effectiveness of styrene-maleic acid (SMA) copolymers for solubilisation of integral membrane proteins from SMA-accessible and SMA-resistant membranes. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2133-2143.	2.6	68
38	Photoprotection through ultrafast charge recombination in photochemical reaction centres under oxidizing conditions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160378.	4.0	4
39	Plasmonâ€Enhanced Photocurrent of Photosynthetic Pigment Proteins on Nanoporous Silver. Advanced Functional Materials, 2016, 26, 285-292.	14.9	95
40	Bioelectronics: Plasmon-Enhanced Photocurrent of Photosynthetic Pigment Proteins on Nanoporous Silver (Adv. Funct. Mater. 2/2016). Advanced Functional Materials, 2016, 26, 284-284.	14.9	1
41	On the mechanism of ubiquinone mediated photocurrent generation by a reaction center based photocathode. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1925-1934.	1.0	29
42	Directed assembly of defined oligomeric photosynthetic reaction centres through adaptation with programmable extra-membrane coiled-coil interfaces. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1829-1839.	1.0	11
43	Bacteriopheophytin triplet state in Rhodobacter sphaeroides reaction centers. Photosynthesis Research, 2016, 129, 205-216.	2.9	4
44	Weak temperature dependence of P + H A â^' recombination in mutant Rhodobacter sphaeroides reaction centers. Photosynthesis Research, 2016, 128, 243-258.	2.9	14
45	Demonstration of asymmetric electron conduction in pseudosymmetrical photosynthetic reaction centre proteins in an electrical circuit. Nature Communications, 2015, 6, 6530.	12.8	22
46	Evaluation of a biohybrid photoelectrochemical cell employing the purple bacterial reaction centre as a biosensor for herbicides. Biosensors and Bioelectronics, 2014, 58, 172-178.	10.1	84
47	Organization in photosynthetic membranes of purple bacteria in vivo: The role of carotenoids. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1665-1673.	1.0	8
48	Analysis of the temperature-dependence of P+HAâ^' charge recombination in the Rhodobacter sphaeroides reaction center suggests nanosecond temperature-independent protein relaxation. Physical Chemistry Chemical Physics, 2013, 15, 16321.	2.8	21
49	Analysis of the Kinetics of P ⁺ H _A ^{a€} Recombination in Membrane-Embedded Wild-Type and Mutant <i>Rhodobacter sphaeroides</i> Reaction Centers between 298 and 77 K Indicates That the Adjacent Negatively Charged Q _A Ubiquinone Modulates the Free Energy of P ⁺ H _A Aefect	2.6	5
50	Early Bacteriopheophytin Reduction in Charge Separation in Reaction Centers of Rhodobacter sphaeroides. Biophysical Journal, 2013, 104, 2493-2502.	0.5	36
51	Superhydrophobic Carbon Nanotube Electrode Produces a Nearâ€5ymmetrical Alternating Current from Photosynthetic Proteinâ€Based Photoelectrochemical Cells. Advanced Functional Materials, 2013, 23, 5556-5563.	14.9	31
52	Generation of Alternating Current in Response to Discontinuous Illumination by Photoelectrochemical Cells Based on Photosynthetic Proteins. Angewandte Chemie - International Edition, 2012, 51, 6667-6671.	13.8	63
53	Mechanism of Recombination of the P ⁺ H _A [–] Radical Pair in Mutant <i>Rhodobacter sphaeroides</i> Reaction Centers with Modified Free Energy Gaps Between P ⁺ B _A [–] and P ⁺ H _A [–] . Journal of Physical Chemistry B. 2011, 115, 13037-13050.	2.6	30
54	An investigation of slow charge separation in a Tyrosine M210 to Tryptophan mutant of the Rhodobacter sphaeroides reaction center by femtosecond mid-infrared spectroscopy. Physical Chemistry Chemical Physics, 2010, 12, 2693.	2.8	13

MICHAEL R JONES

#	Article	IF	CITATIONS
55	The petite purple photosynthetic powerpack. Biochemical Society Transactions, 2009, 37, 400-407.	3.4	101
56	ldentification of the First Steps in Charge Separation in Bacterial Photosynthetic Reaction Centers of Rhodobacter sphaeroides by Ultrafast Mid-Infrared Spectroscopy: Electron Transfer and Protein Dynamics. Biophysical Journal, 2008, 95, 1268-1284.	0.5	45
57	Lipids in photosynthetic reaction centres: Structural roles and functional holes. Progress in Lipid Research, 2007, 46, 56-87.	11.6	123
58	Strong Effects of an Individual Water Molecule on the Rate of Light-driven Charge Separation in the Rhodobacter sphaeroides Reaction Center. Journal of Biological Chemistry, 2005, 280, 27155-27164.	3.4	46
59	Photosynthesis: A New Step in Oxygen Evolution. Current Biology, 2004, 14, R320-R322.	3.9	1
60	Protein–lipid interactions in the purple bacterial reaction centre. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1565, 206-214.	2.6	29
61	Pumping capacity of bacterial reaction centers and backpressure regulation of energy transduction. FEBS Journal, 2001, 268, 958-970.	0.2	11
62	An examination of how structural changes can affect the rate of electron transfer in a mutated bacterial photoreaction centre. Biochemical Journal, 2000, 351, 567-578.	3.7	26
63	Reaction Centres of Purple Bacteria. Sub-Cellular Biochemistry, 2000, 35, 621-676.	2.4	18
64	Electrochromic Detection of a Coherent Component in the Formation of the Charge Pair P+HL-in Bacterial Reaction Centersâ€. Biochemistry, 2000, 39, 8353-8361.	2.5	66
65	X-ray crystal structure of the YM210W mutant reaction centre from Rhodobacter sphaeroides. FEBS Letters, 2000, 467, 285-290.	2.8	41
66	Ubiquinone Binding, Ubiquinone Exclusion, and Detailed Cofactor Conformation in a Mutant Bacterial Reaction Center. Biochemistry, 2000, 39, 15032-15043.	2.5	73
67	Structural Studies of Wild-Type and Mutant Reaction Centers from an Antenna-Deficient Strain of Rhodobacter sphaeroides:  Monitoring the Optical Properties of the Complex from Bacterial Cell to Crystal. Biochemistry, 1998, 37, 4740-4750.	2.5	83
68	Vibrational Dephasing of Long- and Short-Lived Primary Donor Excited States in Mutant Reaction Centers of Rhodobacter sphaeroides. Biochemistry, 1996, 35, 2687-2692.	2.5	82
69	Sustaining Electron Transfer Pathways Extends Biohybrid Photoelectrode Stability to Years. Angewandte Chemie, 0, , .	2.0	0