
Susan D Healy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6252187/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A critique of comparative studies of brain size. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 453-464.	2.6	413
2	Cognition and personality: an analysis of an emerging field. Trends in Ecology and Evolution, 2015, 30, 207-214.	8.7	268
3	The evolution of sex differences in spatial ability Behavioral Neuroscience, 2003, 117, 403-411.	1.2	236
4	Comparative evaluation and its implications for mate choice. Trends in Ecology and Evolution, 2005, 20, 659-664.	8.7	236
5	Context–dependent foraging decisions in rufous hummingbirds. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1271-1276.	2.6	143
6	Timing in Free-Living Rufous Hummingbirds, Selasphorus rufus. Current Biology, 2006, 16, 512-515.	3.9	141
7	Food Storing and the Hippocampus in Paridae. Brain, Behavior and Evolution, 1996, 47, 195-199.	1.7	122
8	Irrational choices in hummingbird foraging behaviour. Animal Behaviour, 2002, 63, 587-596.	1.9	121
9	The hippocampus, spatial memory and food hoarding: a puzzle revisited. Trends in Ecology and Evolution, 2005, 20, 17-22.	8.7	106
10	Memory for flowers in rufous hummingbirds: location or local visual cues?. Animal Behaviour, 1996, 51, 1149-1157.	1.9	98
11	Spatial working memory in rats: no differences between the sexes. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 2303-2308.	2.6	95
12	Vocal mimicry in songbirds. Animal Behaviour, 2008, 76, 521-528.	1.9	92
13	Spatial memory of paridae: comparison of a storing and a non-storing species, the coal tit, Parus ater, and the great tit, P. major. Animal Behaviour, 1990, 39, 1127-1137.	1.9	87
14	Rufous hummingbirds' memory for flower location. Animal Behaviour, 2001, 61, 981-986.	1.9	78
15	Spatial ability is impaired and hippocampal mineralocorticoid receptor mRNA expression reduced in zebra finches (Taeniopygia guttata) selected for acute high corticosterone response to stress. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 239-245.	2.6	77
16	Why study cognition in the wild (and how to test it)?. Journal of the Experimental Analysis of Behavior, 2016, 105, 41-55.	1.1	73
17	Physical cognition: birds learn the structural efficacy of nest material. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133225.	2.6	71
18	Environmental enrichment enhances spatial cognition in rats by reducing thigmotaxis (wall hugging) during testing. Animal Behaviour, 2009, 77, 1459-1464.	1.9	69

#	Article	IF	CITATIONS
19	Repeatability of nest morphology in African weaver birds. Biology Letters, 2010, 6, 149-151.	2.3	68
20	â€~Neuroecologists' are not made of straw. Trends in Cognitive Sciences, 2002, 6, 6-7.	7.8	65
21	Variation in Reproductive Success Across Captive Populations: Methodological Differences, Potential Biases and Opportunities. Ethology, 2017, 123, 1-29.	1.1	60
22	Visual lateralization is task and age dependent in cuttlefish, Sepia officinalis. Animal Behaviour, 2012, 83, 1313-1318.	1.9	59
23	The role of adult experience in nest building in the zebra finch, Taeniopygia guttata. Animal Behaviour, 2011, 82, 185-189.	1.9	58
24	The evolution of cerebellum structure correlates with nest complexity. Biology Letters, 2013, 9, 20130687.	2.3	56
25	Spatial relational learning in rufous hummingbirds (Selasphorus rufus). Animal Cognition, 2006, 9, 201-205.	1.8	55
26	Individuality in nest building: Do Southern Masked weaver (Ploceus velatus) males vary in their nest-building behaviour?. Behavioural Processes, 2011, 88, 1-6.	1.1	55
27	Social learning in nest-building birds: a role for familiarity. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152685.	2.6	54
28	Emotionality in growing pigs: Is the open field a valid test?. Physiology and Behavior, 2011, 104, 906-913.	2.1	52
29	Rufous hummingbirds' (Selasphorus rufus) memory for flowers: Patterns or actual spatial locations?. Journal of Experimental Psychology, 1998, 24, 396-404.	1.7	51
30	Spatial Learning and Memory in Birds. Brain, Behavior and Evolution, 2004, 63, 211-220.	1.7	51
31	Differences in cue use and spatial memory in men and women. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2241-2247.	2.6	51
32	Traplining in hummingbirds: flying short-distance sequences among several locations. Behavioral Ecology, 2015, 26, 812-819.	2.2	48
33	A comparative study of how British tits encode predator threat in their mobbing calls. Animal Behaviour, 2017, 125, 77-92.	1.9	44
34	What Can Nest-Building Birds Teach Us?. Comparative Cognition and Behavior Reviews, 0, 11, 83-102.	2.0	44
35	Ecology and allometry predict the evolution of avian developmental durations. Nature Communications, 2020, 11, 2383.	12.8	42
36	Birds build camouflaged nests. Auk, 2015, 132, 11-15.	1.4	41

#	Article	IF	CITATIONS
37	Comparing spatial memory in two species of tit: Recalling a single positive location. Learning and Behavior, 1992, 20, 121-126.	3.4	40
38	Spatial memory of food-storing tits (Parus ater and P. atricapillus): Comparison of storing and nonstoring tasks Journal of Comparative Psychology (Washington, D C: 1983), 1990, 104, 71-81.	0.5	39
39	Zebra finches select nest material appropriate for a building task. Animal Behaviour, 2014, 90, 237-244.	1.9	37
40	Context-dependent decisions among options varying in a single dimension. Behavioural Processes, 2012, 89, 115-120.	1.1	36
41	Preference for spatial cues in a non-storing songbird species. Animal Cognition, 2005, 8, 211-214.	1.8	35
42	Costs and benefits of evolving a larger brain: doubts over the evidence that large brains lead to better cognition. Animal Behaviour, 2013, 86, e1-e3.	1.9	35
43	From neurons to nests: nest-building behaviour as a model in behavioural and comparative neuroscience. Journal of Ornithology, 2015, 156, 133-143.	1.1	35
44	Memory for Locations of Stored Food in Willow Tits and Marsh Tits. Behaviour, 1996, 133, 71-80.	0.8	31
45	Cognitive Ecology: Foraging in Hummingbirds as a Model System. Advances in the Study of Behavior, 2003, 32, 325-359.	1.6	31
46	Do rufous hummingbirds (Selasphorus rufus) use visual beacons?. Animal Cognition, 2010, 13, 377-383.	1.8	31
47	Cue learning by rufous hummingbirds (Selasphorus rufus) Journal of Experimental Psychology, 2002, 28, 209-223.	1.7	30
48	What hummingbirds can tell us about cognition in the wild. Comparative Cognition and Behavior Reviews, 0, 8, 13-28.	2.0	30
49	Nest building, the forgotten behaviour. Current Opinion in Behavioral Sciences, 2015, 6, 90-96.	3.9	30
50	Animal learning and memory: an integration of cognition and ecology. Zoology, 2002, 105, 321-327.	1.2	28
51	Learning and Animal Movement. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	28
52	Sex differences, or not, in spatial cognition in albino rats: acute stress is the key. Animal Behaviour, 2008, 76, 1579-1589.	1.9	27
53	Dairy cows trade-off feed quality with proximity to a dominant individual in Y-maze choice tests. Applied Animal Behaviour Science, 2009, 117, 159-164.	1.9	27
54	Both the past and the present affect risk-sensitive decisions of foraging rufous hummingbirds. Behavioral Ecology, 2010, 21, 626-632.	2.2	27

#	Article	IF	CITATIONS
55	The coevolution of building nests on the ground and domed nests in Timaliidae. Auk, 2015, 132, 584-593.	1.4	27
56	Neural correlates of nesting behavior in zebra finches (Taeniopygia guttata). Behavioural Brain Research, 2014, 264, 26-33.	2.2	26
57	<i>What</i> , <i>where</i> and <i>when</i> : deconstructing memory. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20132194.	2.6	24
58	Nest-building males trade off material collection costs with territory value. Emu, 2016, 116, 1-8.	0.6	24
59	Are Elaborate Bird Nests Built Using Simple Rules?. Avian Biology Research, 2013, 6, 157-162.	0.9	23
60	Influence of sex steroid hormones on spatial memory in a songbird. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2008, 194, 963-969.	1.6	22
61	One-trial spatial learning: wild hummingbirds relocate a reward after a single visit. Animal Cognition, 2012, 15, 631-637.	1.8	22
62	Three-dimensional space: locomotory style explains memory differences in rats and hummingbirds. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140301.	2.6	22
63	Time–place learning in wild, free-living hummingbirds. Animal Behaviour, 2015, 104, 123-129.	1.9	22
64	Female hummingbirds do not relocate rewards using colour cues. Animal Behaviour, 2014, 93, 129-133.	1.9	21
65	Adjusting foraging strategies: a comparison of rural and urban common mynas (Acridotheres tristis). Animal Cognition, 2017, 20, 65-74.	1.8	21
66	lt's not all about temperature: breeding success also affects nest design. Behavioral Ecology, 2020, 31, 1065-1072.	2.2	21
67	The Function of Displays of Male Rufous Hummingbirds. Condor, 2001, 103, 647-651.	1.6	20
68	Effects of landmark distance and stability on accuracy of reward relocation. Animal Cognition, 2015, 18, 1285-1297.	1.8	20
69	Foraging and spatial learning in hummingbirds. , 2001, , 127-147.		18
70	Zebra Finches and cognition. Emu, 2010, 110, 242-250.	0.6	18
71	The mimetic repertoire of the spotted bowerbird Ptilonorhynchus maculatus. Die Naturwissenschaften, 2011, 98, 501-507.	1.6	18
72	Juvenile socio-ecological environment shapes material technology in nest-building birds. Behavioral Ecology, 2020, 31, 892-901.	2.2	18

#	Article	IF	CITATIONS
73	Not by transmission alone: the role of invention in cultural evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200049.	4.0	18
74	Cue learning by rufous hummingbirds (Selasphorus rufus). Journal of Experimental Psychology, 2002, 28, 209-23.	1.7	18
75	Zebra Finches Build Nests that do not Resemble their Natal Nest. Avian Biology Research, 2012, 5, 218-226.	0.9	17
76	Colour preferences in nest-building zebra finches. Behavioural Processes, 2013, 99, 106-111.	1.1	17
77	Wild, free-living hummingbirds can learn what happened, where and in which context. Animal Behaviour, 2014, 89, 185-189.	1.9	17
78	Animal Cognition: The Trade-off to Being Smart. Current Biology, 2012, 22, R840-R841.	3.9	16
79	Do a flower's features help hummingbirds to learn its contents and refill rate?. Animal Behaviour, 2012, 83, 1163-1169.	1.9	16
80	Mechanisms of copying behaviour in zebra finches. Behavioural Processes, 2014, 108, 177-182.	1.1	16
81	Hoo are you? Tits do not respond to novel predators as threats. Animal Behaviour, 2017, 128, 79-84.	1.9	16
82	THE FUNCTION OF DISPLAYS OF MALE RUFOUS HUMMINGBIRDS. Condor, 2001, 103, 647.	1.6	15
83	Hummingbirds choose not to rely on good taste: information use during foraging. Behavioral Ecology, 2011, 22, 471-477.	2.2	15
84	Social learning in nestâ€building birds watching liveâ€streaming video demonstrators. Integrative Zoology, 2019, 14, 204-213.	2.6	15
85	Vocal mimicry in spotted bowerbirds is associated with an alarming context. Journal of Avian Biology, 2012, 43, 525-530.	1.2	14
86	Taking an insect-inspired approach to bird navigation. Learning and Behavior, 2018, 46, 7-22.	1.0	14
87	Social learning about construction behaviour via an artefact. Animal Cognition, 2019, 22, 305-315.	1.8	14
88	Vocal mimicry in male bowerbirds: who learns from whom?. Biology Letters, 2010, 6, 626-629.	2.3	13
89	Three-dimensional spatial learning in hummingbirds. Animal Behaviour, 2013, 85, 579-584.	1.9	13
90	Colour cues facilitate learning flower refill schedules in wild hummingbirds. Behavioural Processes, 2014, 109, 157-163.	1.1	13

#	Article	IF	CITATIONS
91	Wild hummingbirds rely on landmarks not geometry when learning an array of flowers. Animal Cognition, 2014, 17, 1157-1165.	1.8	13
92	The roles of vocal and visual interactions in social learning zebra finches: A video playback experiment. Behavioural Processes, 2017, 139, 43-49.	1.1	13
93	The face of animal cognition. Integrative Zoology, 2019, 14, 132-144.	2.6	13
94	Food preference and copying behaviour in zebra finches, Taeniopygia guttata. Behavioural Processes, 2014, 109, 145-150.	1.1	12
95	Individual differences in decision making by foraging hummingbirds. Behavioural Processes, 2014, 109, 195-200.	1.1	12
96	Wild rufous hummingbirds use local landmarks to return to rewarded locations. Behavioural Processes, 2016, 122, 59-66.	1.1	12
97	Wild hummingbirds require a consistent view of landmarks to pinpoint a goal location. Animal Behaviour, 2018, 137, 83-94.	1.9	12
98	Sex differences in spatial cognition are not caused by isolation housing. Behaviour, 2008, 145, 757-778.	0.8	11
99	Wild, free-living rufous hummingbirds do not use geometric cues in a spatial task. Behavioural Processes, 2014, 108, 138-141.	1.1	11
100	Vocal mimicry. Current Biology, 2011, 21, R9-R10.	3.9	10
101	Wild fledgling tits do not mob in response to conspecific or heterospecific mobbing calls. Ibis, 2020, 162, 1024-1032.	1.9	10
102	From a sequential pattern, temporal adjustments emerge in hummingbird traplining. Integrative Zoology, 2019, 14, 182-192.	2.6	8
103	Image analysis of weaverbird nests reveals signature weave textures. Royal Society Open Science, 2015, 2, 150074.	2.4	7
104	Physical Cognition and Tool Use in Birds. , 0, , 163-183.		7
105	Neural Circuits Underlying Nest Building in Male Zebra Finches. Integrative and Comparative Biology, 2020, 60, 943-954.	2.0	7
106	A nonâ€destructive approach to collect nest material data using photographs. Ibis, 2021, 163, 1457-1462.	1.9	7
107	Is Bigger Always Better?. Science, 2011, 333, 708-709.	12.6	6
108	Deterring hooded crows from re-nesting on power poles. Wildlife Society Bulletin, 2012, 36, 729-734.	1.6	6

#	Article	lF	CITATIONS
109	Microsatellite variation in Rufous Hummingbirds (Selasphorus rufus) and evidence for a weakly structured population. Journal of Ornithology, 2013, 154, 1029-1037.	1.1	6
110	Early-life adversity programs long-term cytokine and microglia expression within the HPA axis in female Japanese quail Journal of Experimental Biology, 2019, 222, .	1.7	6
111	Reproductive consequences of material use in avian nest construction. Behavioural Processes, 2021, 193, 104507.	1.1	6
112	Hummingbirds. Current Biology, 2006, 16, R392-R393.	3.9	5
113	Sex differences in performance on a cognitive bias task in Norway rats. Behavioural Processes, 2016, 133, 52-55.	1.1	5
114	Numerical ordinality in a wild nectarivore. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201269.	2.6	5
115	Object manipulation without hands. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20203184.	2.6	5
116	Comparative Studies of the Brain and Its Components. Animal Biology, 1989, 40, 203-214.	0.4	4
117	Imprinting: Seeing Food and Eating It. Current Biology, 2006, 16, R501-R502.	3.9	4
118	Measuring cognition will be difficult but worth it: a response to comments on Rowe and Healy. Behavioral Ecology, 2014, 25, 1298-1298.	2.2	4
119	Nest site selection and patterns of nest re-use in the Hooded Crow Corvus cornix. Bird Study, 2017, 64, 374-385.	1.0	4
120	Animal cognition in the wild. Behavioural Processes, 2014, 109, 101-102.	1.1	3
121	Presentation order affects decisions made by foraging hummingbirds. Behavioral Ecology and Sociobiology, 2016, 70, 21-26.	1.4	3
122	Wild hummingbirds can use the geometry of a flower array. Behavioural Processes, 2017, 139, 33-37.	1.1	3
123	Food Storing and Memory. , 2017, , 52-74.		3
124	Animal cognition. Integrative Zoology, 2019, 14, 128-131.	2.6	3
125	The Impact of Acute Loud Noise on the Behavior of Laboratory Birds. Frontiers in Veterinary Science, 2020, 7, 607632.	2.2	3
126	Manipulative and Technological Skills Do Not Require a Slow Life History. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	3

#	Article	IF	CITATIONS
127	Estimating on the fly: The approximate number system in rufous hummingbirds (Selasphorus rufus). Learning and Behavior, 2021, 49, 67-75.	1.0	3
128	It Began in Ponds and Rivers: Charting the Beginnings of the Ecology of Fish Cognition. Frontiers in Veterinary Science, 2022, 9, 823143.	2.2	3
129	Spatial Cognition in Birds. , 0, , 6-29.		2
130	Solving Foraging Problems: Top-down and Bottom-up Perspectives on the Role of Cognition. , 0, , 119-140.		2
131	Response to Francis: Puzzles are a challenge, not a frustration. Trends in Ecology and Evolution, 2005, 20, 477.	8.7	1
132	More data required: a comment on Croston et al Behavioral Ecology, 2015, 26, 1462-1462.	2.2	1
133	Nest Building in Birds. , 2019, , 523-532.		1
134	The rationality of decisions depends on behavioural context. Behavioural Processes, 2021, 182, 104293.	1.1	1
135	Involvement of the neural social behaviour network during social information acquisition in zebra finches (Taeniopygia guttata). Learning and Behavior, 2022, 50, 189-200.	1.0	1
136	Size is relative: use of relational concepts by wild hummingbirds. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212508.	2.6	1
137	Communal nesting by Hooded Crows. Bird Study, 2015, 62, 423-426.	1.0	0
138	Assessment of health in human faces is context-dependent. Behavioural Processes, 2016, 125, 89-95.	1.1	0
139	Spatial Cognition and Ecology: Hummingbirds as a Case Study. , 0, , 30-51.		0
140	Hummingbirds modify their routes to avoid a poor location. Learning and Behavior, 2021, , 1.	1.0	0
141	Space, the original frontier. Current Opinion in Behavioral Sciences, 2022, 44, 101106.	3.9	Ο