Philip L De Jager

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6251161/publications.pdf

Version: 2024-02-01

432 papers 69,735 citations

109 h-index 962 238 g-index

517 all docs

517 docs citations

517 times ranked

71606 citing authors

#	Article	IF	CITATIONS
1	Integrative analysis of 111 reference human epigenomes. Nature, 2015, 518, 317-330.	27.8	5,653
2	Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genetics, 2013, 45, 1452-1458.	21.4	3,741
3	Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature, 2011, 476, 214-219.	27.8	2,400
4	Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature, 2014, 506, 376-381.	27.8	1,974
5	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	21.4	1,962
6	Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nature Genetics, 2011, 43, 436-441.	21.4	1,676
7	Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature, 2015, 518, 337-343.	27.8	1,669
8	Risk Alleles for Multiple Sclerosis Identified by a Genomewide Study. New England Journal of Medicine, 2007, 357, 851-862.	27.0	1,529
9	Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nature Genetics, 2013, 45, 1353-1360.	21.4	1,213
10	Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 2016, 533, 539-542.	27.8	1,204
11	Charting a dynamic DNA methylation landscape of the human genome. Nature, 2013, 500, 477-481.	27.8	1,168
12	Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nature Genetics, 2010, 42, 508-514.	21.4	1,132
13	Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. American Journal of Human Genetics, 2015, 97, 576-592.	6.2	1,098
14	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	12.6	1,085
15	Alterations of the human gut microbiome in multiple sclerosis. Nature Communications, 2016, 7, 12015.	12.8	957
16	Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nature Neuroscience, 2016, 19, 1442-1453.	14.8	952
17	Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nature Genetics, 2016, 48, 624-633.	21.4	870
18	Alzheimer's disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nature Neuroscience, 2014, 17, 1156-1163.	14.8	800

#	Article	IF	CITATIONS
19	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	21.4	783
20	GWAS of 126,559 Individuals Identifies Genetic Variants Associated with Educational Attainment. Science, 2013, 340, 1467-1471.	12.6	750
21	Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nature Genetics, 2009, 41, 776-782.	21.4	729
22	Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science, 2019, 365, .	12.6	710
23	Parkinson's Disease: Genetics and Pathogenesis. Annual Review of Pathology: Mechanisms of Disease, 2011, 6, 193-222.	22.4	654
24	Large-scale proteomic analysis of Alzheimer's disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nature Medicine, 2020, 26, 769-780.	30.7	547
25	Pervasive Sharing of Genetic Effects in Autoimmune Disease. PLoS Genetics, 2011, 7, e1002254.	3.5	540
26	Temporal Tracking of Microglia Activation in Neurodegeneration at Single-Cell Resolution. Cell Reports, 2017, 21, 366-380.	6.4	538
27	The transcriptional landscape of age in human peripheral blood. Nature Communications, 2015, 6, 8570.	12.8	533
28	Neurodegeneration in Lurcher mice caused by mutation in \hat{l} 2 glutamate receptor gene. Nature, 1997, 388, 769-773.	27.8	522
29	Defining the Role of the MHC in Autoimmunity: A Review and Pooled Analysis. PLoS Genetics, 2008, 4, e1000024.	3.5	488
30	Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease. Nature Neuroscience, 2014, 17, 1164-1170.	14.8	488
31	CD33 Alzheimer's disease locus: altered monocyte function and amyloid biology. Nature Neuroscience, 2013, 16, 848-850.	14.8	485
32	Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nature Communications, 2018, 9, 2098.	12.8	484
33	Polarization of the Effects of Autoimmune and Neurodegenerative Risk Alleles in Leukocytes. Science, 2014, 344, 519-523.	12.6	480
34	Genome-wide Chromatin State Transitions Associated with Developmental and Environmental Cues. Cell, 2013, 152, 642-654.	28.9	473
35	A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimer's disease. Nature Neuroscience, 2018, 21, 811-819.	14.8	422
36	A High-Density Admixture Map for Disease Gene Discovery in African Americans. American Journal of Human Genetics, 2004, 74, 1001-1013.	6.2	416

#	Article	IF	CITATIONS
37	Altered bile acid profile associates with cognitive impairment in Alzheimer's disease—An emerging role for gut microbiome. Alzheimer's and Dementia, 2019, 15, 76-92.	0.8	396
38	Common Genetic Variants Modulate Pathogen-Sensing Responses in Human Dendritic Cells. Science, 2014, 343, 1246980.	12.6	391
39	An xQTL map integrates the genetic architecture of the human brain's transcriptome and epigenome. Nature Neuroscience, 2017, 20, 1418-1426.	14.8	377
40	A transcriptomic atlas of aged human microglia. Nature Communications, 2018, 9, 539.	12.8	375
41	De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nature Genetics, 2009, 41, 931-935.	21.4	373
42	Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer's disease. Nature Communications, 2020, 11, 6129.	12.8	371
43	Variants in the ATP-Binding Cassette Transporter (ABCA7), Apolipoprotein E ϵ4, and the Risk of Late-Onset Alzheimer Disease in African Americans. JAMA - Journal of the American Medical Association, 2013, 309, 1483.	7.4	360
44	A multi-omic atlas of the human frontal cortex for aging and Alzheimer's disease research. Scientific Data, 2018, 5, 180142.	5.3	357
45	Automated high-dimensional flow cytometric data analysis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8519-8524.	7.1	355
46	The power of genetic diversity in genome-wide association studies of lipids. Nature, 2021, 600, 675-679.	27.8	353
47	GWAS of Cerebrospinal Fluid Tau Levels Identifies Risk Variants for Alzheimer's Disease. Neuron, 2013, 78, 256-268.	8.1	344
48	Self-antigen tetramers discriminate between myelin autoantibodies to native or denatured protein. Nature Medicine, 2007, 13, 211-217.	30.7	342
49	Blood Kidney Injury Molecule-1 Is a Biomarker of Acute and Chronic Kidney Injury and Predicts Progression to ESRD in Type I Diabetes. Journal of the American Society of Nephrology: JASN, 2014, 25, 2177-2186.	6.1	341
50	The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study. PLoS Genetics, 2015, 11, e1005378.	3.5	331
51	Genomeâ€wide metaâ€analysis identifies novel multiple sclerosis susceptibility loci. Annals of Neurology, 2011, 70, 897-912.	5.3	314
52	Class II HLA interactions modulate genetic risk for multiple sclerosis. Nature Genetics, 2015, 47, 1107-1113.	21,4	312
53	Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer's disease susceptibility. Nature Genetics, 2018, 50, 1584-1592.	21.4	307
54	Genome-Wide Association Meta-analysis of Neuropathologic Features of Alzheimer's Disease and Related Dementias. PLoS Genetics, 2014, 10, e1004606.	3.5	305

#	Article	IF	CITATIONS
55	Infection-Triggered Familial or Recurrent Cases of Acute Necrotizing Encephalopathy Caused by Mutations in a Component of the Nuclear Pore, RANBP2. American Journal of Human Genetics, 2009, 84, 44-51.	6.2	291
56	A High-Density Screen for Linkage in Multiple Sclerosis. American Journal of Human Genetics, 2005, 77, 454-467.	6.2	268
57	A novel Alzheimer disease locus located near the gene encoding tau protein. Molecular Psychiatry, 2016, 21, 108-117.	7.9	260
58	Fine-Mapping the Genetic Association of the Major Histocompatibility Complex in Multiple Sclerosis: HLA and Non-HLA Effects. PLoS Genetics, 2013, 9, e1003926.	3.5	250
59	GWAS of Longevity in CHARGE Consortium Confirms APOE and FOXO3 Candidacy. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 110-118.	3.6	250
60	Parsing the Interferon Transcriptional Network and Its Disease Associations. Cell, 2016, 164, 564-578.	28.9	250
61	Novel genetic loci associated with hippocampal volume. Nature Communications, 2017, 8, 13624.	12.8	250
62	Exceptionally low likelihood of Alzheimer's dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nature Communications, 2020, 11, 667.	12.8	246
63	A whole-genome admixture scan finds a candidate locus for multiple sclerosis susceptibility. Nature Genetics, 2005, 37, 1113-1118.	21.4	243
64	Life Extension Factor Klotho Enhances Cognition. Cell Reports, 2014, 7, 1065-1076.	6.4	243
65	Association of Brain DNA Methylation in <i>SORL1</i> , <i>ABCA7</i> , <i>HLA-DRB5</i> , <i>SLC24A4</i> , and <i>BIN1</i> With Pathological Diagnosis of Alzheimer Disease. JAMA Neurology, 2015, 72, 15.	9.0	239
66	Integration of genetic risk factors into a clinical algorithm for multiple sclerosis susceptibility: a weighted genetic risk score. Lancet Neurology, The, 2009, 8, 1111-1119.	10.2	233
67	Mapping of multiple susceptibility variants within the MHC region for 7 immune-mediated diseases. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18680-18685.	7.1	231
68	Association of CR1, CLU and PICALM with Alzheimer's disease in a cohort of clinically characterized and neuropathologically verified individuals. Human Molecular Genetics, 2010, 19, 3295-3301.	2.9	223
69	Sex-Specific Association of Apolipoprotein E With Cerebrospinal Fluid Levels of Tau. JAMA Neurology, 2018, 75, 989.	9.0	223
70	Intersection of population variation and autoimmunity genetics in human T cell activation. Science, 2014, 345, 1254665.	12.6	218
71	Tau Activates Transposable Elements in Alzheimer's Disease. Cell Reports, 2018, 23, 2874-2880.	6.4	216
72	Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nature Neuroscience, 2016, 19, 1569-1582.	14.8	213

#	Article	IF	Citations
73	Common variants at 12q14 and 12q24 are associated with hippocampal volume. Nature Genetics, 2012, 44, 545-551.	21.4	212
74	IL2RA Genetic Heterogeneity in Multiple Sclerosis and Type 1 Diabetes Susceptibility and Soluble Interleukin-2 Receptor Production. PLoS Genetics, 2009, 5, e1000322.	3.5	210
75	Genome-wide Association Study in a High-Risk Isolate for Multiple Sclerosis Reveals Associated Variants in STAT3 Gene. American Journal of Human Genetics, 2010, 86, 285-291.	6.2	210
76	Limited statistical evidence for shared genetic effects of eQTLs and autoimmune-disease-associated loci in three major immune-cell types. Nature Genetics, 2017, 49, 600-605.	21.4	205
77	Large-scale deep multi-layer analysis of Alzheimer's disease brain reveals strong proteomic disease-related changes not observed at the RNA level. Nature Neuroscience, 2022, 25, 213-225.	14.8	202
78	Genetic Analysis of Human Traits In Vitro: Drug Response and Gene Expression in Lymphoblastoid Cell Lines. PLoS Genetics, 2008, 4, e1000287.	3.5	200
79	Genome-wide association study identifies four novel loci associated with Alzheimer's endophenotypes and disease modifiers. Acta Neuropathologica, 2017, 133, 839-856.	7.7	199
80	Meta-Analysis of the Alzheimer's Disease Human Brain Transcriptome and Functional Dissection in Mouse Models. Cell Reports, 2020, 32, 107908.	6.4	199
81	Genetic architecture of subcortical brain structures in 38,851 individuals. Nature Genetics, 2019, 51, 1624-1636.	21.4	192
82	Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer's human brains. Nature Neuroscience, 2019, 22, 37-46.	14.8	188
83	The role of the <i>CD58</i> locus in multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5264-5269.	7.1	185
84	Convergent genetic and expression data implicate immunity in Alzheimer's disease. Alzheimer's and Dementia, $2015,11,658-671.$	0.8	173
85	Higher brain <i>BDNF</i> gene expression is associated with slower cognitive decline in older adults. Neurology, 2016, 86, 735-741.	1.1	170
86	Normalization of Plasma 25-Hydroxy Vitamin D Is Associated with Reduced Risk of Surgery in Crohn's Disease. Inflammatory Bowel Diseases, 2013, 19, 1.	1.9	168
87	Effects of Multiple Genetic Loci on Age at Onset in Late-Onset Alzheimer Disease. JAMA Neurology, 2014, 71, 1394.	9.0	166
88	Transethnic genomeâ€wide scan identifies novel Alzheimer's disease loci. Alzheimer's and Dementia, 2017, 13, 727-738.	0.8	166
89	Evidence for Polygenic Susceptibility to Multiple Sclerosis—The Shape of Things to Come. American Journal of Human Genetics, 2010, 86, 621-625.	6.2	162
90	Multiethnic Genome-Wide Association Study of Cerebral White Matter Hyperintensities on MRI. Circulation: Cardiovascular Genetics, 2015, 8, 398-409.	5.1	162

#	Article	IF	Citations
91	Admixture Mapping of an Allele Affecting Interleukin 6 Soluble Receptor and Interleukin 6 Levels. American Journal of Human Genetics, 2007, 80, 716-726.	6.2	160
92	A genome-wide scan for common variants affecting the rate of age-related cognitive decline. Neurobiology of Aging, 2012, 33, 1017.e1-1017.e15.	3.1	160
93	Polygenic risk of Alzheimer disease is associated with early- and late-life processes. Neurology, 2016, 87, 481-488.	1.1	159
94	Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer's disease pathogenesis. Nature Genetics, 2021, 53, 143-146.	21.4	158
95	Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease. PLoS ONE, 2014, 9, e94661.	2.5	155
96	Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility. Nature Communications, 2015, 6, 6916.	12.8	154
97	Functionally defective germline variants of sialic acid acetylesterase in autoimmunity. Nature, 2010, 466, 243-247.	27.8	150
98	A Genome-Wide Association Study of Depressive Symptoms. Biological Psychiatry, 2013, 73, 667-678.	1.3	149
99	<i>CR1</i> is associated with amyloid plaque burden and ageâ€related cognitive decline. Annals of Neurology, 2011, 69, 560-569.	5.3	148
100	Genomeâ€wide association study of the rate of cognitive decline in Alzheimer's disease. Alzheimer's and Dementia, 2014, 10, 45-52.	0.8	147
101	Functional screening in Drosophila identifies Alzheimer's disease susceptibility genes and implicates Tau-mediated mechanisms. Human Molecular Genetics, 2014, 23, 870-877.	2.9	147
102	Large meta-analysis of genome-wide association studies identifies five loci for lean body mass. Nature Communications, 2017, 8, 80.	12.8	147
103	Genome-Wide Association Study and Gene Expression Analysis Identifies CD84 as a Predictor of Response to Etanercept Therapy in Rheumatoid Arthritis. PLoS Genetics, 2013, 9, e1003394.	3.5	146
104	Novel late-onset Alzheimer disease loci variants associate with brain gene expression. Neurology, 2012, 79, 221-228.	1.1	144
105	Novel Alzheimer Disease Risk Loci and Pathways in African American Individuals Using the African Genome Resources Panel. JAMA Neurology, 2021, 78, 102.	9.0	144
106	Genetic Susceptibility for Alzheimer Disease Neuritic Plaque Pathology. JAMA Neurology, 2013, 70, 1150.	9.0	143
107	Genetic determinants of co-accessible chromatin regions in activated T cells across humans. Nature Genetics, 2018, 50, 1140-1150.	21.4	139
108	Elevated DNA methylation across a 48â€kb region spanning the <i>HOXA</i> gene cluster is associated with Alzheimer's disease neuropathology. Alzheimer's and Dementia, 2018, 14, 1580-1588.	0.8	138

#	Article	IF	CITATIONS
109	Soluble IL-2RA Levels in Multiple Sclerosis Subjects and the Effect of Soluble IL-2RA on Immune Responses. Journal of Immunology, 2009, 182, 1541-1547.	0.8	136
110	CD33 modulates TREM2: convergence of Alzheimer loci. Nature Neuroscience, 2015, 18, 1556-1558.	14.8	134
111	Multicolored stain-free histopathology with coherent Raman imaging. Laboratory Investigation, 2012, 92, 1492-1502.	3.7	130
112	Identification of additional risk loci for stroke and small vessel disease: a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2016, 15, 695-707.	10.2	130
113	CD33: increased inclusion of exon 2 implicates the Ig V-set domain in Alzheimer's disease susceptibility. Human Molecular Genetics, 2014, 23, 2729-2736.	2.9	128
114	Neuropathological correlates and genetic architecture of microglial activation in elderly human brain. Nature Communications, 2019, 10, 409.	12.8	121
115	Tau-Mediated Disruption of the Spliceosome Triggers Cryptic RNA Splicing and Neurodegeneration in Alzheimer's Disease. Cell Reports, 2019, 29, 301-316.e10.	6.4	118
116	GWAS of longitudinal amyloid accumulation on ¹⁸ F-florbetapir PET in Alzheimer's disease implicates microglial activation gene <i>IL1RAP</i> . Brain, 2015, 138, 3076-3088.	7.6	117
117	Nuclei multiplexing with barcoded antibodies for single-nucleus genomics. Nature Communications, 2019, 10, 2907.	12.8	117
118	Replication analysis identifies TYK2 as a multiple sclerosis susceptibility factor. European Journal of Human Genetics, 2009, 17, 1309-1313.	2.8	115
119	Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk. Cell, 2018, 175, 1679-1687.e7.	28.9	115
120	Gut Microbiome in Progressive Multiple Sclerosis. Annals of Neurology, 2021, 89, 1195-1211.	5.3	115
121	Interindividual variation in human T regulatory cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1111-20.	7.1	112
122	Genetic variants linked to education predict longevity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13366-13371.	7.1	110
123	Comprehensive follow-up of the first genome-wide association study of multiple sclerosis identifies KIF21B and TMEM39A as susceptibility loci. Human Molecular Genetics, 2010, 19, 953-962.	2.9	108
124	A second X chromosome contributes to resilience in a mouse model of Alzheimer's disease. Science Translational Medicine, 2020, 12, .	12.4	107
125	A human microglia-like cellular model for assessing the effects of neurodegenerative disease gene variants. Science Translational Medicine, 2017, 9, .	12.4	106
126	NMNAT2:HSP90 Complex Mediates Proteostasis in Proteinopathies. PLoS Biology, 2016, 14, e1002472.	5.6	105

#	Article	IF	Citations
127	Targeted brain proteomics uncover multiple pathways to Alzheimer's dementia. Annals of Neurology, 2018, 84, 78-88.	5.3	102
128	Evaluation of TDP-43 proteinopathy and hippocampal sclerosis in relation to APOE $\hat{l}\mu4$ haplotype status: a community-based cohort study. Lancet Neurology, The, 2018, 17, 773-781.	10.2	101
129	Common Risk Alleles for Inflammatory Diseases Are Targets of Recent Positive Selection. American Journal of Human Genetics, 2013, 92, 517-529.	6.2	100
130	Epigenomics of Alzheimer's disease. Translational Research, 2015, 165, 200-220.	5.0	97
131	Genetic variants in Alzheimer disease — molecular and brain network approaches. Nature Reviews Neurology, 2016, 12, 413-427.	10.1	97
132	Association of APOE with tau-tangle pathology with and without \hat{l}^2 -amyloid. Neurobiology of Aging, 2016, 37, 19-25.	3.1	97
133	A method for high-throughput, sensitive analysis of IgG Fc and Fab glycosylation by capillary electrophoresis. Journal of Immunological Methods, 2015, 417, 34-44.	1.4	95
134	Modification of Multiple Sclerosis Phenotypes by African Ancestry at HLA. Archives of Neurology, 2009, 66, 226-33.	4.5	92
135	A coding variant in CR1 interacts with APOE-É>4 to influence cognitive decline. Human Molecular Genetics, 2012, 21, 2377-2388.	2.9	90
136	Cerebral small vessel disease genomics and its implications across the lifespan. Nature Communications, 2020, 11, 6285.	12.8	89
137	Identification of genes associated with dissociation of cognitive performance and neuropathological burden: Multistep analysis of genetic, epigenetic, and transcriptional data. PLoS Medicine, 2017, 14, e1002287.	8.4	88
138	Sex-specific genetic predictors of Alzheimer's disease biomarkers. Acta Neuropathologica, 2018, 136, 857-872.	7.7	87
139	Human Herpesvirus 6 Detection in Alzheimer's Disease Cases and Controls across Multiple Cohorts. Neuron, 2020, 105, 1027-1035.e2.	8.1	87
140	Neurodegeneration in <i>Lurcher</i> Mice Occurs via Multiple Cell Death Pathways. Journal of Neuroscience, 2000, 20, 3687-3694.	3.6	86
141	The <i>CD6</i> Multiple Sclerosis Susceptibility Allele Is Associated with Alterations in CD4+ T Cell Proliferation. Journal of Immunology, 2011, 187, 3286-3291.	0.8	85
142	Brain proteome-wide association study implicates novel proteins in depression pathogenesis. Nature Neuroscience, 2021, 24, 810-817.	14.8	85
143	An Analysis of Two Genome-wide Association Meta-analyses Identifies a New Locus for Broad Depression Phenotype. Biological Psychiatry, 2017, 82, 322-329.	1.3	84
144	TIGAR: An Improved Bayesian Tool for Transcriptomic Data Imputation Enhances Gene Mapping of Complex Traits. American Journal of Human Genetics, 2019, 105, 258-266.	6.2	84

#	Article	IF	CITATIONS
145	Associations of autozygosity with a broad range of human phenotypes. Nature Communications, 2019, 10, 4957.	12.8	84
146	PhIP-Seq characterization of autoantibodies from patients with multiple sclerosis, type 1 diabetes and rheumatoid arthritis. Journal of Autoimmunity, 2013, 43, 1-9.	6.5	83
147	A genomeâ€wide profiling of brain DNA hydroxymethylation in Alzheimer's disease. Alzheimer's and Dementia, 2017, 13, 674-688.	0.8	83
148	Circadian alterations during early stages of Alzheimer's disease are associated with aberrant cycles of DNA methylation in BMAL1. Alzheimer's and Dementia, 2017, 13, 689-700.	0.8	83
149	Functional Screening of Alzheimer Pathology Genome-wide Association Signals in Drosophila. American Journal of Human Genetics, 2011, 88, 232-238.	6.2	81
150	24-Hour Rhythms of DNA Methylation and Their Relation with Rhythms of RNA Expression in the Human Dorsolateral Prefrontal Cortex. PLoS Genetics, 2014, 10, e1004792.	3.5	80
151	Single-Cell Detection of Secreted A \hat{l}^2 and sAPP \hat{l}_\pm from Human IPSC-Derived Neurons and Astrocytes. Journal of Neuroscience, 2016, 36, 1730-1746.	3 . 6	80
152	Genome-wide Comparison of African-Ancestry Populations from CARe and Other Cohorts Reveals Signals of Natural Selection. American Journal of Human Genetics, 2011, 89, 368-381.	6.2	79
153	Evaluation of a Genetic Risk Score to Improve Risk Prediction for Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 53, 921-932.	2.6	77
154	APOE and cerebral amyloid angiopathy in community-dwelling older persons. Neurobiology of Aging, 2015, 36, 2946-2953.	3.1	76
155	Multiple sclerosis risk loci and disease severity in 7,125 individuals from 10 studies. Neurology: Genetics, 2016, 2, e87.	1.9	76
156	Large eQTL meta-analysis reveals differing patterns between cerebral cortical and cerebellar brain regions. Scientific Data, 2020, 7, 340.	5.3	75
157	Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women. Nature Communications, 2021, 12, 654.	12.8	75
158	Stem cell-derived neurons reflect features of protein networks, neuropathology, and cognitive outcome of their aged human donors. Neuron, 2021, 109, 3402-3420.e9.	8.1	75
159	Cytometric profiling in multiple sclerosis uncovers patient population structure and a reduction of CD8low cells. Brain, 2008, 131, 1701-1711.	7.6	73
160	Early Elevation of Serum Tumor Necrosis Factor- \hat{l}_{\pm} is Associated with Poor Outcome in Subarachnoid Hemorrhage. Journal of Investigative Medicine, 2012, 60, 1054-1058.	1.6	72
161	Similar Risk of Depression and Anxiety Following Surgery or Hospitalization for Crohn's Disease and Ulcerative Colitis. American Journal of Gastroenterology, 2013, 108, 594-601.	0.4	72
162	A meta-analysis of epigenome-wide association studies in Alzheimer's disease highlights novel differentially methylated loci across cortex. Nature Communications, 2021, 12, 3517.	12.8	72

#	Article	IF	CITATIONS
163	Alzheimer Disease Susceptibility Loci: Evidence for a Protein Network under Natural Selection. American Journal of Human Genetics, 2012, 90, 720-726.	6.2	71
164	The <i>TMEM106B</i> locus and TDP-43 pathology in older persons without FTLD. Neurology, 2015, 84, 927-934.	1.1	71
165	Brain expression of the vascular endothelial growth factor gene family in cognitive aging and alzheimer's disease. Molecular Psychiatry, 2021, 26, 888-896.	7.9	71
166	Dissecting the role of non-coding RNAs in the accumulation of amyloid and tau neuropathologies in Alzheimer's disease. Molecular Neurodegeneration, 2017, 12, 51.	10.8	70
167	Cortical Proteins Associated With Cognitive Resilience in Community-Dwelling Older Persons. JAMA Psychiatry, 2020, 77, 1172.	11.0	70
168	A <scp><i>TREM</i></scp> <i>1</i> variant alters the accumulation of Alzheimerâ€related amyloid pathology. Annals of Neurology, 2015, 77, 469-477.	5.3	69
169	Relation of genomic variants for Alzheimer disease dementia to common neuropathologies. Neurology, 2016, 87, 489-496.	1.1	68
170	Integrating Gene and Protein Expression Reveals Perturbed Functional Networks in Alzheimer's Disease. Cell Reports, 2019, 28, 1103-1116.e4.	6.4	67
171	Modeling Disease Severity in Multiple Sclerosis Using Electronic Health Records. PLoS ONE, 2013, 8, e78927.	2.5	67
172	Genetic analysis of isoform usage in the human anti-viral response reveals influenza-specific regulation of <i>ERAP2</i> transcripts under balancing selection. Genome Research, 2018, 28, 1812-1825.	5.5	66
173	Deconvolving the contributions of cell-type heterogeneity on cortical gene expression. PLoS Computational Biology, 2020, 16, e1008120.	3.2	66
174	Enhancing linkage analysis of complex disorders: an evaluation of high-density genotyping. Human Molecular Genetics, 2004, 13, 1943-1949.	2.9	65
175	Evaluation of an Online Platform for Multiple Sclerosis Research: Patient Description, Validation of Severity Scale, and Exploration of BMI Effects on Disease Course. PLoS ONE, 2013, 8, e59707.	2.5	65
176	Sex differences in the genetic predictors of Alzheimer's pathology. Brain, 2019, 142, 2581-2589.	7.6	65
177	Exploration of changes in disability after menopause in a longitudinal multiple sclerosis cohort. Multiple Sclerosis Journal, 2016, 22, 935-943.	3.0	64
178	Genome-wide interaction analysis of pathological hallmarks in Alzheimer's disease. Neurobiology of Aging, 2020, 93, 61-68.	3.1	63
179	A Major Histocompatibility Class I Locus Contributes to Multiple Sclerosis Susceptibility Independently from HLA-DRB1*15:01. PLoS ONE, 2010, 5, e11296.	2.5	60
180	High-dimensional immunomonitoring models of HIV-1â€"specific CD8 T-cell responses accurately identify subjects achieving spontaneous viral control. Blood, 2013, 121, 801-811.	1.4	60

#	Article	IF	Citations
181	$5\hat{a}$ \in 2RNA-Seq identifies Fhl1 as a genetic modifier in cardiomyopathy. Journal of Clinical Investigation, 2014, 124, 1364-1370.	8.2	58
182	Allelic variant in (i) CTLA4 (i) alters T cell phosphorylation patterns. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18607-18612.	7.1	57
183	Alzheimer's loci: epigenetic associations and interaction with genetic factors. Annals of Clinical and Translational Neurology, 2015, 2, 636-647.	3.7	57
184	Evaluating more naturalistic outcome measures. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e162.	6.0	57
185	Genetic data and cognitively defined late-onset Alzheimer's disease subgroups. Molecular Psychiatry, 2020, 25, 2942-2951.	7.9	57
186	An RNA Profile Identifies Two Subsets of Multiple Sclerosis Patients Differing in Disease Activity. Science Translational Medicine, 2012, 4, 153ra131.	12.4	56
187	Shared genetic contribution to ischemic stroke and Alzheimer's disease. Annals of Neurology, 2016, 79, 739-747.	5.3	56
188	Genomeâ€wide association studies of alcohol dependence, DSMâ€IV criterion count and individual criteria. Genes, Brain and Behavior, 2019, 18, e12579.	2.2	56
189	A novel Tmem119-tdTomato reporter mouse model for studying microglia in the central nervous system. Brain, Behavior, and Immunity, 2020, 83, 180-191.	4.1	56
190	Genetic variation in toll-like receptor 9 and susceptibility to systemic lupus erythematosus. Arthritis and Rheumatism, 2006, 54, 1279-1282.	6.7	55
191	Genetic variation in the IL7RA/IL7 pathway increases multiple sclerosis susceptibility. Human Genetics, 2010, 127, 525-535.	3.8	55
192	Sleep fragmentation, microglial aging, and cognitive impairment in adults with and without Alzheimer's dementia. Science Advances, 2019, 5, eaax7331.	10.3	55
193	Sex Difference in Daily Rhythms of Clock Gene Expression in the Aged Human Cerebral Cortex. Journal of Biological Rhythms, 2013, 28, 117-129.	2.6	53
194	ImmVar project: Insights and design considerations for future studies of "healthy―immune variation. Seminars in Immunology, 2015, 27, 51-57.	5.6	53
195	New data and an old puzzle: the negative association between schizophrenia and rheumatoid arthritis. International Journal of Epidemiology, 2015, 44, 1706-1721.	1.9	53
196	Bayesian Genome-wide TWAS Method to Leverage both cis- and trans-eQTL Information through Summary Statistics. American Journal of Human Genetics, 2020, 107, 714-726.	6.2	53
197	Human Genetics in Rheumatoid Arthritis Guides a High-Throughput Drug Screen of the CD40 Signaling Pathway. PLoS Genetics, 2013, 9, e1003487.	3.5	52
198	Genetic control of the human brain proteome. American Journal of Human Genetics, 2021, 108, 400-410.	6.2	52

#	Article	IF	Citations
199	<scp>GWAS</scp> analysis of handgrip and lower body strength in older adults in the <scp>CHARGE</scp> consortium. Aging Cell, 2016, 15, 792-800.	6.7	51
200	Diurnal and seasonal molecular rhythms in human neocortex and their relation to Alzheimer's disease. Nature Communications, 2017, 8, 14931.	12.8	51
201	Interrogating the complex role of chromosome 16p13.13 in multiple sclerosis susceptibility: independent genetic signals in the CIITA–CLEC16A–SOCS1 gene complex. Human Molecular Genetics, 2011, 20, 3517-3524.	2.9	50
202	CIITA variation in the presence of HLA-DRB1*1501 increases risk for multiple sclerosis. Human Molecular Genetics, 2010, 19, 2331-2340.	2.9	49
203	A common polymorphism near <i>PER1</i> and the timing of human behavioral rhythms. Annals of Neurology, 2012, 72, 324-334.	5.3	48
204	A candidate regulatory variant at the <i>TREM</i> gene cluster associates with decreased Alzheimer's disease risk and increased <i>TREML1</i> and <i>TREM2</i> brain gene expression. Alzheimer's and Dementia, 2017, 13, 663-673.	0.8	48
205	The Molecular and Neuropathological Consequences of Genetic Risk for Alzheimer's Dementia. Frontiers in Neuroscience, 2018, 12, 699.	2.8	47
206	Regulation of Gene Expression in Autoimmune Disease Loci and the Genetic Basis of Proliferation in CD4+ Effector Memory T Cells. PLoS Genetics, 2014, 10, e1004404.	3.5	46
207	Assessment of Early Evidence of Multiple Sclerosis in a Prospective Study of Asymptomatic High-Risk Family Members. JAMA Neurology, 2017, 74, 293.	9.0	46
208	Genes and Environment in Multiple Sclerosis project: A platform to investigate multiple sclerosis risk. Annals of Neurology, 2016, 79, 178-189.	5.3	45
209	<i>TOMM40</i> ′523 variant and cognitive decline in older persons with <i>APOE</i> Îμ3/3 genotype. Neurology, 2017, 88, 661-668.	1.1	45
210	The Association of Magnetic Resonance Imaging Measures With Cognitive Function in a Biracial Population Sample. Archives of Neurology, 2010, 67, 475-82.	4.5	44
211	Methylation profiles in peripheral blood CD4+ lymphocytes versus brain: The relation to Alzheimer's disease pathology. Alzheimer's and Dementia, 2016, 12, 942-951.	0.8	44
212	The epigenome in Alzheimer's disease: current state and approaches for a new path to gene discovery and understanding disease mechanism. Acta Neuropathologica, 2016, 132, 503-514.	7.7	44
213	Polygenic analysis of inflammatory disease variants and effects on microglia in the aging brain. Molecular Neurodegeneration, 2018, 13, 38.	10.8	44
214	Characterization of mitochondrial DNA quantity and quality in the human aged and Alzheimer's disease brain. Molecular Neurodegeneration, 2021, 16, 75.	10.8	44
215	New Therapeutic Approaches for Multiple Sclerosis. Annual Review of Medicine, 2007, 58, 417-432.	12.2	43
216	Identifying drug targets for neurological and psychiatric disease via genetics and the brain transcriptome. PLoS Genetics, 2021, 17, e1009224.	3.5	43

#	Article	IF	Citations
217	Brain microRNAs associated with late-life depressive symptoms are also associated with cognitive trajectory and dementia. Npj Genomic Medicine, 2020, 5, 6.	3.8	43
218	Global and local ancestry in Africanâ€Americans: Implications for Alzheimer's disease risk. Alzheimer's and Dementia, 2016, 12, 233-243.	0.8	42
219	Deconstructing and targeting the genomic architecture of human neurodegeneration. Nature Neuroscience, 2018, 21, 1310-1317.	14.8	42
220	Seasonal plasticity of cognition and related biological measures in adults with and without Alzheimer disease: Analysis of multiple cohorts. PLoS Medicine, 2018, 15, e1002647.	8.4	42
221	<i>APOE</i> Îμ2Îμ4 genotype, incident AD and MCI, cognitive decline, and AD pathology in older adults. Neurology, 2018, 90, e2127-e2134.	1.1	42
222	Evidence for a common pathway linking neurodegenerative diseases. Nature Genetics, 2009, 41, 1261-1262.	21.4	41
223	Population structure and HLA DRB1*1501 in the response of subjects with multiple sclerosis to first-line treatments. Journal of Neuroimmunology, 2011, 233, 168-174.	2.3	41
224	The landscape of myeloid and astrocyte phenotypes in acute multiple sclerosis lesions. Acta Neuropathologica Communications, 2019, 7, 130.	5.2	41
225	Association Between Common Variants in <i>RBFOX1</i> , an RNA-Binding Protein, and Brain Amyloidosis in Early and Preclinical Alzheimer Disease. JAMA Neurology, 2020, 77, 1288.	9.0	41
226	Intermediate Phenotypes Identify Divergent Pathways to Alzheimer's Disease. PLoS ONE, 2010, 5, e11244.	2.5	41
227	Building a pipeline to discover and validate novel therapeutic targets and lead compounds for Alzheimer's disease. Biochemical Pharmacology, 2014, 88, 617-630.	4.4	40
228	Common variants in <i>DRD2 </i> are associated with sleep duration: the CARe consortium. Human Molecular Genetics, 2016, 25, 167-179.	2.9	40
229	A pharmacogenetic study implicates <scp><i>SLC9a9</i></scp> in multiple sclerosis disease activity. Annals of Neurology, 2015, 78, 115-127.	5.3	39
230	Association of Long Runs of Homozygosity With Alzheimer Disease Among African American Individuals. JAMA Neurology, 2015, 72, 1313.	9.0	39
231	APOE ε4-TOMM40 â€~523 haplotypes and the risk of Alzheimer's disease in older Caucasian and African Americans. PLoS ONE, 2017, 12, e0180356.	2.5	39
232	A Random Change Point Model for Cognitive Decline in Alzheimer's Disease and Mild Cognitive Impairment. Neuroepidemiology, 2012, 39, 73-83.	2.3	38
233	Association of Parkinson Disease Risk Loci With Mild Parkinsonian Signs in Older Persons. JAMA Neurology, 2014, 71, 429.	9.0	38
234	A scalable online tool for quantitative social network assessment reveals potentially modifiable social environmental risks. Nature Communications, 2018, 9, 3930.	12.8	37

#	Article	IF	Citations
235	Shared Causal Paths underlying Alzheimer's dementia and Type 2 Diabetes. Scientific Reports, 2020, 10, 4107.	3.3	37
236	Enhancing Top-Down Proteomics of Brain Tissue with FAIMS. Journal of Proteome Research, 2021, 20, 2780-2795.	3.7	36
237	Novel Variance-Component TWAS method for studying complex human diseases with applications to Alzheimer's dementia. PLoS Genetics, 2021, 17, e1009482.	3.5	36
238	The association of epigenetic clocks in brain tissue with brain pathologies and common aging phenotypes. Neurobiology of Disease, 2021, 157, 105428.	4.4	36
239	Sex-Specific Association of the X Chromosome With Cognitive Change and Tau Pathology in Aging and Alzheimer Disease. JAMA Neurology, 2021, 78, 1249.	9.0	35
240	Variation Within DNA Repair Pathway Genes and Risk of Multiple Sclerosis. American Journal of Epidemiology, 2010, 172, 217-224.	3.4	34
241	Integration of Sequence Data from a Consanguineous Family with Genetic Data from an Outbred Population Identifies PLB1 as a Candidate Rheumatoid Arthritis Risk Gene. PLoS ONE, 2014, 9, e87645.	2.5	34
242	Association of DNA methylation in the brain with age in older persons is confounded by common neuropathologies. International Journal of Biochemistry and Cell Biology, 2015, 67, 58-64.	2.8	34
243	Candidate-based screening via gene modulation in human neurons and astrocytes implicates <i>FERMT2</i> in A β and TAU proteostasis. Human Molecular Genetics, 2019, 28, 718-735.	2.9	33
244	Evaluating the role of the 620W allele of protein tyrosine phosphatase PTPN22 in Crohn's disease and multiple sclerosis. European Journal of Human Genetics, 2006, 14, 317-321.	2.8	32
245	Clinical relevance and functional consequences of the <i>TNFRSF1A</i> multiple sclerosis locus. Neurology, 2013, 81, 1891-1899.	1.1	32
246	Functional variations modulating PRKCA expression and alternative splicing predispose to multiple sclerosis. Human Molecular Genetics, 2014, 23, 6746-6761.	2.9	32
247	Common variation near IRF6 is associated with IFN- \hat{l}^2 -induced liver injury in multiple sclerosis. Nature Genetics, 2018, 50, 1081-1085.	21.4	32
248	Analysis of Whole-Exome Sequencing Data for Alzheimer Disease Stratified by <i>APOE</i> Genotype. JAMA Neurology, 2019, 76, 1099.	9.0	32
249	BIN1 protein isoforms are differentially expressed in astrocytes, neurons, and microglia: neuronal and astrocyte BIN1 are implicated in tau pathology. Molecular Neurodegeneration, 2020, 15, 44.	10.8	32
250	Characteristics of Epigenetic Clocks Across Blood and Brain Tissue in Older Women and Men. Frontiers in Neuroscience, 2020, 14, 555307.	2.8	32
251	<i>Trans</i> -pQTL study identifies immune crosstalk between Parkinson and Alzheimer loci. Neurology: Genetics, 2016, 2, e90.	1.9	31
252	Genome-wide association study of 23,500 individuals identifies 7 loci associated with brain ventricular volume. Nature Communications, 2018, 9, 3945.	12.8	31

#	Article	IF	CITATIONS
253	The human brainome: network analysis identifies HSPA2 as a novel Alzheimer's disease target. Brain, 2018, 141, 2721-2739.	7.6	31
254	HLA-DRB1*1501 and Spinal Cord Magnetic Resonance Imaging Lesions in Multiple Sclerosis. Archives of Neurology, 2009, 66, 1531-6.	4.5	30
255	Multi-omic Directed Networks Describe Features of Gene Regulation in Aged Brains and Expand the Set of Genes Driving Cognitive Decline. Frontiers in Genetics, 2018, 9, 294.	2.3	30
256	Early complement genes are associated with visual system degeneration in multiple sclerosis. Brain, 2019, 142, 2722-2736.	7.6	30
257	Somatic mosaicism of sex chromosomes in the blood and brain. Brain Research, 2019, 1721, 146345.	2.2	30
258	Genetic and lifestyle risk factors for MRI-defined brain infarcts in a population-based setting. Neurology, 2019, 92, .	1.1	30
259	Genetics of Gene Expression in the Aging Human Brain Reveal TDP-43 Proteinopathy Pathophysiology. Neuron, 2020, 107, 496-508.e6.	8.1	29
260	A machine learning approach to brain epigenetic analysis reveals kinases associated with Alzheimer's disease. Nature Communications, 2021, 12, 4472.	12.8	28
261	A genome-wide association study identifies genetic loci associated with specific lobar brain volumes. Communications Biology, 2019, 2, 285.	4.4	27
262	cindr, the Drosophila Homolog of the CD2AP Alzheimer's Disease Risk Gene, Is Required for Synaptic Transmission and Proteostasis. Cell Reports, 2019, 28, 1799-1813.e5.	6.4	27
263	Cross-Species Analyses Identify Dlgap2 as a Regulator of Age-Related Cognitive Decline and Alzheimer's Dementia. Cell Reports, 2020, 32, 108091.	6.4	27
264	Molecular estimation of neurodegeneration pseudotime in older brains. Nature Communications, 2020, 11, 5781.	12.8	26
265	Vaccination Against SARS-CoV-2 in Neuroinflammatory Disease: Early Safety/Tolerability Data. Multiple Sclerosis and Related Disorders, 2022, 57, 103433.	2.0	26
266	The Role of MAPT Haplotype H2 and Isoform 1N/4R in Parkinsonism of Older Adults. PLoS ONE, 2016, 11, e0157452.	2.5	25
267	Uncovering the Role of the Methylome in Dementia and Neurodegeneration. Trends in Molecular Medicine, 2016, 22, 687-700.	6.7	25
268	Loneliness 5 years ante-mortem is associated with disease-related differential gene expression in postmortem dorsolateral prefrontal cortex. Translational Psychiatry, 2018, 8, 2.	4.8	25
269	Association of Cortical \hat{I}^2 -Amyloid Protein in the Absence of Insoluble Deposits With Alzheimer Disease. JAMA Neurology, 2019, 76, 818.	9.0	25
270	DNA methylation variability in Alzheimer's disease. Neurobiology of Aging, 2019, 76, 35-44.	3.1	25

#	Article	IF	Citations
271	Peripheral serum metabolomic profiles inform central cognitive impairment. Scientific Reports, 2020, 10, 14059.	3.3	25
272	Brain DNA Methylation Patterns in CLDN5 Associated With Cognitive Decline. Biological Psychiatry, 2022, 91, 389-398.	1.3	25
273	A 17q12 Allele Is Associated with Altered NK Cell Subsets and Function. Journal of Immunology, 2012, 188, 3315-3322.	0.8	24
274	Gene expression and DNA methylation are extensively coordinated with MRI-based brain microstructural characteristics. Brain Imaging and Behavior, 2019, 13, 963-972.	2.1	24
275	APOE $\hat{l}\mu$ 4-specific associations of VEGF gene family expression with cognitive aging and Alzheimer's disease. Neurobiology of Aging, 2020, 87, 18-25.	3.1	24
276	Association between DNA methylation levels in brain tissue and late-life depression in community-based participants. Translational Psychiatry, 2020, 10, 262.	4.8	24
277	Genome-wide epistasis analysis for Alzheimer $\hat{a} \in \mathbb{N}$ s disease and implications for genetic risk prediction. Alzheimer's Research and Therapy, 2021, 13, 55.	6.2	24
278	Applying a new generation of genetic maps to understand human inflammatory disease. Nature Reviews Immunology, 2005, 5, 83-91.	22.7	23
279	Lack of support for association between the KIF1B rs10492972[C] variant and multiple sclerosis. Nature Genetics, 2010, 42, 469-470.	21.4	23
280	TOMM40 in Cerebral Amyloid Angiopathy Related Intracerebral Hemorrhage: Comparative Genetic Analysis with Alzheimer's Disease. Translational Stroke Research, 2012, 3, 102-112.	4.2	23
281	No evidence for shared genetic basis of common variants in multiple sclerosis and amyotrophic lateral sclerosis. Human Molecular Genetics, 2014, 23, 1916-1922.	2.9	23
282	Integrated biology approach reveals molecular and pathological interactions among Alzheimer's Aβ42, Tau, TREM2, and TYROBP in Drosophila models. Genome Medicine, 2018, 10, 26.	8.2	23
283	The genetic diversity of multiple sclerosis risk among Hispanic and African American populations living in the United States. Multiple Sclerosis Journal, 2020, 26, 1329-1339.	3.0	23
284	Use of a genetic isolate to identify rare disease variants: C7 on 5p associated with MS. Human Molecular Genetics, 2009, 18, 1670-1683.	2.9	22
285	The <i>CETP</i> I405V polymorphism is associated with an increased risk of Alzheimer's disease. Aging Cell, 2012, 11, 228-233.	6.7	22
286	Genetic architecture of age-related cognitive decline in African Americans. Neurology: Genetics, 2017, 3, e125.	1.9	22
287	Integrated analysis of the aging brain transcriptome and proteome in tauopathy. Molecular Neurodegeneration, 2020, 15, 56.	10.8	22
288	Cortical Proteins and Individual Differences in Cognitive Resilience in Older Adults. Neurology, 2022, 98, .	1.1	22

#	Article	IF	Citations
289	The Human Glutamate Receptor Î'2 Gene (GRID2) Maps to Chromosome 4q22. Genomics, 1998, 47, 143-145.	2.9	21
290	HLA-C levels impact natural killer cell subset distribution and function. Human Immunology, 2016, 77, 1147-1153.	2.4	21
291	Association Between Brain Gene Expression, DNA Methylation, and Alteration of Ex Vivo Magnetic Resonance Imaging Transverse Relaxation in Late-Life Cognitive Decline. JAMA Neurology, 2017, 74, 1473.	9.0	21
292	Association of social network structure and physical function in patients with multiple sclerosis. Neurology, 2020, 95, e1565-e1574.	1.1	21
293	Manifestations and impact of the COVIDâ€19 pandemic in neuroinflammatory diseases. Annals of Clinical and Translational Neurology, 2021, 8, 918-928.	3.7	21
294	The complex genetics of gait speed: genome-wide meta-analysis approach. Aging, 2017, 9, 209-246.	3.1	21
295	A Putative Alzheimer's Disease Risk Allele in PCK1 Influences Brain Atrophy in Multiple Sclerosis. PLoS ONE, 2010, 5, e14169.	2.5	20
296	Selection of first-line therapy in multiple sclerosis using risk-benefit decision analysis. Neurology, 2017, 88, 677-684.	1.1	20
297	Plasma amyloid β levels are driven by genetic variants near <i>APOE, BACE1, APP, PSEN2</i> : A genomeâ€wide association study in over 12,000 nonâ€demented participants. Alzheimer's and Dementia, 2021, 17, 1663-1674.	0.8	20
298	Neuroimmune contributions to Alzheimer's disease: a focus on human data. Molecular Psychiatry, 2022, 27, 3164-3181.	7.9	20
299	Evidence for CRHR1 in multiple sclerosis using supervised machine learning and meta-analysis in 12 566 individuals. Human Molecular Genetics, 2010, 19, 4286-4295.	2.9	19
300	Classifying multiple sclerosis patients on the basis of SDMT performance using machine learning. Multiple Sclerosis Journal, 2021, 27, 107-116.	3.0	19
301	A cortical immune network map identifies distinct microglial transcriptional programs associated with \hat{I}^2 -amyloid and Tau pathologies. Translational Psychiatry, 2021, 11, 50.	4.8	19
302	Atlas of RNA editing events affecting protein expression in aged and Alzheimer's disease human brain tissue. Nature Communications, 2021, 12, 7035.	12.8	19
303	Single Cell/Nucleus Transcriptomics Comparison in Zebrafish and Humans Reveals Common and Distinct Molecular Responses to Alzheimer's Disease. Cells, 2022, 11, 1807.	4.1	19
304	FMNL2 regulates gliovascular interactions and is associated with vascular risk factors and cerebrovascular pathology in Alzheimer's disease. Acta Neuropathologica, 2022, 144, 59-79.	7.7	19
305	Genetic influence of plasma homocysteine on Alzheimer's disease. Neurobiology of Aging, 2018, 62, 243.e7-243.e14.	3.1	18
306	Single cell RNA sequencing of human microglia uncovers a subset that is associated with Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e038589.	0.8	18

#	Article	IF	CITATIONS
307	Rituximab for tumefactive inflammatory demyelination: A case report. Clinical Neurology and Neurosurgery, 2012, 114, 1326-1328.	1.4	17
308	An Inflection Point in Gene Discovery Efforts for Neurodegenerative Diseases. JAMA Neurology, 2013, 70, 719.	9.0	17
309	Complex relation of <i>HLA-DRB1*1501</i> , age at menarche, and age at multiple sclerosis onset. Neurology: Genetics, 2016, 2, e88.	1.9	17
310	Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. Molecular Neurobiology, 2017, 54, 8021-8032.	4.0	17
311	Phenome-wide examination of comorbidity burden and multiple sclerosis disease severity. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	17
312	Genetic and gene expression signatures in multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 576-581.	3.0	17
313	A High-Resolution Genetic Map of the Nervous Locus on Mouse Chromosome 8. Genomics, 1998, 48, 346-353.	2.9	16
314	GluRdelta2 and the Development and Death of Cerebellar Purkinje Neurons in Lurcher Mice. Annals of the New York Academy of Sciences, 1999, 868, 502-514.	3.8	16
315	Application of user-guided automated cytometric data analysis to large-scale immunoprofiling of invariant natural killer T cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19030-19035.	7.1	16
316	Personality Polygenes, Positive Affect, and Life Satisfaction. Twin Research and Human Genetics, 2016, 19, 407-417.	0.6	16
317	eSupport: Feasibility trial of telehealth support group participation to reduce loneliness in multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 1797-1800.	3.0	16
318	Myelin oligodendrocyte glycoprotein (MOG) antibody-mediated disease: The difficulty of predicting relapses. Multiple Sclerosis and Related Disorders, 2021, 56, 103229.	2.0	16
319	Serum metabolomic biomarkers of perceptual speed in cognitively normal and mildly impaired subjects with fasting state stratification. Scientific Reports, 2021, 11, 18964.	3.3	15
320	Proximal and distal effects of genetic susceptibility to multiple sclerosis on the T cell epigenome. Nature Communications, 2021, 12, 7078.	12.8	15
321	Neuropathologic features of <i>TOMM40</i> '523 variant on lateâ€life cognitive decline. Alzheimer's and Dementia, 2017, 13, 1380-1388.	0.8	14
322	The genetics of circulating BDNF: towards understanding the role of BDNF in brain structure and function in middle and old ages. Brain Communications, 2020, 2, fcaa176.	3.3	14
323	Cortical proteins may provide motor resilience in older adults. Scientific Reports, 2021, 11, 11311.	3.3	14
324	Bulk and Single-Nucleus Transcriptomics Highlight Intra-Telencephalic and Somatostatin Neurons in Alzheimerâ \in TM s Disease. Frontiers in Molecular Neuroscience, 0, 15, .	2.9	14

#	Article	IF	CITATIONS
325	Switching from natalizumab to ocrelizumab in patients with multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 1964-1965.	3.0	13
326	Whole genome sequencing–based copy number variations reveal novel pathways and targets in Alzheimer's disease. Alzheimer's and Dementia, 2022, 18, 1846-1867.	0.8	13
327	A new allele of the lurcher gene, lurcher. Mammalian Genome, 1997, 8, 647-650.	2.2	12
328	A Bayesian Framework for Generalized Linear Mixed Modeling Identifies New Candidate Loci for Late-Onset Alzheimer's Disease. Genetics, 2018, 209, 51-64.	2.9	12
329	Manifestations of Alzheimer's disease genetic risk in the blood are evident in a multiomic analysis in healthy adults aged 18 to 90. Scientific Reports, 2022, 12, 6117.	3.3	12
330	The impact of socioeconomic status on subsequent neurological outcomes in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2022, 65, 103994.	2.0	12
331	IC-P-063: Polygenic Risk of Alzheimer's Disease is Associated with Early and Late Life Processes. , 2016, 12, P50-P51.		11
332	Microstructural changes in the brain mediate the association of AK4, IGFBP5, HSPB2, and ITPK1 with cognitive decline. Neurobiology of Aging, 2019, 84, 17-25.	3.1	11
333	Genetic risk for Alzheimer's dementia predicts motor deficits through multi-omic systems in older adults. Translational Psychiatry, 2019, 9, 241.	4.8	11
334	Considerations for integrative multiâ€omic approaches to explore Alzheimer's disease mechanisms. Brain Pathology, 2020, 30, 984-991.	4.1	11
335	Social support is linked to mental health, quality of life, and motor function in multiple sclerosis. Journal of Neurology, 2021, 268, 1827-1836.	3.6	11
336	Worsening physical functioning in patients with neuroinflammatory disease during the COVID-19 pandemic. Multiple Sclerosis and Related Disorders, 2022, 58, 103482.	2.0	11
337	An â^1⁄41.2-Mb Bacterial Artificial Chromosome Contig Refines the Genetic and Physical Maps of the Lurcher Locus on Mouse Chromosome 6. Genome Research, 1997, 7, 736-746.	5 . 5	10
338	Bayesian integrative analysis of epigenomic and transcriptomic data identifies Alzheimer's disease candidate genes and networks. PLoS Computational Biology, 2020, 16, e1007771.	3.2	10
339	The Lurcher Mutation and Ionotropic Glutamate Receptors: Contributions to Programmed Neuronal Death <i>In vivo</i>	4.1	9
340	Fine-mapping the genetic basis of CRP regulation in African Americans: a Bayesian approach. Human Genetics, 2008, 123, 633-642.	3.8	9
341	Synonymous variants associated with Alzheimer disease in multiplex families. Neurology: Genetics, 2020, 6, e450.	1.9	9
342	Neurological Immunotoxicity from Cancer Treatment. International Journal of Molecular Sciences, 2021, 22, 6716.	4.1	9

#	Article	IF	CITATIONS
343	Epigenomic features related to microglia are associated with attenuated effect of <i>APOE</i> $\hat{l}\mu 4$ on Alzheimer's disease risk in humans. Alzheimer's and Dementia, 2022, 18, 688-699.	0.8	9
344	Neuropathologic Correlates of Human Cortical Proteins in Alzheimer Disease and Related Dementias. Neurology, 2022, 98, .	1.1	9
345	Rheumatoid arthritis-associated RBPJ polymorphism alters memory CD4 ⁺ T cells. Human Molecular Genetics, 2016, 25, 404-417.	2.9	8
346	Genetic epistasis regulates amyloid deposition in resilient aging. Alzheimer's and Dementia, 2017, 13, 1107-1116.	0.8	8
347	Ultra-rare mutations in <i>SRCAP</i> segregate in Caribbean Hispanic families with Alzheimer disease. Neurology: Genetics, 2017, 3, e178.	1.9	8
348	<i>UNC5C</i> variants are associated with cerebral amyloid angiopathy. Neurology: Genetics, 2017, 3, e176.	1.9	8
349	Cognition may link cortical IGFBP5 levels with motor function in older adults. PLoS ONE, 2019, 14, e0220968.	2.5	8
350	CpGâ€related SNPs in the MS4A region have a doseâ€dependent effect on risk of late–onset Alzheimer disease. Aging Cell, 2019, 18, e12964.	6.7	8
351	Fatal COVID-19 in an MS patient on natalizumab: A case report. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2020, 6, 205521732094293.	1.0	8
352	Unified AI framework to uncover deep interrelationships between gene expression and Alzheimer's disease neuropathologies. Nature Communications, 2021, 12, 5369.	12.8	8
353	Using Transcriptomic Hidden Variables to Infer Context-Specific Genotype Effects in the Brain. American Journal of Human Genetics, 2019, 105, 562-572.	6.2	7
354	Brain microRNAs are associated with variation in cognitive trajectory in advanced age. Translational Psychiatry, 2022, 12, 47.	4.8	7
355	Gene expression profiling in MS: what is the clinical relevance?. Lancet Neurology, The, 2004, 3, 269.	10.2	6
356	MS <i>AHI1</i> genetic risk promotes IFNî 3 ⁺ CD4 ⁺ T cells. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e414.	6.0	6
357	Proteomic identification of select protein variants of the SNARE interactome associated with cognitive reserve in a large community sample. Acta Neuropathologica, 2021, 141, 755-770.	7.7	6
358	Genome-Wide Assessment for Genetic Variants Associated with Ventricular Dysfunction after Primary Coronary Artery Bypass Graft Surgery. PLoS ONE, 2011, 6, e24593.	2.5	5
359	Cerebrovascular and microglial states are not altered by functional neuroinflammatory gene variant. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 819-830.	4.3	5
360	An UNC5C Allele Predicts Cognitive Decline and Hippocampal Atrophy in Clinically Normal Older Adults. Journal of Alzheimer's Disease, 2019, 68, 1161-1170.	2.6	5

#	Article	IF	CITATIONS
361	A pharmacogenetic study implicates NINJ2 in the response to Interferon- \hat{l}^2 in multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 1074-1082.	3.0	5
362	Evaluation of ocrelizumab in older progressive multiple sclerosis patients. Multiple Sclerosis and Related Disorders, 2021, 55, 103171.	2.0	5
363	RCT of a Telehealth Group-Based Intervention to Increase Physical Activity in Multiple Sclerosis. Neurology: Clinical Practice, 2021, 11, 291-297.	1.6	5
364	Integration of GWAS and brain transcriptomic analyses in a multiethnic sample of 35,245 older adults identifies <i>DCDC2</i> gene as predictor of episodic memory maintenance. Alzheimer's and Dementia, 2022, 18, 1797-1811.	0.8	5
365	RNASE6 is a novel modifier of APOE-ε4 effects on cognition. Neurobiology of Aging, 2022, 118, 66-76.	3.1	5
366	Epigenomics in Translational Research. Translational Research, 2015, 165, 7-11.	5.0	4
367	Reproductive period and epigenetic modifications of the oxidative phosphorylation pathway in the human prefrontal cortex. PLoS ONE, 2018, 13, e0199073.	2.5	4
368	Alzheimer's disease GWAS weighted by multiâ€omics and endophenotypes identifies novel risk loci. Alzheimer's and Dementia, 2020, 16, e043977.	0.8	4
369	Associations of social network structure with cognition and amygdala volume in multiple sclerosis: An exploratory investigation. Multiple Sclerosis Journal, 2022, 28, 228-236.	3.0	4
370	Mitochondrial respiratory chain protein co-regulation in the human brain. Heliyon, 2022, 8, e09353.	3.2	4
371	Exploring the role of the epigenome in multiple sclerosis: A window onto cell-specific transcriptional potential. Journal of Neuroimmunology, 2012, 248, 2-9.	2.3	3
372	A Genetic Study of Cerebral Atherosclerosis Reveals Novel Associations with NTNG1 and CNOT3. Genes, 2021, 12, 815.	2.4	3
373	The Caribbeanâ€Hispanic Alzheimer's brain transcriptome reveals ancestryâ€specific disease mechanisms. Alzheimer's and Dementia, 2020, 16, e043068.	0.8	3
374	The era of GWAS is over – No. Multiple Sclerosis Journal, 2018, 24, 258-260.	3.0	2
375	The Impact of MRI T1 Hypointense Brain Lesions on Cerebral Deep Gray Matter Volume Measures in Multiple Sclerosis. Journal of Neuroimaging, 2019, 29, 458-462.	2.0	2
376	Epigenomic features related to microglia are associated with attenuated effect of APOE Îμ4 on Alzheimer's disease risk in humans. Alzheimer's and Dementia, 2020, 16, e043533.	0.8	2
377	Cascading epigenomic analysis for identifying disease genes from the regulatory landscape of GWAS variants. PLoS Genetics, 2021, 17, e1009918.	3.5	2
378	Hypogonadism in men with multiple sclerosis: Prevalence and clinical associations. Multiple Sclerosis and Related Disorders, 2022, 59, 103508.	2.0	2

#	Article	IF	Citations
379	A multi-step genomic approach prioritized TBKBP1 gene as relevant for multiple sclerosis susceptibility. Journal of Neurology, 2022, 269, 4510-4522.	3.6	2
380	UNCOVERING THE GENETIC ARCHITECTURE OF MULTIPLE SCLEROSIS. CONTINUUM Lifelong Learning in Neurology, 2010, 16, 147-165.	0.8	1
381	Uncovering the genetic architecture of white matter disease. Annals of Neurology, 2011, 69, 907-908.	5.3	1
382	Reply. Annals of Neurology, 2015, 78, 659-660.	5.3	1
383	P4â€031: Integrative Network Analysis of Multiple Alzheimer's Disease Rnaseq Studies From the Accelerating Medicine Partnershipâ€Alzheimer's Disease Consortium. Alzheimer's and Dementia, 2016, 12, P1026.	0.8	1
384	O2â€06â€01: The Human Brainome: Human Brain Genome, Transcriptome, and Proteome Integration. Alzheimer's and Dementia, 2016, 12, P237.	0.8	1
385	What is the epigenome and is it involved in multiple sclerosis?. Multiple Sclerosis Journal, 2018, 24, 268-269.	3.0	1
386	Evaluating the role of genetic variation in the epigenome in health and disease. Multiple Sclerosis Journal, 2018, 24, 707-709.	3.0	1
387	Identifying novel causal genes and proteins in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e043523.	0.8	1
388	Integrating human brain proteomes and genomeâ€wide association results implicates new genes in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e043865.	0.8	1
389	The educational impact of childhood-onset multiple sclerosis: Why assessing academic achievement is imperative. Multiple Sclerosis Journal, 2020, 26, 1633-1637.	3.0	1
390	Deconstructing the epigenomic architecture of human neurodegeneration. Neurobiology of Disease, 2021, 153, 105331.	4.4	1
391	Tau-Mediated Disruption of the Spliceosome Triggers Cryptic RNA-Splicing and Neurodegeneration in Alzheimer's Disease. SSRN Electronic Journal, 0, , .	0.4	1
392	Multiâ€region brain transcriptomes uncover two subtypes of aging individuals with differences in the impact of <i>APOEe4</i> . Alzheimer's and Dementia, 2021, 17, e057240.	0.8	1
393	Correction: The CD6 Multiple Sclerosis Susceptibility Allele Is Associated with Alterations in CD4+T Cell Proliferation. Journal of Immunology, 2012, 189, 2063-2063.	0.8	0
394	F2-02-01: Utilizing intermediate phenotypes: Modeling cognitive change. , 2012, 8, P231-P231.		0
395	O4-06-03: Genotype-phenotype studies examining the CD33 locus and amyloid biology. , 2013, 9, P692-P693.		0
396	O4-04-02: A NOVEL SUSCEPTIBILITY LOCUS FOR NEUROFIBRILLARY TANGLES AT PTPRD: EVIDENCE OF PLEIOTROPIC EFFECTS ON OTHER BRAIN PATHOLOGIES. , 2014, 10, P256-P257.		0

#	Article	IF	CITATIONS
397	O3-04-05: EXPRESSION QTL ANALYSIS FROM PRIMARY IMMUNE CELLS IDENTIFIES NOVEL REGULATORY EFFECTS UNDERLYING ALZHEIMER'S DISEASE SUSCEPTIBILITY. , 2014, 10, P216-P216.		O
398	P1-034: AN INTRONIC TREM1 VARIANT INFLUENCES THE ACCUMULATION OF ALZHEIMER'S DISEASE-RELATED AMYLOID PATHOLOGY. , 2014, 10, P315-P316.		0
399	O4-05-02: Genome-wide association study of lobar brain volumes. , 2015, 11, P278-P278.		O
400	S2-02-03: Lessons from multiple sclerosis: Insights from the genomics of neuroinflammation. , 2015, 11, P163-P163.		O
401	P4â€027: Combing Evidence Across Multiple Cohorts for Systemsâ€Based Target Discovery: the AMPâ€AD Knowledge Portal. Alzheimer's and Dementia, 2016, 12, P1025.	0.8	O
402	EC-02-04: Interactions Between TREM2 And CD33 and the Discovery of Novel Targets for AD Therapy. , 2016, 12, P214-P214.		O
403	F2â€01â€02: Pathway Discovery, Validation and Compound Identification for Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P215.	0.8	O
404	O2â€10â€04: A Regulatory Variant at the <i>TREM</i> Gene Cluster Associates with Decreased Alzheimer's Disease Risk and Increased <i>TREML1</i> and <i>TREM2</i> Brain Gene Expression. Alzheimer's and Dementia, 2016, 12, P251.	0.8	O
405	P4-293: APOE-TOMM40 â€~523 Haplotypes and the Risk of Alzheimer'S Disease in Older Caucasian and African Americans. , 2016, 12, P1146-P1146.		O
406	P4â€295: <i>TOMM40</i> â€~523 Variant and Cognitive Decline in Community Based Older Persons with <i>APOE</i> E3/3 GENOTYPE. Alzheimer's and Dementia, 2016, 12, P1146.	0.8	0
407	O2â€10â€05: Cerebrospinal Fluid Levels of Amyloid Beta and Tau as Endophenotypes Reveal Novel Variants Potentially Informative for Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P252.	0.8	O
408	[P4–083]: A DOPAMINE RECEPTOR GENETIC VARIANT ENHANCES PERCEPTUAL SPEED IN COGNITIVELY HEALTHY SUBJECTS. Alzheimer's and Dementia, 2017, 13, P1291.	0.8	0
409	[P1–154]: <i>APOE</i> ε4 IS ASSOCIATED WITH HIGHER TDPâ€43 PROTEINOPATHY BURDEN IN ALZHEIMER's DISEASE. Alzheimer's and Dementia, 2017, 13, P301.	0.8	O
410	[P2–115]: A <i>TMEM106B</i> LOCUS IS IMPLICATED IN COGNITIVE DECLINE IN ALZHEIMER's DISEASE. Alzheimer's and Dementia, 2017, 13, P650.	0.8	0
411	How do we measure the epigenome(s)?. Multiple Sclerosis Journal, 2018, 24, 446-448.	3.0	O
412	Designing an epigenomic study. Multiple Sclerosis Journal, 2018, 24, 604-609.	3.0	0
413	P2â€137: COMPARISON OF GENE EXPRESSION PROFILE OF ALZHEIMER'S DISEASE USING MODULAR MAXIMIZATION ALGORITHM REVEALS OPPOSING ROLES FOR TGIF AND EGR3. Alzheimer's and Dementia, 2018, 14, P720.	0.8	O
414	F2â€03â€04: SYSTEMS BIOLOGY/ANALYSIS OF COMPLEX SYSTEMS. Alzheimer's and Dementia, 2018, 14, P605.	0.8	0

#	Article	IF	CITATIONS
415	P3â€136: MODULE QUANTITATIVE TRAIT LOCI ANALYSIS IMPLICATES <i>TMEM106B</i> AND <i>RBFOX1</i> AS KEY BRAIN TRANSCRIPTOME REGULATORS IN OLDER ADULTS. Alzheimer's and Dementia, 2018, 14, P1120.	0.8	O
416	O5â€04â€04: CANDIDATE EPIGENETIC MODIFIERS OF TAU PATHOLOGICAL BURDEN IN PRIMARY AGEâ€RELATED TAUOPATHY. Alzheimer's and Dementia, 2018, 14, P1652.	0.8	0
417	Is the goal of an epigenomic study to determine causality?. Multiple Sclerosis Journal, 2018, 24, 908-909.	3.0	0
418	P4â€496: MYELOID CELLâ€6PECIFIC ALZHEIMER'S DISEASE POLYGENIC RISK SCORE PREDICTS NEURODEGENERATION AND Aβâ€RELATED COGNITIVE DECLINE IN COGNITIVELY NORMAL OLDER ADULTS. Alzheimer's and Dementia, 2019, 15, P1503.	0.8	О
419	Genetic associations with brain amyloidosis. Alzheimer's and Dementia, 2020, 16, e042191.	0.8	O
420	Identifying gene expression signatures in individuals with minimal cognitive impairment in the presence of advanced Alzheimer's disease pathology. Alzheimer's and Dementia, 2020, 16, e043424.	0.8	0
421	Genomeâ€wide association analysis of neurofibrillary tangle burden identifies novel risk loci in the adult changes of thought (ACT) and the religious orders study and memory and aging project (ROSMAP) autopsy cohorts. Alzheimer's and Dementia, 2020, 16, e043573.	0.8	O
422	Single nucleus and bulk homogenate RNAâ€sequencing comparison of vascular endothelial growth factor family associations with Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e046170.	0.8	0
423	Leveraging predicted gene expression data for recapitulation of gene coexpression network analysis associations with AD pathology and cognitive decline. Alzheimer's and Dementia, 2020, 16, e046394.	0.8	O
424	Immunogenetics of neurological disease. , 2020, , 71-80.		0
425	Genetic factors implicated in the response to fingolimod treatment in multiple sclerosis patients: results from a pharmacogenetic meta-analysis. Journal of the Neurological Sciences, 2021, 429, 117750.	0.6	O
426	Exploring cortical proteins underlying the relation of neuroticism to cognitive resilience. Aging Brain, 2022, 2, 100031.	1.3	0
427	Re: GAMES issue study: Are international genetic consortia functional?. Journal of Neuroimmunology, 2004, 153, 5-6.	2.3	0
428	A genome-wide investigation of clinicopathologic endophenotypes uncovers a new susceptibility locus for tau pathology at Neurotrimin (NTM) Alzheimer's and Dementia, 2021, 17 Suppl 3, e051682.	0.8	0
429	Depression contributes to Alzheimer's disease through shared genetic risk Alzheimer's and Dementia, 2021, 17 Suppl 3, e053251.	0.8	O
430	Cell type-specific Alzheimer's disease polygenic risk scores are associated with distinct disease processes in preclinical Alzheimer's disease Alzheimer's and Dementia, 2021, 17 Suppl 3, e055304.	0.8	0
431	Transcriptomic modifiers of the cognitive consequences of apolipoprotein E Alzheimer's and Dementia, 2021, 17 Suppl 3, e055817.	0.8	O
432	Testing a polygenic score for microglial activation against Alzheimer's disease pathology and cognition Alzheimer's and Dementia, 2021, 17 Suppl 3, e057810.	0.8	0