
Karsten Zengler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6253560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flux balance analysis of the ammonia-oxidizing bacterium Nitrosomonas europaea ATCC19718 unravels specific metabolic activities while degrading toxic compounds. PLoS Computational Biology, 2022, 18, e1009828.	3.2	4
2	Genome-Scale Metabolic Modeling Enables In-Depth Understanding of Big Data. Metabolites, 2022, 12, 14.	2.9	37
3	Linking anaerobic gut bacteria and cardiovascular disease. Nature Microbiology, 2022, 7, 14-15.	13.3	3
4	The Ubiquitous Human Skin Commensal Staphylococcus hominis Protects against Opportunistic Pathogens. MBio, 2022, 13, .	4.1	24
5	Host DNA Depletion in Saliva Samples for Improved Shotgun Metagenomics. Methods in Molecular Biology, 2021, 2327, 87-92.	0.9	1
6	Carbohydrates great and small, from dietary fiber to sialic acids: How glycans influence the gut microbiome and affect human health. Gut Microbes, 2021, 13, 1-18.	9.8	41
7	Quantifying Live Microbial Load in Human Saliva Samples over Time Reveals Stable Composition and Dynamic Load. MSystems, 2021, 6, .	3.8	19
8	The sum is greater than the parts: exploiting microbial communities to achieve complex functions. Current Opinion in Biotechnology, 2021, 67, 149-157.	6.6	25
9	Analysis of the cyanobacterial amino acid metabolism with a precise genome-scale metabolic reconstruction of Anabaena sp. UTEX 2576. Biochemical Engineering Journal, 2021, 171, 108008.	3.6	8
10	Dietary Neu5Ac Intervention Protects Against Atherosclerosis Associated With Human-Like Neu5Gc Loss—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2730-2739.	2.4	10
11	Biotechnology for secure biocontainment designs in an emerging bioeconomy. Current Opinion in Biotechnology, 2021, 71, 25-31.	6.6	23
12	Examining the impact of carbon dioxide levels and modulation of resulting hydrogen peroxide in Chlorella vulgaris. Algal Research, 2021, 60, 102492.	4.6	4
13	Microbiome Signatures in a Fast- and Slow-Progressing Gastric Cancer Murine Model and Their Contribution to Gastric Carcinogenesis. Microorganisms, 2021, 9, 189.	3.6	13
14	Intestinal $\hat{l}\pm 1$ -2-Fucosylation Contributes to Obesity and Steatohepatitis in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 293-320.	4.5	14
15	Creating a synthetic lichen: Mutualistic co-culture of fungi and extracellular polysaccharide-secreting cyanobacterium Nostoc PCC 7413. Algal Research, 2020, 45, 101755.	4.6	24
16	Introducing the Mangrove Microbiome Initiative: Identifying Microbial Research Priorities and Approaches To Better Understand, Protect, and Rehabilitate Mangrove Ecosystems. MSystems, 2020, 5, .	3.8	40
17	Synthetic microbial communities of heterotrophs and phototrophs facilitate sustainable growth. Nature Communications, 2020, 11, 3803.	12.8	55
18	Linking metabolic phenotypes to pathogenic traits among "Candidatus Liberibacter asiaticus―and its hosts. Npj Systems Biology and Applications, 2020, 6, 24.	3.0	20

#	Article	IF	CITATIONS
19	Modeling of nitrogen fixation and polymer production in the heterotrophic diazotroph Azotobacter vinelandii DJ. Metabolic Engineering Communications, 2020, 11, e00132.	3.6	17
20	Transcriptional profiling of lung macrophages identifies a predictive signature for inflammatory lung disease in preterm infants. Communications Biology, 2020, 3, 259.	4.4	25
21	Genomic and Transcriptomic Evidence Supports Methane Metabolism in <i>Archaeoglobi</i> . MSystems, 2020, 5, .	3.8	33
22	Interplay of Staphylococcal and Host Proteases Promotes Skin Barrier Disruption in Netherton Syndrome. Cell Reports, 2020, 30, 2923-2933.e7.	6.4	56
23	Dynamic resource allocation drives growth under nitrogen starvation in eukaryotes. Npj Systems Biology and Applications, 2020, 6, 14.	3.0	18
24	Functional and Proteomic Analysis of Streptococcus pyogenes Virulence Upon Loss of Its Native Cas9 Nuclease. Frontiers in Microbiology, 2019, 10, 1967.	3.5	11
25	Modelling approaches for studying the microbiome. Nature Microbiology, 2019, 4, 1253-1267.	13.3	114
26	Utilizing genome-scale models to optimize nutrient supply for sustained algal growth and lipid productivity. Npj Systems Biology and Applications, 2019, 5, 33.	3.0	21
27	Environmental stimuli drive a transition from cooperation to competition in synthetic phototrophic communities. Nature Microbiology, 2019, 4, 2184-2191.	13.3	54
28	Gut bacteria responding to dietary change encode sialidases that exhibit preference for red meat-associated carbohydrates. Nature Microbiology, 2019, 4, 2082-2089.	13.3	56
29	A computational knowledge-base elucidates the response of Staphylococcus aureus to different media types. PLoS Computational Biology, 2019, 15, e1006644.	3.2	41
30	Establishing microbial composition measurement standards with reference frames. Nature Communications, 2019, 10, 2719.	12.8	428
31	EcoFABs: advancing microbiome science through standardized fabricated ecosystems. Nature Methods, 2019, 16, 567-571.	19.0	90
32	The impact of skin care products on skin chemistry and microbiome dynamics. BMC Biology, 2019, 17, 47.	3.8	101
33	Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis. Science Translational Medicine, 2019, 11, .	12.4	185
34	Mast cell recruitment is modulated by the hairless skin microbiome. Journal of Allergy and Clinical Immunology, 2019, 144, 330-333.e6.	2.9	6
35	Predicting proteome allocation, overflow metabolism, and metal requirements in a model acetogen. PLoS Computational Biology, 2019, 15, e1006848.	3.2	46
36	A Novel Sparse Compositional Technique Reveals Microbial Perturbations. MSystems, 2019, 4, .	3.8	295

#	Article	IF	CITATIONS
37	The nonlesional skin surface distinguishes atopic dermatitis with food allergy as a unique endotype. Science Translational Medicine, 2019, 11, .	12.4	159
38	Anaerobic degradation of hexadecane and phenanthrene coupled to sulfate reduction by enriched consortia from northern Gulf of Mexico seafloor sediment. Scientific Reports, 2019, 9, 1239.	3.3	31
39	GABA-modulating bacteria of the human gut microbiota. Nature Microbiology, 2019, 4, 396-403.	13.3	590
40	The Role of Intestinal Câ€ŧype Regenerating Islet Derivedâ€3 Lectins for Nonalcoholic Steatohepatitis. Hepatology Communications, 2018, 2, 393-406.	4.3	35
41	The social network of microorganisms — how auxotrophies shape complex communities. Nature Reviews Microbiology, 2018, 16, 383-390.	28.6	311
42	Predicting Dynamic Metabolic Demands in the Photosynthetic Eukaryote <i>Chlorella vulgaris</i> . Plant Physiology, 2018, 176, 450-462.	4.8	49
43	Optimization of carbon and energy utilization through differential translational efficiency. Nature Communications, 2018, 9, 4474.	12.8	35
44	Advances in metabolic modeling of oleaginous microalgae. Biotechnology for Biofuels, 2018, 11, 241.	6.2	49
45	Need for Laboratory Ecosystems To Unravel the Structures and Functions of Soil Microbial Communities Mediated by Chemistry. MBio, 2018, 9, .	4.1	34
46	Genome Sequence of the Oleaginous Green Alga, Chlorella vulgaris UTEX 395. Frontiers in Bioengineering and Biotechnology, 2018, 6, 37.	4.1	21
47	Improving saliva shotgun metagenomics by chemical host DNA depletion. Microbiome, 2018, 6, 42.	11.1	218
48	Metabolic capability and in situ activity of microorganisms in an oil reservoir. Microbiome, 2018, 6, 5.	11.1	70
49	Group B Streptococcus Biofilm Regulatory Protein A Contributes to Bacterial Physiology and Innate Immune Resistance. Journal of Infectious Diseases, 2018, 218, 1641-1652.	4.0	38
50	ChIP-exo interrogation of Crp, DNA, and RNAP holoenzyme interactions. PLoS ONE, 2018, 13, e0197272.	2.5	20
51	Production of organics from <scp>CO₂</scp> by microbial electrosynthesis (<scp>MES</scp>) at high temperature. Journal of Chemical Technology and Biotechnology, 2017, 92, 375-381.	3.2	50
52	Integrated Regulatory and Metabolic Networks of the Marine Diatom <i>Phaeodactylum tricornutum</i> Predict the Response to Rising CO ₂ Levels. MSystems, 2017, 2, .	3.8	40
53	Antimicrobials from human skin commensal bacteria protect against <i>Staphylococcus aureus</i> and are deficient in atopic dermatitis. Science Translational Medicine, 2017, 9, .	12.4	744
54	Elucidation of complexity and prediction of interactions in microbial communities. Microbial Biotechnology, 2017, 10, 1500-1522.	4.2	117

#	Article	IF	CITATIONS
55	Evidence for fungal and chemodenitrification based N2O flux from nitrogen impacted coastal sediments. Nature Communications, 2017, 8, 15595.	12.8	103
56	Efficient Synergistic Single-Cell Genome Assembly. Frontiers in Bioengineering and Biotechnology, 2016, 4, 42.	4.1	3
57	Genome-Scale Model Reveals Metabolic Basis of Biomass Partitioning in a Model Diatom. PLoS ONE, 2016, 11, e0155038.	2.5	104
58	Genome-Scale Metabolic Model for the Green Alga <i>Chlorella vulgaris</i> UTEX 395 Accurately Predicts Phenotypes under Autotrophic, Heterotrophic, and Mixotrophic Growth Conditions. Plant Physiology, 2016, 172, 589-602.	4.8	86
59	FRT - FONDATION RENE TOURAINE. Experimental Dermatology, 2016, 25, 917-932.	2.9	0
60	A Phaeodactylum tricornutum literature database for interactive annotation of content. Algal Research, 2016, 18, 241-243.	4.6	0
61	A streamlined ribosome profiling protocol for the characterization of microorganisms. BioTechniques, 2015, 58, 329-32.	1.8	33
62	A logical data representation framework for electricity-driven bioproduction processes. Biotechnology Advances, 2015, 33, 736-744.	11.7	174
63	Adaptive Evolution of Thermotoga maritima Reveals Plasticity of the ABC Transporter Network. Applied and Environmental Microbiology, 2015, 81, 5477-5485.	3.1	16
64	Investigating Moorella thermoacetica metabolism with a genome-scale constraint-based metabolic model. Integrative Biology (United Kingdom), 2015, 7, 869-882.	1.3	33
65	Unraveling interactions in microbial communities - from co-cultures to microbiomes. Journal of Microbiology, 2015, 53, 295-305.	2.8	57
66	Engineering of oleaginous organisms for lipid production. Current Opinion in Biotechnology, 2015, 36, 32-39.	6.6	43
67	Networks of energetic and metabolic interactions define dynamics in microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15450-15455.	7.1	208
68	Supplementation of Saturated Long-Chain Fatty Acids Maintains Intestinal Eubiosis and Reduces Ethanol-induced Liver Injury in Mice. Gastroenterology, 2015, 148, 203-214.e16.	1.3	266
69	Determining the Control Circuitry of Redox Metabolism at the Genome-Scale. PLoS Genetics, 2014, 10, e1004264.	3.5	67
70	Protocols for High-Throughput Isolation and Cultivation. Springer Protocols, 2014, , 27-35.	0.3	3
71	Constraint-Based Modeling of Carbon Fixation and the Energetics of Electron Transfer in Geobacter metallireducens. PLoS Computational Biology, 2014, 10, e1003575.	3.2	38
72	Reconstruction and modeling protein translocation and compartmentalization in Escherichia coli at the genome-scale. BMC Systems Biology, 2014, 8, 110.	3.0	81

#	Article	IF	CITATIONS
73	The Iron Stimulon and Fur Regulon of Geobacter sulfurreducens and Their Role in Energy Metabolism. Applied and Environmental Microbiology, 2014, 80, 2918-2927.	3.1	42
74	Genome-scale reconstruction of the sigma factor network in Escherichia coli: topology and functional states. BMC Biology, 2014, 12, 4.	3.8	111
75	Single-cell genome and metatranscriptome sequencing reveal metabolic interactions of an alkane-degrading methanogenic community. ISME Journal, 2014, 8, 757-767.	9.8	133
76	A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy and Environmental Science, 2014, 7, 408-415.	30.8	1,074
77	Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms. Current Opinion in Biotechnology, 2014, 27, 79-87.	6.6	175
78	Characterization and modelling of interspecies electron transfer mechanisms and microbial community dynamics of a syntrophic association. Nature Communications, 2013, 4, 2809.	12.8	103
79	Genomes and Post-genome Technology. , 2013, , 329-344.		Ο
80	Crystal ball – 2013. Microbial Biotechnology, 2013, 6, 3-16.	4.2	6
81	Characterizing the interplay between multiple levels of organization within bacterial sigma factor regulatory networks. Nature Communications, 2013, 4, 1755.	12.8	15
82	Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii. Microbial Cell Factories, 2013, 12, 118.	4.0	145
83	Sulfide-Driven Microbial Electrosynthesis. Environmental Science & amp; Technology, 2013, 47, 568-573.	10.0	101
84	The Genome Organization of Thermotoga maritima Reflects Its Lifestyle. PLoS Genetics, 2013, 9, e1003485.	3.5	38
85	Transcriptional regulation of the carbohydrate utilization network in Thermotoga maritima. Frontiers in Microbiology, 2013, 4, 244.	3.5	48
86	Transcriptional Regulation of Central Carbon and Energy Metabolism in Bacteria by Redox-Responsive Repressor Rex. Journal of Bacteriology, 2012, 194, 1145-1157.	2.2	120
87	Anaerobic utilization of toluene by marine alpha- and gammaproteobacteria reducing nitrate. Microbiology (United Kingdom), 2012, 158, 2946-2957.	1.8	31
88	In silico method for modelling metabolism and gene product expression at genome scale. Nature Communications, 2012, 3, 929.	12.8	238
89	A road map for the development of community systems (CoSy) biology. Nature Reviews Microbiology, 2012, 10, 366-372.	28.6	135
90	Deciphering the transcriptional regulatory logic of amino acid metabolism. Nature Chemical Biology, 2012, 8, 65-71.	8.0	83

#	Article	IF	CITATIONS
91	A câ€ŧype cytochrome and a transcriptional regulator responsible for enhanced extracellular electron transfer in <i>Geobacter sulfurreducens</i> revealed by adaptive evolution. Environmental Microbiology, 2011, 13, 13-23.	3.8	89
92	Deciphering the regulatory codes in bacterial genomes. Biotechnology Journal, 2011, 6, 1052-1063.	3.5	9
93	Adaptive laboratory evolution—harnessing the power of biology for metabolic engineering. Current Opinion in Biotechnology, 2011, 22, 590-594.	6.6	246
94	Production of pilus-like filaments in Geobacter sulfurreducens in the absence of the type IV pilin protein PilA. FEMS Microbiology Letters, 2010, 310, 62-68.	1.8	27
95	The challenges of integrating multi-omic data sets. Nature Chemical Biology, 2010, 6, 787-789.	8.0	154
96	De Novo Assembly of the Complete Genome of an Enhanced Electricity-Producing Variant of Geobacter sulfurreducens Using Only Short Reads. PLoS ONE, 2010, 5, e10922.	2.5	29
97	Structural and operational complexity of the <i>Geobacter sulfurreducens</i> genome. Genome Research, 2010, 20, 1304-1311.	5.5	75
98	Isotopic fingerprinting of methane and CO2 formation from aliphatic and aromatic hydrocarbons. Organic Geochemistry, 2010, 41, 482-490.	1.8	40
99	The transcription unit architecture of the Escherichia coli genome. Nature Biotechnology, 2009, 27, 1043-1049.	17.5	251
100	Central Role of the Cell in Microbial Ecology. Microbiology and Molecular Biology Reviews, 2009, 73, 712-729.	6.6	78
101	Targeted Access to the Genomes of Low-Abundance Organisms in Complex Microbial Communities. Applied and Environmental Microbiology, 2007, 73, 3205-3214.	3.1	225
102	Anoxybacillus kamchatkensis sp. nov., a novel thermophilic facultative aerobic bacterium with a broad pH optimum from the Geyser valley, Kamchatka. Extremophiles, 2005, 9, 391-398.	2.3	55
103	Highâ€Throughput Cultivation of Microorganisms Using Microcapsules. Methods in Enzymology, 2005, 397, 124-130.	1.0	90
104	New Methods to Access Microbial Diversity for Small Molecule Discovery. , 2005, , 275-293.		15
105	Tapping into microbial diversity. Nature Reviews Microbiology, 2004, 2, 141-150.	28.6	272
106	Cultivating the uncultured. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15681-15686.	7.1	721
107	Anaerobic degradation and carbon isotopic fractionation of alkylbenzenes in crude oil by sulphate-reducing bacteria. Organic Geochemistry, 2000, 31, 101-115.	1.8	106
108	Anaerobic Oxidation of o -Xylene, m -Xylene, and Homologous Alkylbenzenes by New Types of Sulfate-Reducing Bacteria. Applied and Environmental Microbiology, 1999, 65, 999-1004.	3.1	202

#	Article	IF	CITATIONS
109	Methane formation from long-chain alkanes by anaerobic microorganisms. Nature, 1999, 401, 266-269.	27.8	591
110	New Cultivation Strategies for Terrestrial Microorganisms. , 0, , 171-192.		8
111	Methods To Study Consortia and Mixed Cultures. , 0, , 205-219.		4
112	The Human Intestinal Microbiota and Its Impact on Health. , 0, , 11-32.		1
113	The Diversity of Free-Living Protists Seen and Unseen, Cultured and Uncultured. , 0, , 67-93.		5
114	The Least Common Denominator: Species or Operational Taxonomic Units?. , 0, , 117-130.		7
115	Metagenomics as a Tool To Study Biodiversity. , 0, , 153-169.		4
116	Cultivation of Marine Symbiotic Microorganisms. , 0, , 193-204.		0
117	Does Cultivation Still Matter?. , 0, , 1-10.		1
118	Single-Cell Genomics. , 0, , 267-278.		0