
Rasheduzzaman Chowdhury

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6251794/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibition of JMJD6 by 2â€Oxoglutarate Mimics. ChemMedChem, 2022, 17, e202100398.	3.2	5
2	Conservation of the unusual dimeric JmjC fold of JMJD7 from Drosophila melanogaster to humans. Scientific Reports, 2022, 12, 6065.	3.3	3
3	Factor inhibiting HIF can catalyze two asparaginyl hydroxylations in VNVN motifs of ankyrin fold proteins. Journal of Biological Chemistry, 2022, 298, 102020.	3.4	4
4	Structural Basis of Prolyl Hydroxylase Domain Inhibition by Molidustat. ChemMedChem, 2021, 16, 2082-2088.	3.2	22
5	Human Oxygenase Variants Employing a Single Protein Fe II Ligand Are Catalytically Active. Angewandte Chemie, 2021, 133, 14778-14784.	2.0	0
6	Human Oxygenase Variants Employing a Single Protein Fe ^{II} Ligand Are Catalytically Active. Angewandte Chemie - International Edition, 2021, 60, 14657-14663.	13.8	10
7	Structureâ€Activity Relationship and Crystallographic Studies on 4â€Hydroxypyrimidine HIF Prolyl Hydroxylase Domain Inhibitors. ChemMedChem, 2020, 15, 270-273.	3.2	21
8	Biochemical and biophysical analyses of hypoxia sensing prolyl hydroxylases from Dictyostelium discoideum and Toxoplasma gondii. Journal of Biological Chemistry, 2020, 295, 16545-16561.	3.4	10
9	A human protein hydroxylase that accepts D-residues. Communications Chemistry, 2020, 3, .	4.5	6
10	Use of cyclic peptides to induce crystallization: case study with prolyl hydroxylase domain 2. Scientific Reports, 2020, 10, 21964.	3.3	5
11	Small-molecules that covalently react with a human prolyl hydroxylase – towards activity modulation and substrate capture. Chemical Communications, 2019, 55, 1020-1023.	4.1	6
12	Biochemical and structural investigations clarify the substrate selectivity of the 2-oxoglutarate oxygenase JMJD6. Journal of Biological Chemistry, 2019, 294, 11637-11652.	3.4	25
13	Studies on spiro[4.5]decanone prolyl hydroxylase domain inhibitors. MedChemComm, 2019, 10, 500-504.	3.4	8
14	2-Oxoglutarate-Dependent Oxygenases. Annual Review of Biochemistry, 2018, 87, 585-620.	11.1	276
15	Non-competitive cyclic peptides for targeting enzyme–substrate complexes. Chemical Science, 2018, 9, 4569-4578.	7.4	24
16	JMJD5 is a human arginyl C-3 hydroxylase. Nature Communications, 2018, 9, 1180.	12.8	37
17	2-Oxoglutarate regulates binding of hydroxylated hypoxia-inducible factor to prolyl hydroxylase domain 2. Chemical Communications, 2018, 54, 3130-3133.	4.1	29
18	Born to sense: biophysical analyses of the oxygen sensing prolyl hydroxylase from the simplest animal Trichoplax adhaerens . Hypoxia (Auckland, N Z), 2018, Volume 6, 57-71.	1.9	12

#	Article	IF	CITATIONS
19	Mechanistic and structural studies of <scp>KDM</scp> â€catalysed demethylation of histone 1 isotype 4 at lysine 26. FEBS Letters, 2018, 592, 3264-3273.	2.8	10
20	Studies on the Substrate Selectivity of the Hypoxiaâ€Inducible Factor Prolyl Hydroxylaseâ€2 Catalytic Domain. ChemBioChem, 2018, 19, 2262-2267.	2.6	6
21	The Jumonji-C oxygenase JMJD7 catalyzes (3S)-lysyl hydroxylation of TRAFAC GTPases. Nature Chemical Biology, 2018, 14, 688-695.	8.0	31
22	Highly selective inhibition of histone demethylases by de novo macrocyclic peptides. Nature Communications, 2017, 8, 14773.	12.8	124
23	Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials. Chemical Science, 2017, 8, 7651-7668.	7.4	174
24	Structure–function relationships of human JmjC oxygenases—demethylases versus hydroxylases. Current Opinion in Structural Biology, 2016, 41, 62-72.	5.7	84
25	Arginine demethylation is catalysed by a subset of JmjC histone lysine demethylases. Nature Communications, 2016, 7, 11974.	12.8	168
26	Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases. Nature Communications, 2016, 7, 12673.	12.8	109
27	Potent and Selective Triazole-Based Inhibitors of the Hypoxia-Inducible Factor Prolyl-Hydroxylases with Activity in the Murine Brain. PLoS ONE, 2015, 10, e0132004.	2.5	57
28	The oxygenase Jmjd6–a case study in conflicting assignments. Biochemical Journal, 2015, 468, 191-202.	3.7	76
29	Introduction to Structural Studies on 2-Oxoglutarate-Dependent Oxygenases and Related Enzymes. 2-Oxoglutarate-Dependent Oxygenases, 2015, , 59-94.	0.8	30
30	CHAPTER 6. The Role of 2-Oxoglutarate-Dependent Oxygenases in Hypoxia Sensing. 2-Oxoglutarate-Dependent Oxygenases, 2015, , 169-209.	0.8	7
31	The role of PHD2 mutations in the pathogenesis of erythrocytosis. Hypoxia (Auckland, N Z), 2014, 2, 71.	1.9	39
32	Studies on the catalytic domains of multiple JmjC oxygenases using peptide substrates. Epigenetics, 2014, 9, 1596-1603.	2.7	74
33	Investigating the contribution of the active site environment to the slow reaction of hypoxia-inducible factor prolyl hydroxylase domain 2 with oxygen. Biochemical Journal, 2014, 463, 363-372.	3.7	41
34	Modulating carnitine levels by targeting its biosynthesis – selective inhibition of γ-butyrobetaine hydroxylase. Chemical Science, 2014, 5, 1765-1771.	7.4	23
35	Studies on Deacetoxycephalosporin C Synthase Support a Consensus Mechanism for 2-Oxoglutarate Dependent Oxygenases. Biochemistry, 2014, 53, 2483-2493.	2.5	43
36	A Convenient Synthesis of New Annelated Pyrimidines and Their Biological Importance. Journal of Heterocyclic Chemistry, 2014, 51, E216.	2.6	5

#	Article	IF	CITATIONS
37	Ribosomal oxygenases are structurally conserved from prokaryotes to humans. Nature, 2014, 510, 422-426.	27.8	87
38	Targeting histone lysine demethylases — Progress, challenges, and the future. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1416-1432.	1.9	170
39	5-Carboxy-8-hydroxyquinoline is a broad spectrum 2-oxoglutarate oxygenase inhibitor which causes iron translocation. Chemical Science, 2013, 4, 3110.	7.4	142
40	Dual-action inhibitors of HIF prolyl hydroxylases that induce binding of a second iron ion. Organic and Biomolecular Chemistry, 2013, 11, 732-745.	2.8	21
41	Selective Small Molecule Probes for the Hypoxia Inducible Factor (HIF) Prolyl Hydroxylases. ACS Chemical Biology, 2013, 8, 1488-1496.	3.4	105
42	Substrate Selectivity Analyses of Factor Inhibiting Hypoxiaâ€Inducible Factor. Angewandte Chemie - International Edition, 2013, 52, 1700-1704.	13.8	30
43	Plant Growth Regulator Daminozide Is a Selective Inhibitor of Human KDM2/7 Histone Demethylases. Journal of Medicinal Chemistry, 2012, 55, 6639-6643.	6.4	125
44	Role of the jelly-roll fold in substrate binding by 2-oxoglutarate oxygenases. Current Opinion in Structural Biology, 2012, 22, 691-700.	5.7	171
45	Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans. Nature Chemical Biology, 2012, 8, 960-962.	8.0	135
46	Dynamic Combinatorial Chemistry Employing Boronic Acids/Boronate Esters Leads to Potent Oxygenase Inhibitors. Angewandte Chemie - International Edition, 2012, 51, 6672-6675.	13.8	82
47	Corrigendum to "A new structural alternative in benzo[b]furans for antimicrobial activity―[Bioorg. Med. Chem. 13 (2005) 4796–4805]. Bioorganic and Medicinal Chemistry, 2012, 20, 2189.	3.0	1
48	Studies on the Reaction of Nitric Oxide with the Hypoxia-Inducible Factor Prolyl Hydroxylase Domain 2 (EGLN1). Journal of Molecular Biology, 2011, 410, 268-279.	4.2	54
49	Structural and biochemical analyses reveal how ornithine acetyl transferase binds acidic and basic amino acid substrates. Organic and Biomolecular Chemistry, 2011, 9, 6219.	2.8	5
50	Factorâ€inhibiting hypoxiaâ€inducible factor (FIH) catalyses the postâ€translational hydroxylation of histidinyl residues within ankyrin repeat domains. FEBS Journal, 2011, 278, 1086-1097.	4.7	68
51	The oncometabolite 2â€hydroxyglutarate inhibits histone lysine demethylases. EMBO Reports, 2011, 12, 463-469.	4.5	851
52	Asparagine and Aspartate Hydroxylation of the Cytoskeletal Ankyrin Family Is Catalyzed by Factor-inhibiting Hypoxia-inducible Factor. Journal of Biological Chemistry, 2011, 286, 7648-7660.	3.4	63
53	Structural studies on human 2-oxoglutarate dependent oxygenases. Current Opinion in Structural Biology, 2010, 20, 659-672.	5.7	238
54	Crystallographic and mass spectrometric analyses of a tandem GNAT protein from the clavulanic acid biosynthesis pathway. Proteins: Structure, Function and Bioinformatics, 2010, 78, 1398-1407.	2.6	16

#	Article	IF	CITATIONS
55	Mutation analysis of HIF prolyl hydroxylases (PHD/EGLN) in individuals with features of phaeochromocytoma and renal cell carcinoma susceptibility. Endocrine-Related Cancer, 2010, 18, 73-83.	3.1	49
56	Structural Basis for Binding of Hypoxia-Inducible Factor to the Oxygen-Sensing Prolyl Hydroxylases. Structure, 2009, 17, 981-989.	3.3	205
57	Evidence for a Stereoelectronic Effect in Human Oxygen Sensing. Angewandte Chemie - International Edition, 2009, 48, 1784-1787.	13.8	58
58	2-Oxoglutarate analogue inhibitors of prolyl hydroxylase domain 2. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6192-6195.	2.2	22
59	Use of mass spectrometry to probe the nucleophilicity of cysteinyl residues of prolyl hydroxylase domain 2. Analytical Biochemistry, 2009, 393, 215-221.	2.4	19
60	ESIâ€MS Studies on Prolyl Hydroxylase Domainâ€2 Reveal a New Metal Binding Site. ChemMedChem, 2008, 3, 569-572.	3.2	25
61	The human oxygen sensing machinery and its manipulation. Chemical Society Reviews, 2008, 37, 1308.	38.1	100
62	Kinetic Rationale for Selectivity toward N- and C-terminal Oxygen-dependent Degradation Domain Substrates Mediated by a Loop Region of Hypoxia-Inducible Factor Prolyl Hydroxylases. Journal of Biological Chemistry, 2008, 283, 3808-3815.	3.4	72
63	Evidence That Two Enzyme-derived Histidine Ligands Are Sufficient for Iron Binding and Catalysis by Factor Inhibiting HIF (FIH). Journal of Biological Chemistry, 2008, 283, 25971-25978.	3.4	46
64	Antimicrobial Activity of Some Indigenous Plants of Bangladesh. Dhaka University Journal of Pharmaceutical Sciences, 2008, 7, 23-26.	0.2	13
65	Preliminary Cytotoxicity Screening of Some Medicinal Plants of Bangladesh. Dhaka University Journal of Pharmaceutical Sciences, 2008, 7, 47-52.	0.2	17
66	Oxygenases for oxygen sensing. Pure and Applied Chemistry, 2008, 80, 1837-1847.	1.9	2
67	Cellular oxygen sensing: Crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2). Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9814-9819.	7.1	310
68	A new structural alternative in benzo[b]furans for antimicrobial activity. Bioorganic and Medicinal Chemistry, 2005, 13, 4796-4805.	3.0	264
69	Antibiotic principles from a Streptomyces species and their sub-acute toxicity studies on hepatic, renal and haemopoietic system of rats. Pakistan Journal of Pharmaceutical Sciences, 2005, 18, 1-7.	0.2	0
70	5-Methylcoumarins from Toona ciliata stem bark and their chemotaxonomic significance. Biochemical Systematics and Ecology, 2004, 32, 103-105.	1.3	11
71	A hydroxylated mansumbinen-28-oic acid from Combretum coccineum. Biochemical Systematics and Ecology, 2004, 32, 443-445.	1.3	5
72	Chemotaxonomic significance of polyoxygenated flavonoids from the leaves of Micromelum minutum. Biochemical Systematics and Ecology, 2004, 32, 829-831.	1.3	12

#	Article	IF	CITATIONS
73	Bioactivity of Extractives fromStachytarpheta urticaefolia. Pharmaceutical Biology, 2004, 42, 262-267.	2.9	3
74	Antimicrobial activity of Toona ciliata and Amoora rohituka. Fìtoterapìâ, 2003, 74, 155-158.	2.2	33
75	Kauren diterpenes from Wedelia calendulacea. Biochemical Systematics and Ecology, 2003, 31, 539-540.	1.3	5
76	Guaiane sesquiterpenes from Amoora rohituka. Phytochemistry, 2003, 62, 1213-1216.	2.9	30
77	Bioactivity from Toona ciliata Stem Bark. Pharmaceutical Biology, 2003, 41, 281-283.	2.9	7