
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6253026/publications.pdf Version: 2024-02-01

ΙΕΝΝΥ ΕΜΝΑΘίις

#	Article	IF	CITATIONS
1	Impedance-Based E-Screen Cell Biosensor for the Real-Time Screening of Xenoestrogenic Compounds. ACS ES&T Water, 2022, 2, 446-456.	4.6	5
2	Embedded 3D Printing in Selfâ€Healing Annealable Composites for Precise Patterning of Functionally Mature Human Neural Constructs. Advanced Science, 2022, 9, .	11.2	21
3	Biomaterial based strategies to reconstruct the nigrostriatal pathway in organotypic slice co-cultures. Acta Biomaterialia, 2021, 121, 250-262.	8.3	25
4	Brain organoid formation on decellularized porcine brain ECM hydrogels. PLoS ONE, 2021, 16, e0245685.	2.5	55
5	Molecular-Gated Drug Delivery Systems Using Light-Triggered Hydrophobic-to-Hydrophilic Switches. ACS Applied Bio Materials, 2021, 4, 1624-1631.	4.6	10
6	Impedance characterization of biocompatible hydrogel suitable for biomimetic lipid membrane applications. Electrochimica Acta, 2021, 373, 137917.	5.2	7
7	Creating a human-induced pluripotent stem cell-based NKX2.5 reporter gene assay for developmental toxicity testing. Archives of Toxicology, 2021, 95, 1659-1670.	4.2	8
8	Selective Direct Laser Writing of Pyrolytic Carbon Microelectrodes in Absorber-Modified SU-8. Micromachines, 2021, 12, 564.	2.9	6
9	Pyrolytic carbon nanograss electrodes for electrochemical detection of dopamine. Electrochimica Acta, 2021, 379, 138122.	5.2	12
10	3D biomaterial models of human brain disease. Neurochemistry International, 2021, 147, 105043.	3.8	31
11	Transcriptomic changes upon epoxiconazole exposure in a human stem cell-based model of developmental toxicity. Chemosphere, 2021, 284, 131225.	8.2	9
12	Next generation human brain models: engineered flat brain organoids featuring gyrification. Biofabrication, 2021, 13, 011001.	7.1	26
13	On-Demand Reversible UV-Triggered Interpenetrating Polymer Network-Based Drug Delivery System Using the Spiropyran–Merocyanine Hydrophobicity Switch. ACS Applied Materials & Interfaces, 2021, 13, 3591-3604.	8.0	36
14	Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids. Nature Communications, 2021, 12, 7302.	12.8	39
15	A novel human pluripotent stem cell-based assay to predict developmental toxicity. Archives of Toxicology, 2020, 94, 3831-3846.	4.2	20
16	Pyrolytic Carbon Nanograss Enhances Neurogenesis and Dopaminergic Differentiation of Human Midbrain Neural Stem Cells. Advanced Healthcare Materials, 2020, 9, e2001108.	7.6	7
17	Monitoring cell endocytosis of liposomes by real-time electrical impedance spectroscopy. Analytical and Bioanalytical Chemistry, 2020, 412, 6371-6380.	3.7	6
18	3Dâ€Printed Soft Lithography for Complex Compartmentalized Microfluidic Neural Devices. Advanced Science, 2020, 7, 2001150.	11.2	36

#	Article	IF	CITATIONS
19	Stationary photocurrent generation from bacteriorhodopsin-loaded lipo-polymersomes in polyelectrolyte multilayer assembly on polyethersulfone membrane. Analytical and Bioanalytical Chemistry, 2020, 412, 6307-6318.	3.7	1
20	Impedimetric melanoma invasion assay device using a simple paper membrane and stencil-printed electrode on PMMA substrate. Sensing and Bio-Sensing Research, 2020, 29, 100354.	4.2	1
21	Leaky Optoelectrical Fiber for Optogenetic Stimulation and Electrochemical Detection of Dopamine Exocytosis from Human Dopaminergic Neurons. Advanced Science, 2019, 6, 1902011.	11.2	23
22	Extraction, Enrichment, and in situ Electrochemical Detection on Lab-on-a-Disc: Monitoring the Production of a Bacterial Secondary Metabolite. ACS Sensors, 2019, 4, 398-405.	7.8	16
23	Differentiation of human-induced pluripotent stem cell under flow conditions to mature hepatocytes for liver tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1273-1284.	2.7	26
24	Three-dimensional fabrication of thick and densely populated soft constructs with complex and actively perfused channel network. Acta Biomaterialia, 2018, 65, 174-184.	8.3	72
25	Blending Electronics with the Human Body: A Pathway toward a Cybernetic Future. Advanced Science, 2018, 5, 1700931.	11.2	83
26	Micropatterned Carbon-on-Quartz Electrode Chips for Photocurrent Generation from Thylakoid Membranes. ACS Applied Energy Materials, 2018, 1, 3313-3322.	5.1	16
27	Quantification of a bacterial secondary metabolite by SERS combined with SLM extraction for bioprocess monitoring. Analyst, The, 2017, 142, 4553-4559.	3.5	15
28	Comparison of Ultrasonic Welding and Thermal Bonding for the Integration of Thin Film Metal Electrodes in Injection Molded Polymeric Lab-on-Chip Systems for Electrochemistry. Sensors, 2016, 16, 1795.	3.8	13
29	Boronate-Modified Interdigitated Electrode Array for Selective Impedance-Based Sensing of Glycated Hemoglobin. Analytical Chemistry, 2016, 88, 9582-9589.	6.5	30
30	Monitoring intra- and extracellular redox capacity of intact barley aleurone layers responding to phytohormones. Analytical Biochemistry, 2016, 515, 1-8.	2.4	9
31	3D Printed Silicone–Hydrogel Scaffold with Enhanced Physicochemical Properties. Biomacromolecules, 2016, 17, 1321-1329.	5.4	53
32	Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching. Materials Science and Engineering C, 2016, 61, 180-189.	7.3	74
33	Prediction of wastewater quality using amperometric bioelectronic tongues. Biosensors and Bioelectronics, 2016, 75, 375-382.	10.1	22
34	Development and validation of a colorimetric sensor array for fish spoilage monitoring. Food Control, 2016, 60, 346-352.	5.5	174
35	Investigating the Role of Surface Materials and Three Dimensional Architecture on In Vitro Differentiation of Porcine Monocyte-Derived Dendritic Cells. PLoS ONE, 2016, 11, e0158503.	2.5	7
36	Impedance Spectroscopic Characterisation of Porosity in 3D Cell Culture Scaffolds with Different Channel Networks. Electroanalysis, 2015, 27, 193-199.	2.9	16

#	Article	IF	CITATIONS
37	Novel Nanostructured Electrodes Obtained by Pyrolysis of Composite Polymeric Materials. Electroanalysis, 2015, 27, 1544-1549.	2.9	6
38	Impedimetric Toxicity Assay in Microfluidics Using Free and Liposome-Encapsulated Anticancer Drugs. Analytical Chemistry, 2015, 87, 2204-2212.	6.5	32
39	Dense high-aspect ratio 3D carbon pillars on interdigitated microelectrode arrays. Carbon, 2015, 94, 792-803.	10.3	28
40	Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds. Materials Science and Engineering C, 2015, 55, 569-578.	7.3	160
41	Interdependence of initial cell density, drug concentration and exposure time revealed by real-time impedance spectroscopic cytotoxicity assay. Analyst, The, 2015, 140, 3623-3629.	3.5	24
42	A reusable device for electrochemical applications of hydrogel supported black lipid membranes. Biomedical Microdevices, 2015, 17, 21.	2.8	7
43	An impedance method for spatial sensing of 3D cell constructs – towards applications in tissue engineering. Analyst, The, 2015, 140, 6079-6088.	3.5	19
44	Bioimpedance monitoring of 3D cell culturing—Complementary electrode configurations for enhanced spatial sensitivity. Biosensors and Bioelectronics, 2015, 63, 72-79.	10.1	44
45	A Compact Microelectrode Array Chip with Multiple Measuring Sites for Electrochemical Applications. Sensors, 2014, 14, 9505-9521.	3.8	30
46	Pyrolysed 3Dâ€Carbon Scaffolds Induce Spontaneous Differentiation of Human Neural Stem Cells and Facilitate Realâ€Time Dopamine Detection. Advanced Functional Materials, 2014, 24, 7042-7052.	14.9	62
47	Bioelectrochemical probing of intracellular redox processes in living yeast cells—application of redox polymer wiring in a microfluidic environment. Analytical and Bioanalytical Chemistry, 2013, 405, 3847-3858.	3.7	29
48	Doped overoxidized polypyrrole microelectrodes as sensors for the detection of dopamine released from cell populations. Analyst, The, 2013, 138, 3651.	3.5	64
49	The MainSTREAM Component Platform. Journal of the Association for Laboratory Automation, 2013, 18, 212-228.	2.8	25
50	Poly(Dimethylsiloxane) (PDMS) Affects Gene Expression in PC12 Cells Differentiating into Neuronal-Like Cells. PLoS ONE, 2013, 8, e53107.	2.5	32
51	Modular microfluidic system as a model of cystic fibrosis airways. Biomicrofluidics, 2012, 6, 34109.	2.4	23
52	Compact potentiostat for cellular electrochemical imaging with 54 parallel channels. , 2012, , .		3
53	Quantitative Label-Free Cell Proliferation Tracking with a Versatile Electrochemical Impedance Detection Platform. Journal of Physics: Conference Series, 2012, 407, 012029.	0.4	7
54	Fabrication of high-aspect ratio SU-8 micropillar arrays. Microelectronic Engineering, 2012, 98, 483-487.	2.4	49

#	Article	IF	CITATIONS
55	Multichannel Bipotentiostat Integrated With a Microfluidic Platform for Electrochemical Real-Time Monitoring of Cell Cultures. IEEE Transactions on Biomedical Circuits and Systems, 2012, 6, 498-507.	4.0	50
56	Self-Assembled Diphenylalanine Nanowires for Cellular Studies and Sensor Applications. Journal of Nanoscience and Nanotechnology, 2012, 12, 3077-3083.	0.9	30
57	Interaction between sodium dodecyl sulfate and membrane reconstituted aquaporins: A comparative study of spinach SoPIP2;1 and E. coli AqpZ. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2600-2607.	2.6	32
58	Assessing the efficacy of vesicle fusion with planar membrane arrays using a mitochondrial porin as reporter. Biochemical and Biophysical Research Communications, 2011, 406, 96-100.	2.1	14
59	Probing the redox metabolism in the strictly anaerobic, extremely thermophilic, hydrogen-producing Caldicellulosiruptor saccharolyticus using amperometry. Extremophiles, 2011, 15, 77-87.	2.3	8
60	Formation of Giant Protein Vesicles by a Lipid Cosolvent Method. ChemBioChem, 2011, 12, 2856-2862.	2.6	12
61	Construction and characterisation of a modular microfluidic system: coupling magnetic capture and electrochemical detection. Microfluidics and Nanofluidics, 2010, 8, 393-402.	2.2	27
62	Conducting Polymer 3D Microelectrodes. Sensors, 2010, 10, 10986-11000.	3.8	18
63	Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies. Lab on A Chip, 2010, 10, 2162.	6.0	105
64	On-chip microfluidic systems for determination of L-glutamate based on enzymatic recycling of substrate. Biomicrofluidics, 2009, 3, 014104.	2.4	19
65	Automated sampling and data processing derived from biomimetic membranes. Bioinspiration and Biomimetics, 2009, 4, 044001.	2.9	6
66	Development of an automation technique for the establishment of functional lipid bilayer arrays. Journal of Micromechanics and Microengineering, 2009, 19, 025014.	2.6	46
67	Large scale biomimetic membrane arrays. Analytical and Bioanalytical Chemistry, 2009, 395, 719-727.	3.7	38
68	Gold cleaning methods for electrochemical detection applications. Microelectronic Engineering, 2009, 86, 1282-1285.	2.4	257
69	Negative UV–NIL (NUV–NIL) – A mix-and-match NIL and UV strategy for realisation of nano- and micrometre structures. Microelectronic Engineering, 2009, 86, 654-656.	2.4	13
70	Real-time detection of cofactor availability in genetically modified living Saccharomyces cerevisiae cells — Simultaneous probing of different geno- and phenotypes. Bioelectrochemistry, 2009, 76, 180-188.	4.6	12
71	Mediator-assisted simultaneous probing of cytosolic and mitochondrial redox activity in living cells. Analytical Biochemistry, 2009, 384, 11-19.	2.4	27
72	Electrochemical Probing of in Vivo 5-Hydroxymethyl Furfural Reduction in <i>Saccharomyces cerevisiae</i> . Analytical Chemistry, 2009, 81, 9896-9901.	6.5	17

#	Article	IF	CITATIONS
73	Chip Based Electroanalytical Systems for Cell Analysis. Electroanalysis, 2008, 20, 680-702.	2.9	69
74	Monitoring of <i>Saccharomyces cerevisiae</i> Cell Proliferation on Thiol-Modified Planar Gold Microelectrodes Using Impedance Spectroscopy. Langmuir, 2008, 24, 9066-9073.	3.5	54
75	Fully automated microchip system for the detection of quantal exocytosis from single and small ensembles of cells. Lab on A Chip, 2008, 8, 323-329.	6.0	53
76	Analysis of Triazines and Associated Metabolites with Electrospray Ionization Field-Asymmetric Ion Mobility Spectrometry/Mass Spectrometry. Analytical Sciences, 2008, 24, 973-978.	1.6	12
77	Amperometric Response from the Glycolytic versus the Pentose Phosphate Pathway in <i>Saccharomyces cerevisiae</i> Cells. Analytical Chemistry, 2007, 79, 8919-8926.	6.5	34
78	On-Chip Determination of Dopamine Exocytosis Using Mercaptopropionic Acid Modified Microelectrodes. Electroanalysis, 2007, 19, 263-271.	2.9	71
79	Electroenzymatic reactions with oxygen on laccase-modified electrodes in anhydrous (pure) organic solvent. Bioelectrochemistry, 2007, 70, 199-204.	4.6	6
80	A micro-immuno supported liquid membrane assay (μ-ISLMA). Biosensors and Bioelectronics, 2006, 21, 1513-1520.	10.1	13
81	Evaluation of progesterone content in saliva using magnetic particle-based immuno supported liquid membrane assay (m-ISLMA). Biosensors and Bioelectronics, 2006, 22, 241-246.	10.1	26
82	Selective immuno-supported liquid membrane (ISLM) extraction, enrichment and analysis of 2,4,6-trichlorophenol. Journal of Membrane Science, 2005, 256, 143-143.	8.2	9
83	Chemometric exploration of an amperometric biosensor array for fast determination of wastewater quality. Biosensors and Bioelectronics, 2005, 21, 608-617.	10.1	71
84	Amperometric screen-printed biosensor arrays with co-immobilised oxidoreductases and cholinesterases. Analytica Chimica Acta, 2005, 528, 9-19.	5.4	65
85	A steady-state and flow-through cell for screen-printed eight-electrode arrays. Analytica Chimica Acta, 2005, 531, 165-172.	5.4	20
86	An Amperometric Biosensor Based on Laccase Immobilized in Polymer Matrices for Determining Phenolic Compounds. Journal of Analytical Chemistry, 2005, 60, 553-557.	0.9	30
87	Chapter 9 Immunoassay: potentials and limitations. Comprehensive Analytical Chemistry, 2005, , 375-427.	1.3	4
88	Ultrasensitive Magnetic Particle-Based Immunosupported Liquid Membrane Assay. Analytical Chemistry, 2005, 77, 7156-7162.	6.5	35
89	Multivariate data analysis of dynamic amperometric biosensor responses from binary analyte mixtures?application of sensitivity correction algorithms. Talanta, 2005, 65, 298-305.	5.5	11
90	Multienzyme electrochemical array sensor for determination of phenols and pesticides. Talanta, 2005, 65, 349-357.	5.5	60

#	Article	IF	CITATIONS
91	Immuno-SLM—a combined sample handling and analytical technique. Journal of Immunological Methods, 2004, 284, 107-118.	1.4	11
92	Comamonas testosteroni Strain TI as a Potential Base for a Microbial Sensor Detecting Surfactants. Applied Biochemistry and Microbiology, 2004, 40, 404-408.	0.9	16
93	Multivariate analysis to separate the signal given by cross-reactants in immunoassay with sample matrix dilution. Analytical and Bioanalytical Chemistry, 2004, 380, 898-907.	3.7	8
94	Amperometric monitoring of redox activity in living yeast cells: comparison of menadione and menadione sodium bisulfite as electron transfer mediators. Electrochemistry Communications, 2004, 6, 219-224.	4.7	56
95	Specific detection of l-glutamate in food using flow-injection analysis and enzymatic recycling of substrate. Analytica Chimica Acta, 2004, 518, 127-135.	5.4	21
96	A chemiluminescence flow immunosensor based on a porous monolithic metacrylate and polyethylene composite disc modified with Protein G. Biosensors and Bioelectronics, 2004, 19, 795-803.	10.1	35
97	Microfluidic biosensing systems : Part I. Development and optimisation of enzymatic chemiluminescent µ-biosensors based on silicon microchips. Lab on A Chip, 2004, 4, 481-487.	6.0	53
98	Microfluidic biosensing systems : Part II. Monitoring the dynamic production of glucose and ethanol from microchip-immobilised yeast cells using enzymatic chemiluminescent µ-biosensors. Lab on A Chip, 2004, 4, 488-494.	6.0	31
99	Developments toward a Microfluidic System for Long-Term Monitoring of Dynamic Cellular Events in Immobilized Human Cells. Analytical Chemistry, 2004, 76, 4715-4720.	6.5	31
100	A capillary-based amperometric flow immunoassay for 2,4,6-trichlorophenol. Analytical and Bioanalytical Chemistry, 2003, 375, 125-132.	3.7	19
101	Screen-printed multienzyme arrays for use in amperometric batch and flow systems. Analytical and Bioanalytical Chemistry, 2003, 376, 1098-1103.	3.7	21
102	Microfluidic enzyme immunosensors with immobilised protein A and G using chemiluminescence detection. Biosensors and Bioelectronics, 2003, 19, 21-34.	10.1	130
103	A flow immunoassay for alkylphenol ethoxylate surfactants and their metabolites—questions associated with cross-reactivity, matrix effects, and validation by chromatographic techniques. Analyst, The, 2003, 128, 849-856.	3.5	10
104	Amperometric sensors based on tyrosinase-modified screen-printed arrays. Talanta, 2003, 61, 473-483.	5.5	15
105	GDH biosensor based off-line capillary immunoassay for alkylphenols and their ethoxylates. Biosensors and Bioelectronics, 2002, 17, 1033-1043.	10.1	38
106	In-field monitoring of cleaning efficiency in waste water treatment plants using two phenol-sensitive biosensors. Analytica Chimica Acta, 2002, 456, 3-17.	5.4	36
107	Microfluidic Enzyme Immunoassay Using Silicon Microchip with Immobilized Antibodies and Chemiluminescence Detection. Analytical Chemistry, 2002, 74, 2994-3004.	6.5	314
108	A glucose dehydrogenase biosensor as an additional signal amplification step in an enzyme-flow immunoassay. Analyst, The, 2002, 127, 1076-1081.	3.5	18

#	Article	IF	CITATIONS
109	Antibody-based methods for surfactant screening. Fresenius' Journal of Analytical Chemistry, 2001, 371, 456-466.	1.5	53
110	Enzyme flow immunoassay using a Protein G column for the screening of triazine herbicides in surface and waste water. Analytica Chimica Acta, 2001, 426, 197-207.	5.4	16
111	Competitive flow immunoassay with fluorescence detection for determination of 4-nitrophenol. Analytica Chimica Acta, 2001, 426, 185-195.	5.4	128
112	Inter-laboratory comparison of liquid chromatographic techniques and enzyme-linked immunosorbent assay for the determination of surfactants in wastewaters. Journal of Chromatography A, 2000, 889, 195-209.	3.7	31
113	Flow immunochemical bio-recognition detection for the determination of Interleukin-10 in cell samples. Journal of Immunological Methods, 2000, 246, 119-130.	1.4	6
114	An Enzyme Flow Immunoassay that Uses β-Galactosidase as the Label and a Cellobiose Dehydrogenase Biosensor as the Label Detector. Analytical Chemistry, 2000, 72, 4171-4177.	6.5	38
115	Immunologic Trapping in Supported Liquid Membrane Extraction. Analytical Chemistry, 2000, 72, 5280-5284.	6.5	29
116	Direct and Mediated Electron Transfer Catalyzed by Anionic Tobacco Peroxidase: Effect of Calcium Ions. Applied Biochemistry and Biotechnology, 2000, 88, 321-334.	2.9	20
117	Bioanalytical tools for monitoring polar pollutants. Waste Management, 1999, 19, 147-170.	7.4	45
118	Improved stability and altered selectivity of tyrosinase based graphite electrodes for detection of phenolic compounds. Analytica Chimica Acta, 1999, 387, 309-326.	5.4	163
119	High sample throughput flow immunoassay utilising restricted access columns for the separation of bound and free label. Journal of Chromatography A, 1998, 800, 219-230.	3.7	49
120	On-line coupling of microdialysis sampling with liquid chromatography for the determination of peptide and non-peptide leukotrienes. Journal of Chromatography A, 1998, 823, 489-496.	3.7	23
121	Optimisation of a heterogeneous non-competitive flow immunoassay comparing fluorescein, peroxidase and alkaline phosphatase as labels. Journal of Immunological Methods, 1998, 211, 33-42.	1.4	20
122	Fluorescence polarisation for immunoreagent characterisation. Journal of Immunological Methods, 1998, 213, 31-39.	1.4	46
123	A flow immunoassay for studies of human exposure and toxicity in biological samples. , 1998, 11, 182-184.		7
124	An enzyme flow immunoassay using alkaline phosphatase as the label and a tyrosinase biosensor as the label detector. Analytical Communications, 1998, 35, 417-419.	2.2	24
125	Bioelectrochemical Monitoring of Phenols and Aromatic Amines in Flow Injection Using Novel Plant Peroxidases. Analytical Chemistry, 1998, 70, 2596-2600.	6.5	124
126	On-line supported liquid membrane-liquid chromatography with a phenol oxidase-based biosensor as a selective detection unit for the determination of phenols in blood plasma. Biomedical Applications, 1997, 701, 39-46.	1.7	32

#	Article	lF	CITATIONS
127	Amperometric detection of phenols using peroxidase-modified graphite electrodes. Analytica Chimica Acta, 1997, 347, 51-62.	5.4	78
128	Rate-Limiting Steps of Tyrosinase-Modified Electrodes for the Detection of Catechol. Analytical Chemistry, 1996, 68, 1605-1611.	6.5	83
129	On-line solid-phase extraction in liquid chromatography using restricted access pre-columns for the analysis of s-triazines in humic-containing waters. Journal of Chromatography A, 1996, 737, 35-45.	3.7	44
130	Characterization of tyrosinase-teflon/graphite composite electrodes for the determination of catechol in environmental analysis. Electroanalysis, 1996, 8, 885-890.	2.9	18
131	Effect of HY-zeolites on the performance of tyrosinase-modified carbon paste electrodes. Electroanalysis, 1996, 8, 1121-1126.	2.9	39
132	Peroxidase-modified electrodes: Fundamentals and application. Analytica Chimica Acta, 1996, 330, 123-138.	5.4	504
133	Electrochemical properties of some copper-containing oxidases. Bioelectrochemistry, 1996, 40, 49-57.	1.0	121
134	Flow-injection analysis of phenols at a graphite electrode modified with co-immobilised laccase and tyrosinase. Analytica Chimica Acta, 1995, 308, 137-144.	5.4	160
135	Effects of different additives on a tyrosinase based carbon paste electrode. Analytica Chimica Acta, 1995, 305, 8-17.	5.4	72
136	The development of a peroxidase biosensor for monitoring phenol and related aromatic compounds. Analytica Chimica Acta, 1995, 311, 245-253.	5.4	147
137	Tyrosinase graphite-epoxy based composite electrodes for detection of phenols. Biosensors and Bioelectronics, 1995, 10, 607-619.	10.1	135
138	Biospecific detection in liquid chromatography. Journal of Chromatography A, 1995, 703, 191-243.	3.7	38
139	Development of enzyme-based amperometric sensors for the determination of phenolic compounds. TrAC - Trends in Analytical Chemistry, 1995, 14, 319-328.	11.4	89
140	Phenol oxidase-based biosensors as selective detection units in column liquid chromatography for the determination of phenolic compounds. Journal of Chromatography A, 1994, 675, 65-78.	3.7	104
141	Electrochemical characterization of carbon pastes modified with proteins and polycations. Journal of Electroanalytical Chemistry, 1994, 372, 49-55.	3.8	62
142	Comparison between different inorganic supports for the immobilization of amyloglucosidase and α-amylase to be used in enzyme reactors in flow-injection systems. Analytica Chimica Acta, 1993, 276, 303-318.	5.4	26
143	Comparison between different inorganic supports for the immobilization of amyloglucosidase and α-amylase to be used in enzyme reactors in flow-injection systems. Analytica Chimica Acta, 1993, 276, 319-328.	5.4	16
144	A Flow Injection System for the Determination of Starch in Starch from Different Origins with Immobilized α-Amylase and Amyloglucosidase Reactors. Starch/Staerke, 1993, 45, 264-270.	2.1	10

#	Article	IF	CITATIONS
145	Selective detection in flow analysis based on the combination of immobilized enzymes and chemically modified electrodes. Analytica Chimica Acta, 1991, 250, 203-248.	5.4	225
146	Effects on the hydrolysis of native starch and glycogen by a thermostable α-amylase after immobilization on solid supports. Analytica Chimica Acta, 1990, 234, 97-106.	5.4	30
147	Flow system for starch determination based on consecutive enzyme steps and amperometric detection at a chemically modified electrode. Analytical Chemistry, 1990, 62, 263-268.	6.5	38
148	Electrochemical Immunoassays. , 0, , 377-410.		11
149	Hydrogen Peroxide Detection Using Prussian Blueâ€Modified 3D Pyrolytic Carbon Microelectrodes. Electroanalysis, 0, , .	2.9	4