List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6251088/publications.pdf Version: 2024-02-01

KEVIN RISHOD

#	Article	IF	CITATIONS
1	Use of stable Mg isotope ratios in identifying the base cation sources of stream water in the boreal Krycklan catchment (Sweden). Chemical Geology, 2022, 588, 120651.	3.3	4
2	A Simplified Drying Procedure for Analysing Hg Concentrations. Water, Air, and Soil Pollution, 2022, 233, .	2.4	5
3	Streamflow droughts in Sweden: Spatiotemporal patterns emerging from six decades of observations. Journal of Hydrology: Regional Studies, 2022, 42, 101171.	2.4	11
4	How effective are River Basin Management Plans in reaching the nutrient load reduction targets?. Ambio, 2021, 50, 706-722.	5.5	16
5	Toward catchment hydroâ€biogeochemical theories. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1495.	6.5	65
6	Citizen Science as Democratic Innovation That Renews Environmental Monitoring and Assessment for the Sustainable Development Goals in Rural Areas. Sustainability, 2021, 13, 2762.	3.2	12
7	Northern landscapes in transition: Evidence, approach and ways forward using the Krycklan Catchment Study. Hydrological Processes, 2021, 35, e14170.	2.6	45
8	Variability in fluvial suspended and streambed sediment phosphorus fractions among small agricultural streams. Journal of Environmental Quality, 2021, 50, 612-626.	2.0	3
9	Simulation of water and chemical transport of chloride from the forest ecosystem to the stream. Environmental Modelling and Software, 2021, 138, 104984.	4.5	8
10	Land use, geology and soil properties control nutrient concentrations in headwater streams. Science of the Total Environment, 2021, 772, 145108.	8.0	25
11	Diet influence on mercury bioaccumulation as revealed by polyunsaturated fatty acids in zoobenthos from two contrasting environments: Chinese reservoirs and Swedish lakes. Science of the Total Environment, 2021, 782, 146410.	8.0	7
12	Elevated temperature and browning increase dietary methylmercury, but decrease essential fatty acids at the base of lake food webs. Scientific Reports, 2021, 11, 16859.	3.3	7
13	Critical Observations of Gaseous Elemental Mercury Airâ€Sea Exchange. Global Biogeochemical Cycles, 2021, 35, e2020GB006742.	4.9	7
14	Where and When to Collect Tracer Data to Diagnose Hillslope Permeability Architecture. Water Resources Research, 2021, 57, e2020WR028719.	4.2	2
15	Brownification on hold: What traditional analyses miss in extended surface water records. Water Research, 2021, 203, 117544.	11.3	15
16	Monitoring and assessment of environmental resources in the changing landscape of Ethiopia: a focus on forests and water. Environmental Monitoring and Assessment, 2021, 193, 624.	2.7	3
17	Biogeochemical influences on net methylmercury formation proxies along a peatland chronosequence. Geochimica Et Cosmochimica Acta, 2021, 308, 188-203.	3.9	12
18	Influence of the Landscape Template on Chemical and Physical Habitat for Brown Trout Within a Boreal Stream Network. Frontiers in Water, 2021, 3, .	2.3	1

#	Article	IF	CITATIONS
19	Effect of DEM-smoothing and -aggregation on topographically-based flow directions and catchment boundaries. Journal of Hydrology, 2021, 602, 126717.	5.4	12
20	From legacy effects of acid deposition in boreal streams to future environmental threats. Environmental Research Letters, 2021, 16, 015007.	5.2	15
21	Autumn destabilization of deep porewater CO2 store in a northern peatland driven by turbulent diffusion. Nature Communications, 2021, 12, 6857.	12.8	5
22	Linear spectral unmixing algorithm for modelling suspended sediment concentration of flash floods, upper Tekeze River, Ethiopia. International Journal of Sediment Research, 2020, 35, 79-90.	3.5	12
23	Shifts in mercury methylation across a peatland chronosequence: From sulfate reduction to methanogenesis and syntrophy. Journal of Hazardous Materials, 2020, 387, 121967.	12.4	38
24	Effect of aquaculture on mercury and polyunsaturated fatty acids in fishes from reservoirs in Southwest China. Environmental Pollution, 2020, 257, 113543.	7.5	10
25	Particulate phosphorus and suspended solids losses from small agricultural catchments: Links to stream and catchment characteristics. Science of the Total Environment, 2020, 711, 134616.	8.0	39
26	Optimizing placement of constructed wetlands at landscape scale in order to reduce phosphorus losses. Ambio, 2020, 49, 1797-1807.	5.5	7
27	Aqua temporaria incognita. Hydrological Processes, 2020, 34, 5704-5711.	2.6	27
28	Recent advances in understanding and measurement of mercury in the environment: Terrestrial Hg cycling. Science of the Total Environment, 2020, 721, 137647.	8.0	91
29	Formation and mobilization of methylmercury across natural and experimental sulfur deposition gradients. Environmental Pollution, 2020, 263, 114398.	7.5	16
30	Lagged rejuvenation of groundwater indicates internal flow structures and hydrological connectivity. Hydrological Processes, 2020, 34, 2176-2189.	2.6	15
31	Ecosystem services in the Swedish water-energy-food-land-climate nexus: Anthropogenic pressures and physical interactions. Ecosystem Services, 2020, 44, 101141.	5.4	42
32	Opposing spatial trends in methylmercury and total mercury along a peatland chronosequence trophic gradient. Science of the Total Environment, 2020, 718, 137306.	8.0	9
33	Managing Forests and Water for People under a Changing Environment. Forests, 2020, 11, 331.	2.1	3
34	Reviews and syntheses: Biological weathering and its consequences at different spatial levels – from nanoscale to global scale. Biogeosciences, 2020, 17, 1507-1533.	3.3	58
35	Forest-Water Interactions Under Global Change. Ecological Studies, 2020, , 589-624.	1.2	20
36	Mercury biogeochemical cycling: A synthesis of recent scientific advances. Science of the Total Environment, 2020, 737, 139619.	8.0	48

#	Article	IF	CITATIONS
37	Catchment export of base cations: improved mineral dissolution kinetics influence the role of water transit time. Soil, 2020, 6, 231-244.	4.9	10
38	The importance of bioconcentration into the pelagic food web base for methylmercury biomagnification: A meta-analysis. Science of the Total Environment, 2019, 646, 357-367.	8.0	67
39	A water cycle for the Anthropocene. Hydrological Processes, 2019, 33, 3046-3052.	2.6	44
40	Spectral Decomposition Reveals New Perspectives on CO ₂ Concentration Patterns and Soil‧tream Linkages. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3039-3056.	3.0	15
41	Managing Forests for Both Downstream and Downwind Water. Frontiers in Forests and Clobal Change, 2019, 2, .	2.3	30
42	Human domination of the global water cycle absent from depictions and perceptions. Nature Geoscience, 2019, 12, 533-540.	12.9	245
43	Current forest carbon fixation fuels stream CO2 emissions. Nature Communications, 2019, 10, 1876.	12.8	48
44	Soil Compaction Effects on Rootâ€Zone Hydrology and Vegetation in Boreal Forest Clearcuts. Soil Science Society of America Journal, 2019, 83, S105.	2.2	14
45	Terrestrial diet influences mercury bioaccumulation in zooplankton and macroinvertebrates in lakes with differing dissolved organic carbon concentrations. Science of the Total Environment, 2019, 669, 821-832.	8.0	14
46	Mercury methylating microbial communities of boreal forest soils. Scientific Reports, 2019, 9, 518.	3.3	53
47	Human macrophages survive and adopt activated genotypes in living zebrafish. Scientific Reports, 2019, 9, 1759.	3.3	20
48	Weathering rates in Swedish forest soils. Biogeosciences, 2019, 16, 4429-4450.	3.3	11
49	The role of landscape properties, storage and evapotranspiration on variability in streamflow recessions in a boreal catchment. Journal of Hydrology, 2019, 570, 315-328.	5.4	35
50	Is observation uncertainty masking the signal of land use change impacts on hydrology?. Journal of Hydrology, 2019, 570, 393-400.	5.4	8
51	The Nile Basin waters and the West African rainforest: Rethinking the boundaries. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1317.	6.5	20
52	Fishes of Lake Tumba (Democratic Republic of Congo): Evaluation of present status and comparisons with previous studies. Acta Ichthyologica Et Piscatoria, 2019, 49, 341-354.	0.7	3
53	Base cations in the soil bank: non-exchangeable pools may sustain centuries of net loss to forestry and leaching. Soil, 2019, 5, 351-366.	4.9	11
54	From wicked problem to governable entity? The effects of forestry on mercury in aquatic ecosystems. Forest Policy and Economics, 2018, 90, 90-96.	3.4	9

#	Article	lF	CITATIONS
55	Carbon dioxide and methane emissions of Swedish lowâ€order streams—a national estimate and lessons learnt from more than a decade of observations. Limnology and Oceanography Letters, 2018, 3, 156-167.	3.9	49
56	Stable Carbon Isotopes Reveal Soil‣tream DIC Linkages in Contrasting Headwater Catchments. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 149-167.	3.0	47
57	Does forest harvest increase the mercury concentrations in fish? Evidence from Swedish lakes. Science of the Total Environment, 2018, 622-623, 1353-1362.	8.0	19
58	Simulating streamflow in ungauged basins under a changing climate: The importance of landscape characteristics. Journal of Hydrology, 2018, 561, 160-178.	5.4	50
59	Towards an Improved Conceptualization of Riparian Zones in Boreal Forest Headwaters. Ecosystems, 2018, 21, 297-315.	3.4	71
60	Sulfur and iron influence the transformation and accumulation of mercury and methylmercury in the soil-rice system. Journal of Soils and Sediments, 2018, 18, 578-585.	3.0	18
61	Comparative study of elemental mercury flux measurement techniques over a Fennoscandian boreal peatland. Atmospheric Environment, 2018, 172, 16-25.	4.1	18
62	Formation of mercury methylation hotspots as a consequence of forestry operations. Science of the Total Environment, 2018, 613-614, 1069-1078.	8.0	45
63	High methylmercury formation in ponds fueled by fresh humic and algal derived organic matter. Limnology and Oceanography, 2018, 63, S44.	3.1	58
64	Spatial and temporal patterns of pesticide concentrations in streamflow, drainage and runoff in a small Swedish agricultural catchment. Science of the Total Environment, 2018, 610-611, 623-634.	8.0	40
65	Vegetation changes and water cycle in aÂchanging environment. Hydrology and Earth System Sciences, 2018, 22, 1731-1734.	4.9	12
66	Capturing complexity: Forests, decision-making and climate change mitigation action. Global Environmental Change, 2018, 52, 238-247.	7.8	28
67	Challenges of Reducing Phosphorus Based Water Eutrophication in the Agricultural Landscapes of Northwest Europe. Frontiers in Marine Science, 2018, 5, .	2.5	91
68	Mercury Human Exposure in Populations Living Around Lake Tana (Ethiopia). Biological Trace Element Research, 2017, 175, 237-243.	3.5	13
69	Effects of beaver impoundments on dissolved organic matter quality and biodegradability in boreal riverine systems. Hydrobiologia, 2017, 793, 135-148.	2.0	21
70	Nitrous oxide emissions from streams in a Swedish agricultural catchment. Agriculture, Ecosystems and Environment, 2017, 236, 295-303.	5.3	39
71	The local impact of a coal-fired power plant on inorganic mercury and methyl-mercury distribution in rice (Oryza sativa L.). Environmental Pollution, 2017, 223, 11-18.	7.5	49
72	Reduced removal of bacteriophage MS2 in during basin infiltration managed aquifer recharge as basin sand is exposed to infiltration water. Hydrological Processes, 2017, 31, 1690-1701.	2.6	9

#	Article	IF	CITATIONS
73	Variation and accumulation patterns of poly- and perfluoroalkyl substances (PFAS) in European perch (Perca fluviatilis) across a gradient of pristine Swedish lakes. Science of the Total Environment, 2017, 599-600, 1685-1692.	8.0	38
74	Mercury flow through an Asian rice-based food web. Environmental Pollution, 2017, 229, 219-228.	7.5	69
75	Primary weathering rates, water transit times, and concentrationâ€discharge relations: A theoretical analysis for the critical zone. Water Resources Research, 2017, 53, 942-960.	4.2	73
76	Soil moisture storage estimation based on steady vertical fluxes under equilibrium. Journal of Hydrology, 2017, 553, 798-804.	5.4	4
77	Multiple sources and sinks of dissolved inorganic carbon across Swedish streams, refocusing the lens of stable C isotopes. Scientific Reports, 2017, 7, 9158.	3.3	81
78	Aquatic export of young dissolved and gaseous carbon from a pristine boreal fen: Implications for peat carbon stock stability. Global Change Biology, 2017, 23, 5523-5536.	9.5	38
79	Future Riverine Inorganic Nitrogen Load to the Baltic Sea From Sweden: An Ensemble Approach to Assessing Climate Change Effects. Global Biogeochemical Cycles, 2017, 31, 1674-1701.	4.9	16
80	The effects of ionic strength and organic matter on virus inactivation at low temperatures: general likelihood uncertainty estimation (GLUE) as an alternative to least-squares parameter optimization for the fitting of virus inactivation models. Hydrogeology Journal, 2017, 25, 1063-1076.	2.1	2
81	Does the harvest of logging residues and wood ash application affect the mobilization and bioavailability of trace metals?. Forest Ecology and Management, 2017, 383, 61-72.	3.2	19
82	Total mercury and methylmercury concentrations over a gradient of contamination in earthworms living in rice paddy soil. Environmental Toxicology and Chemistry, 2017, 36, 1202-1210.	4.3	13
83	Water storage dynamics in a till hillslope: the foundation for modeling flows and turnover times. Hydrological Processes, 2017, 31, 4-14.	2.6	16
84	Mercury evasion from a boreal peatland shortens the timeline for recovery from legacy pollution. Scientific Reports, 2017, 7, 16022.	3.3	44
85	Using dry and wet year hydroclimatic extremes to guide future hydrologic projections. Hydrology and Earth System Sciences, 2016, 20, 2811-2825.	4.9	15
86	Map-based prediction of organic carbon in headwater streams improved by downstream observations from the river outlet. Biogeosciences, 2016, 13, 399-413.	3.3	3
87	A Hydrological Concept including Lateral Water Flow Compatible with the Biogeochemical Model ForSAFE. Hydrology, 2016, 3, 11.	3.0	7
88	A dual-inlet, single detector relaxed eddy accumulation system for long-term measurement of mercury flux. Atmospheric Measurement Techniques, 2016, 9, 509-524.	3.1	24
89	The assumption of uniform specific discharge: unsafe at any time?. Hydrological Processes, 2016, 30, 3978-3988.	2.6	31
90	The exponential decline in saturated hydraulic conductivity with depth: a novel method for exploring its effect on water flow paths and transit time distribution. Hydrological Processes, 2016, 30, 2438-2450.	2.6	54

KEVIN BISHOP

#	Article	IF	CITATIONS
91	Sensitivity of stream dissolved organic carbon to temperature and discharge: Implications of future climates. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 126-144.	3.0	20
92	Managing Swedish forestry's impact on mercury in fish: Defining the impact and mitigation measures. Ambio, 2016, 45, 163-174.	5.5	50
93	The role of biogeochemical hotspots, landscape heterogeneity, and hydrological connectivity for minimizing forestry effects on water quality. Ambio, 2016, 45, 152-162.	5.5	60
94	Landscape controls on spatiotemporal discharge variability in a boreal catchment. Water Resources Research, 2016, 52, 6541-6556.	4.2	58
95	Poly- and perfluoroalkylated substances (PFASs) in water, sediment and fish muscle tissue from Lake Tana, Ethiopia and implications for human exposure. Chemosphere, 2016, 165, 352-357.	8.2	69
96	Spatial and temporal variations of base cation release from chemical weathering on a hillslope scale. Chemical Geology, 2016, 441, 1-13.	3.3	41
97	Flood risk assessment – Practices in flood prone Swedish municipalities. International Journal of Disaster Risk Reduction, 2016, 18, 206-217.	3.9	28
98	Drinking water risk assessment in practice: the case of Swedish drinking water producers at risk from floods. Environment Systems and Decisions, 2016, 36, 239-252.	3.4	3
99	Hydroclimatic influences on non-stationary transit time distributions in a boreal headwater catchment. Journal of Hydrology, 2016, 543, 7-16.	5.4	25
100	Hillslope permeability architecture controls on subsurface transit time distribution and flow paths. Journal of Hydrology, 2016, 543, 17-30.	5.4	47
101	Constitution of a catchment virtual observatory for sharing flow and transport models outputs. Journal of Hydrology, 2016, 543, 59-66.	5.4	14
102	Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environmental Research Letters, 2016, 11, 034014.	5.2	199
103	Potential for longâ€ŧerm transfer of dissolved organic carbon from riparian zones to streams in boreal catchments. Global Change Biology, 2015, 21, 2963-2979.	9.5	76
104	Hydrological response to changing climate conditions: Spatial streamflow variability in the boreal region. Water Resources Research, 2015, 51, 9425-9446.	4.2	71
105	Local―and landscapeâ€scale impacts of clearâ€cuts and climate change on surface water dissolved organic carbon in boreal forests. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2402-2426.	3.0	23
106	Carbon dioxide transport across the hillslope–riparian–stream continuum in a boreal headwater catchment. Biogeosciences, 2015, 12, 1881-1892.	3.3	61
107	The Role of Subsoil as a Source or Sink for Phosphorus Leaching. Journal of Environmental Quality, 2015, 44, 535-544.	2.0	45
108	Parsimonious Model for Simulating Total Mercury and Methylmercury in Boreal Streams Based on Riparian Flow Paths and Seasonality. Environmental Science & Technology, 2015, 49, 7851-7859.	10.0	18

#	Article	IF	CITATIONS
109	Upscaling Nitrogen Removal Capacity from Local Hotspots to Low Stream Orders' Drainage Basins. Ecosystems, 2015, 18, 1101-1120.	3.4	104
110	Future agriculture with minimized phosphorus losses to waters: Research needs and direction. Ambio, 2015, 44, 163-179.	5.5	210
111	Reticular dysgenesis–associated AK2 protects hematopoietic stem and progenitor cell development from oxidative stress. Journal of Experimental Medicine, 2015, 212, 1185-1202.	8.5	49
112	Patterns and predictability in the intra-annual organic carbon variability across the boreal and hemiboreal landscape. Science of the Total Environment, 2015, 520, 260-269.	8.0	15
113	Organic Matter in Rain: An Overlooked Influence on Mercury Deposition. Environmental Science and Technology Letters, 2015, 2, 128-132.	8.7	21
114	A primer for hydrology: the beguiling simplicity of <i>Water's journey from rain to stream</i> at 30. Hydrological Processes, 2015, 29, 3443-3446.	2.6	3
115	Impact of Beaver Pond Colonization History on Methylmercury Concentrations in Surface Water. Environmental Science & Technology, 2015, 49, 12679-12687.	10.0	20
116	Consequences of mixing assumptions for timeâ€variable travel time distributions. Hydrological Processes, 2015, 29, 3460-3474.	2.6	93
117	Effect of Climate Change on Soil Temperature in Swedish Boreal Forests. PLoS ONE, 2014, 9, e93957.	2.5	90
118	Assessing anthropogenic impact on boreal lakes with historical fish species distribution data and hydrogeochemical modeling. Global Change Biology, 2014, 20, 2752-2764.	9.5	16
119	Eye on the Taiga: Removing Clobal Policy Impediments to Safeguard the Boreal Forest. Conservation Letters, 2014, 7, 408-418.	5.7	54
120	The long-term hydrology of East Africa's water tower: statistical change detection in the watersheds of the Abbay Basin. Regional Environmental Change, 2014, 14, 321-331.	2.9	26
121	Forest cover change over four decades in the Blue Nile Basin, Ethiopia: comparison of three watersheds. Regional Environmental Change, 2014, 14, 253-266.	2.9	91
122	Impact of Forestry on Total and Methyl-Mercury in Surface Waters: Distinguishing Effects of Logging and Site Preparation. Environmental Science & Technology, 2014, 48, 4690-4698.	10.0	55
123	The Full Annual Carbon Balance of Boreal Forests Is Highly Sensitive to Precipitation. Environmental Science and Technology Letters, 2014, 1, 315-319.	8.7	65
124	Evasion of Elemental Mercury from a Boreal Peatland Suppressed by Long-Term Sulfate Addition. Environmental Science and Technology Letters, 2014, 1, 421-425.	8.7	21
125	Cross-scale ensemble projections of dissolved organic carbon dynamics in boreal forest streams. Climate Dynamics, 2014, 42, 2305-2321.	3.8	22
126	Patterns and drivers of riverine nitrogen (N) across alpine, subarctic, and boreal Sweden. Biogeochemistry, 2014, 120, 105-120.	3.5	47

#	Article	IF	CITATIONS
127	Community perceptions of forest–water relationships in the Blue Nile Basin of Ethiopia. Geo Journal, 2014, 79, 605-618.	3.1	13
128	Representative regional sampling of carbon dioxide and methane concentrations in hemiboreal headwater streams reveal underestimates in less systematic approaches. Global Biogeochemical Cycles, 2014, 28, 465-479.	4.9	47
129	Intraâ€annual variability of organic carbon concentrations in running waters: Drivers along a climatic gradient. Global Biogeochemical Cycles, 2014, 28, 451-464.	4.9	59
130	Acidification, Dissolved Organic Carbon (DOC) and Climate Change. , 2014, , 281-287.		2
131	Water renewal along the aquatic continuum offsets cumulative retention by lakes: implications for the character of organic carbon in boreal lakes. Aquatic Sciences, 2013, 75, 535-545.	1.5	28
132	Significant interaction effects from sulfate deposition and climate on sulfur concentrations constitute major controls on methylmercury production in peatlands. Geochimica Et Cosmochimica Acta, 2013, 102, 1-11.	3.9	42
133	Impact of stump harvest on run-off concentrations of total mercury and methylmercury. Forest Ecology and Management, 2013, 290, 83-94.	3.2	38
134	Hydrological effects of clear-cutting in a boreal forest – Snowpack dynamics, snowmelt and streamflow responses. Journal of Hydrology, 2013, 484, 105-114.	5.4	69
135	Integrated modeling of flow and residence times at the catchment scale with multiple interacting pathways. Water Resources Research, 2013, 49, 4738-4750.	4.2	63
136	Evasion of <scp>CO</scp> ₂ from streams – The dominant component of the carbon export through the aquatic conduit in a boreal landscape. Global Change Biology, 2013, 19, 785-797.	9.5	175
137	Hydrological change detection using modeling: Half a century of runoff from four rivers in the Blue Nile Basin. Water Resources Research, 2013, 49, 3842-3851.	4.2	29
138	Contrasting CO ₂ concentration discharge dynamics in headwater streams: A multiâ€catchment comparison. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 445-461.	3.0	53
139	Drivers of increased organic carbon concentrations in stream water following forest disturbance: Separating effects of changes in flow pathways and soil warming. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1814-1827.	3.0	35
140	The Krycklan Catchment Study-A flagship infrastructure for hydrology, biogeochemistry, and climate research in the boreal landscape. Water Resources Research, 2013, 49, 7154-7158.	4.2	207
141	Riparian zone control on base cation concentration in boreal streams. Biogeosciences, 2013, 10, 3849-3868.	3.3	51
142	Long-term patterns in dissolved organic carbon, major elements and trace metals in boreal headwater catchments: trends, mechanisms and heterogeneity. Biogeosciences, 2013, 10, 2315-2330.	3.3	82
143	Spatial patterns of some trace elements in four Swedish stream networks. Biogeosciences, 2013, 10, 1407-1423.	3.3	12
144	Summer Rains and Dry Seasons in the Upper Blue Nile Basin: The Predictability of Half a Century of Past and Future Spatiotemporal Patterns. PLoS ONE, 2013, 8, e68461.	2.5	41

#	Article	IF	CITATIONS
145	Riparian zone hydrology and soil water total organic carbon (TOC): implications for spatial variability and upscaling of lateral riparian TOC exports. Biogeosciences, 2012, 9, 3901-3916.	3.3	121
146	Hydrology, forests and precipitation recycling: a reply to van der Ent et al. Global Change Biology, 2012, 18, 3272-3274.	9.5	3
147	Forestry Influence by Stump Harvest and Site Preparation on Methylmercury, Total Mercury and Other Stream Water Chemistry Parameters Across a Boreal Landscape. Ecosystems, 2012, 15, 1308-1320.	3.4	36
148	Problems with the reconciliation of good ecological status and public participation in the Water Framework Directive. Science of the Total Environment, 2012, 433, 482-490.	8.0	24
149	Effects of forestry operations on dissolved organic carbon concentrations and export in boreal firstâ€order streams. Journal of Geophysical Research, 2012, 117, .	3.3	107
150	Specific discharge variability in a boreal landscape. Water Resources Research, 2012, 48, .	4.2	56
151	The relationship between land use and water. Eos, 2012, 93, 259-259.	0.1	5
152	Knockdown of Bardet-Biedl Syndrome Gene BBS9/PTHB1 Leads to Cilia Defects. PLoS ONE, 2012, 7, e34389.	2.5	49
153	The Influence of Sulphate Deposition on the Seasonal Variation of Peat Pore Water Methyl Hg in a Boreal Mire. PLoS ONE, 2012, 7, e45547.	2.5	26
154	On the forest cover–water yield debate: from demand―to supplyâ€side thinking. Global Change Biology, 2012, 18, 806-820.	9.5	332
155	Spatial and temporal variation of THg concentrations in run-off water from 19 boreal catchments, 2000–2010. Environmental Pollution, 2012, 164, 102-109.	7.5	35
156	Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. Journal of Hydrology, 2012, 456-457, 12-29.	5.4	1,315
157	Mercury Cycling in Terrestrial Watersheds. , 2012, , 119-142.		18
158	Spatiotemporal variability of the gas transfer coefficient (<i>K</i> _{<i>CO</i>2}) in boreal streams: Implications for large scale estimates of CO ₂ evasion. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	4.9	118
159	Variability of groundwater levels and total organic carbon in the riparian zone of a boreal catchment. Journal of Geophysical Research, 2011, 116, .	3.3	42
160	Riparian soil temperature modification of the relationship between flow and dissolved organic carbon concentration in a boreal stream. Water Resources Research, 2011, 47, .	4.2	62
161	Increasing Dissolved Organic Carbon Redefines the Extent of Surface Water Acidification and Helps Resolve a Classic Controversy. BioScience, 2011, 61, 614-618.	4.9	46
162	Hydrological characterization of watersheds in the Blue Nile Basin, Ethiopia. Hydrology and Earth System Sciences, 2011, 15, 11-20.	4.9	38

#	Article	IF	CITATIONS
163	The complementary power of pH and lake-water organic carbon reconstructions for discerning the influences on surface waters across decadal to millennial time scales. Biogeosciences, 2011, 8, 2717-2727.	3.3	15
164	Consequences of More Intensive Forestry for the Sustainable Management of Forest Soils and Waters. Forests, 2011, 2, 243-260.	2.1	68
165	Forests, Forestry and the Water Framework Directive in Sweden: A Trans-Disciplinary Commentary. Forests, 2011, 2, 261-282.	2.1	18
166	Paleoecological evidence of major declines in total organic carbon concentrations since the nineteenth century in four nemoboreal lakes. Journal of Paleolimnology, 2011, 45, 507-518.	1.6	27
167	Evaluation of different downscaling techniques for hydrological climate-change impact studies at the catchment scale. Climate Dynamics, 2011, 37, 2087-2105.	3.8	160
168	Patterns and Dynamics of Dissolved Organic Carbon (DOC) in Boreal Streams: The Role of Processes, Connectivity, and Scaling. Ecosystems, 2011, 14, 880-893.	3.4	340
169	Riparian Zone Influence on Stream Water Dissolved Organic Carbon Concentrations at the Swedish Integrated Monitoring Sites. Ambio, 2011, 40, 920-930.	5.5	41
170	Storage as a Metric of Catchment Comparison. Hydrological Processes, 2011, 25, 3364-3371.	2.6	142
171	Water storage in a till catchment. I: Distributed modelling and relationship to runoff. Hydrological Processes, 2011, 25, 3937-3949.	2.6	29
172	Water storage in a till catchment. II: Implications of transmissivity feedback for flow paths and turnover times. Hydrological Processes, 2011, 25, 3950-3959.	2.6	80
173	Policy design for a multifunctional landscape. Regional Environmental Change, 2010, 10, 339-348.	2.9	11
174	Acidification Remediation Alternatives: Exploring the Temporal Dimension with Cost Benefit Analysis. Ambio, 2010, 39, 40-48.	5.5	11
175	Forest Cover and Stream Flow in a Headwater of the Blue Nile: Complementing Observational Data Analysis with Community Perception. Ambio, 2010, 39, 284-294.	5.5	58
176	Regional Climate Models for Hydrological Impact Studies at the Catchment Scale: A Review of Recent Modeling Strategies. Geography Compass, 2010, 4, 834-860.	2.7	288
177	Controls on snowmelt water mean transit times in northern boreal catchments. Hydrological Processes, 2010, 24, 1672-1684.	2.6	62
178	Can the distribution of headwater stream chemistry be predicted from downstream observations?. Hydrological Processes, 2010, 24, 2269-2276.	2.6	20
179	Regulation of stream water dissolved organic carbon (DOC) concentrations during snowmelt; the role of discharge, winter climate and memory effects. Biogeosciences, 2010, 7, 2901-2913.	3.3	78
180	Modeling stream dissolved organic carbon concentrations during spring flood in the boreal forest: A simple empirical approach for regional predictions. Journal of Geophysical Research, 2010, 115, .	3.3	20

#	Article	IF	CITATIONS
181	Direct and indirect effects of increasing dissolved organic carbon levels on pH in lakes recovering from acidification. Journal of Geophysical Research, 2010, 115, .	3.3	35
182	Temporal and spatial variability of dissolved inorganic carbon in a boreal stream network: Concentrations and downstream fluxes. Journal of Geophysical Research, 2010, 115, .	3.3	100
183	Cold winter soils enhance dissolved organic carbon concentrations in soil and stream water. Geophysical Research Letters, 2010, 37, .	4.0	100
184	Sensitivity of pH in a boreal stream network to a potential decrease in base cations caused by forest harvest. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 1116-1125.	1.4	16
185	Linking soil- and stream-water chemistry based on a Riparian Flow-Concentration Integration Model. Hydrology and Earth System Sciences, 2009, 13, 2287-2297.	4.9	197
186	Landscape scale patterns in the character of natural organic matter in a Swedish boreal stream network. Hydrology and Earth System Sciences, 2009, 13, 1567-1582.	4.9	9
187	Response of Dissolved Organic Carbon following Forest Harvesting in a Boreal Forest. Ambio, 2009, 38, 381-386.	5.5	70
188	Nature as the "Natural―Goal for Water Management: A Conversation. Ambio, 2009, 38, 209-214.	5.5	23
189	Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model. Journal of Hydrology, 2009, 373, 15-23.	5.4	223
190	Dissolved Inorganic Carbon Export Across the Soil/Stream Interface and Its Fate in a Boreal Headwater Stream. Environmental Science & Technology, 2009, 43, 7364-7369.	10.0	138
191	Particulate aluminium in boreal streams: Towards a better understanding of its sources and influence on dissolved aluminium speciation. Applied Geochemistry, 2009, 24, 1677-1685.	3.0	10
192	Forest Harvest Increases Runoff Most during Low Flows in Two Boreal Streams. Ambio, 2009, 38, 357-363.	5.5	53
193	The Effects of Forestry on Hg Bioaccumulation in Nemoral/Boreal Waters and Recommendations for Good Silvicultural Practice. Ambio, 2009, 38, 373-380.	5.5	69
194	The Effects of Forest Harvest Operations on Mercury and Methylmercury in Two Boreal Streams: Relatively Small Changes in the First Two Years prior to Site Preparation. Ambio, 2009, 38, 364-372.	5.5	37
195	Surface water acidification and critical loads: exploring the F-factor. Hydrology and Earth System Sciences, 2009, 13, 2191-2201.	4.9	10
196	Seasonal and runoff-related changes in total organic carbon concentrations in the River Öre, Northern Sweden. Aquatic Sciences, 2008, 70, 21-29.	1.5	29
197	A metamodel based on MAGIC to predict the pre-industrial acidity status of surface waters. Aquatic Sciences, 2008, 70, 238-247.	1.5	6
198	Salt water intrusion in the coastal aquifer of the southern Po Plain, Italy. Hydrogeology Journal, 2008, 16, 1541-1556.	2.1	121

#	Article	IF	CITATIONS
199	Recovery of photosynthetic capacity in Scots pine: a model analysis of forest plots with contrasting soil temperature. European Journal of Forest Research, 2008, 127, 71-79.	2.5	14
200	<i>Aqua Incognita</i> : the unknown headwaters. Hydrological Processes, 2008, 22, 1239-1242.	2.6	246
201	Thirtyâ€five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate. Global Change Biology, 2008, 14, 1191-1198.	9.5	261
202	Spatial heterogeneity of the spring flood acid pulse in a boreal stream networkâ~†. Science of the Total Environment, 2008, 407, 708-722.	8.0	48
203	Testing the steady-state water chemistry model predictions of pre-industrial lake pH with paleolimnological data from northern Swedenâ ⁻ †. Science of the Total Environment, 2008, 407, 723-729.	8.0	7
204	Dissolved organic carbon characteristics in boreal streams in a forestâ€wetland gradient during the transition between winter and summer. Journal of Geophysical Research, 2008, 113, .	3.3	125
205	Modeling the dissolved organic carbon output from a boreal mire using the convectionâ€dispersion equation: Importance of representing sorption. Water Resources Research, 2008, 44, .	4.2	43
206	A Comparison of MAGIC and Paleolimnological Predictions of Preindustrial pH for 55 Swedish Lakes. Environmental Science & Technology, 2008, 42, 43-48.	10.0	12
207	Natural Variability in Lake pH on Seasonal, Interannual and Decadal Time Scales: Implications for Assessment of Human Impact. Environmental Science & Technology, 2008, 42, 5594-5599.	10.0	16
208	Modelling inorganic aluminium with WHAM in environmental monitoring. Applied Geochemistry, 2007, 22, 1196-1201.	3.0	11
209	Integrating aquatic carbon fluxes in a boreal catchment carbon budget. Journal of Hydrology, 2007, 334, 141-150.	5.4	116
210	Spatial variation in discharge and concentrations of organic carbon in a catchment network of boreal streams in northern Sweden. Journal of Hydrology, 2007, 342, 72-87.	5.4	52
211	Landscape-scale variability of acidity and dissolved organic carbon during spring flood in a boreal stream network. Journal of Geophysical Research, 2007, 112, .	3.3	145
212	Evolution of soil solution aluminum during transport along a forested boreal hillslope. Journal of Geophysical Research, 2007, 112, .	3.3	38
213	Landscape Control of Stream Water Aluminum in a Boreal Catchment during Spring Flood. Environmental Science & Technology, 2006, 40, 3494-3500.	10.0	63
214	Flux Rates of Atmospheric Lead Pollution within Soils of a Small Catchment in Northern Sweden and Their Implications for Future Stream Water Quality. Environmental Science & Technology, 2006, 40, 4639-4645.	10.0	63
215	Modelling the effect of climate change on recovery of acidified freshwaters: Relative sensitivity of individual processes in the MAGIC model. Science of the Total Environment, 2006, 365, 154-166.	8.0	62
216	Modelling the effect of low soil temperatures on transpiration by Scots pine. Hydrological Processes, 2006, 20, 1929-1944.	2.6	45

#	Article	IF	CITATIONS
217	Survival of brown trout during spring flood in DOC-rich streams in northern Sweden: the effect of present acid deposition and modelled pre-industrial water quality. Environmental Pollution, 2005, 135, 121-130.	7.5	29
218	Modelling variability of snow depths and soil temperatures in Scots pine stands. Agricultural and Forest Meteorology, 2005, 133, 109-118.	4.8	40
219	Spatial Variation of Streamwater Chemistry in Two Swedish Boreal Catchments:  Implications for Environmental Assessment. Environmental Science & Technology, 2005, 39, 1463-1469.	10.0	101
220	Variations of bioavailable Sr concentration and87Sr/86Sr ratio in boreal forest ecosystems. Biogeochemistry, 2004, 67, 1-20.	3.5	101
221	Resolving the Double Paradox of rapidly mobilized old water with highly variable responses in runoff chemistry. Hydrological Processes, 2004, 18, 185-189.	2.6	300
222	Hydrological flow paths during snowmelt: Congruence between hydrometric measurements and oxygen 18 in meltwater, soil water, and runoff. Water Resources Research, 2004, 40, .	4.2	176
223	The influence of soil temperature on transpiration: a plot scale manipulation in a young Scots pine stand. Forest Ecology and Management, 2004, 195, 15-28.	3.2	86
224	Episodic acidification in northern Sweden: a regional assessment of the anthropogenic component. Journal of Hydrology, 2004, 297, 162-173.	5.4	22
225	Critical levels of atmospheric pollution: criteria and concepts for operational modelling of mercury in forest and lake ecosystems. Science of the Total Environment, 2003, 304, 83-106.	8.0	66
226	Time series of long-term annual fluxes in the streamwater of nine forest catchments from the Swedish environmental monitoring program (PMK 5). Science of the Total Environment, 2003, 310, 113-120.	8.0	12
227	Simulating interactions between saturated and unsaturated storage in a conceptual runoff model. Hydrological Processes, 2003, 17, 379-390.	2.6	87
228	Groundwater dynamics along a hillslope: A test of the steady state hypothesis. Water Resources Research, 2003, 39, .	4.2	133
229	Is a Universal Model of Organic Acidity Possible:  Comparison of the Acid/Base Properties of Dissolved Organic Carbon in the Boreal and Temperate Zones. Environmental Science & Technology, 2003, 37, 1726-1730.	10.0	106
230	Modeling Surface Water Critical Loads with PROFILE. Journal of Environmental Quality, 2003, 32, 2290-2300.	2.0	7
231	The effect of a north-facing forest edge on tree water use in a boreal Scots pine stand. Canadian Journal of Forest Research, 2002, 32, 693-702.	1.7	34
232	Oxygen 18 fractionation during snowmelt: Implications for spring flood hydrograph separation. Water Resources Research, 2002, 38, 40-1-40-10.	4.2	97
233	Soil frost and runoff at Svartberget, northern Sweden-measurements and model analysis. Hydrological Processes, 2002, 16, 3379-3392.	2.6	58
234	Episodic stream water pH decline during autumn storms following a summer drought in northern Sweden. Hydrological Processes, 2002, 16, 1725-1733.	2.6	38

#	Article	IF	CITATIONS
235	Title is missing!. , 2002, 64, 269-281.		108
236	Mercury cycling in boreal ecosystems: The long-term effect of acid rain constituents on peatland pore water methylmercury concentrations. Geophysical Research Letters, 2001, 28, 1227-1230.	4.0	51
237	Acid/base character of organic acids in a boreal stream during snowmelt. Water Resources Research, 2001, 37, 1043-1056.	4.2	48
238	Soil frost effects on soil water and runoff dynamics along a boreal transect: 2. Simulations. Hydrological Processes, 2001, 15, 927-941.	2.6	60
239	Soil frost effects on soil water and runoff dynamics along a boreal forest transect: 1. Field investigations. Hydrological Processes, 2001, 15, 909-926.	2.6	134
240	Modeling preindustrial ANC and pH during the spring flood in northern Sweden. Biogeochemistry, 2001, 54, 171-195.	3.5	46
241	Title is missing!. Water, Air, and Soil Pollution, 2001, 130, 799-804.	2.4	17
242	Title is missing!. Water, Air, and Soil Pollution, 2001, 130, 1415-1420.	2.4	13
243	Magic Modeling of Long-Term Lake Water and Soil Chemistry at AbborrtrÄ s ket, Northern Sweden. Water, Air, and Soil Pollution, 2001, 130, 1301-1306.	2.4	4
244	Distribution and mobilization of Al, Fe and Si in three podzolic soil profiles in relation to the humus layer. Geoderma, 2000, 94, 249-263.	5.1	83
245	Advances in understanding the podzolization process resulting from a multidisciplinary study of three coniferous forest soils in the Nordic Countries. Geoderma, 2000, 94, 335-353.	5.1	140
246	Separating the natural and anthropogenic components of spring flood pH decline: A method for areas that are not chronically acidified. Water Resources Research, 2000, 36, 1873-1884.	4.2	69
247	Cause of pH decline in stream water during spring melt runoff in northern Sweden. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57, 1888-1900.	1.4	59
248	Mode of Transport of Surfaceâ€Applied Phosphorusâ€33 through a Clay and Sandy Soil. Journal of Environmental Quality, 1999, 28, 1273-1282.	2.0	82
249	Influence of organic acid site density on pH modeling of Swedish lakes. Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56, 1461-1470.	1.4	51
250	Water transit times and flow paths from two line injections of3H and36Cl in a microcatchment at Gårdsjön, Sweden. Hydrological Processes, 1999, 13, 1557-1575.	2.6	48
251	Buffering processes in a boreal dissolved organic carbon-rich stream during experimental acidification. Environmental Pollution, 1999, 106, 55-65.	7.5	20
252	Natural acidity or anthropogenic acidification in the spring flood of northern Sweden?. Science of the Total Environment, 1999, 234, 63-73.	8.0	41

#	Article	IF	CITATIONS
253	Title is missing!. Biogeochemistry, 1998, 40, 101-113.	3.5	154
254	Nicotine Exposure During a Critical Period of Development Leads to Persistent Changes in Nicotinic Acetylcholine Receptors of Adult Rat Brain. Journal of Neurochemistry, 1998, 70, 752-762.	3.9	91
255	A test of TOPMODEL'a ability to predict spatially distributed groundwater levels. Hydrological Processes, 1997, 11, 1131-1144.	2.6	87
256	Organic carbon in the boreal spring flood from adjacent subcatchments. Environment International, 1996, 22, 535-540.	10.0	37
257	Seasonal variations of total organic carbon, iron, and aluminium on the Svartberget catchment in northern Sweden. Environment International, 1996, 22, 541-549.	10.0	7
258	Transit Times for Water in a Small Till Catchment from a Step Shift in the Oxygen 18 Content of the Water Input. Water Resources Research, 1996, 32, 3497-3511.	4.2	139
259	Photochemical and Microbial Processing of Dissolved Organic Matter in Streams and Soilwater. Biological Bulletin, 1996, 191, 330-331.	1.8	1
260	Sulphur deposition and changes in Swedish lake chemistry 1988?1993. Water, Air, and Soil Pollution, 1995, 85, 2449-2454.	2.4	3
261	Methylmercury in runoff from the Svartberget Catchment in northern Sweden during a stormflow episode. Water, Air, and Soil Pollution, 1995, 80, 221-224.	2.4	12
262	Terrestrial sources of methylmercury in surface waters: The importance of the riparian zone on the Svartberget Catchment. Water, Air, and Soil Pollution, 1995, 80, 435-444.	2.4	95
263	Methylmercury output from the Svartberget Catchment in northern Sweden during spring flood. Water, Air, and Soil Pollution, 1995, 80, 445-454.	2.4	37
264	Subcatchment output of mercury and methylmercury at Svartberget in northern Sweden. Water, Air, and Soil Pollution, 1995, 80, 455-465.	2.4	22
265	Output of methylmercury from a Catchment in northern Sweden. Water, Air, and Soil Pollution, 1995, 80, 477-481.	2.4	4
266	Relations between organic carbon and methylmercury in humic rich surface waters from Svartberget catchment in northern Sweden. Water, Air, and Soil Pollution, 1995, 80, 971-979.	2.4	22
267	Xylem sap composition: A tool for investigating mineral uptake and cycling in adult spruce. Plant and Soil, 1995, 168-169, 233-241.	3.7	44
268	Localization of tree water uptake in Scots pine and Norway spruce with hydroiogical tracers. Canadian Journal of Forest Research, 1995, 25, 286-297.	1.7	47
269	Subcatchment Output of Mercury and Methylmercury at Svartberget in Northern Sweden. , 1995, , 455-465.		15
270	Hydrochemical modelling of a stream dominated by organic acids and organically bound aluminium. Water, Air, and Soil Pollution, 1994, 78, 103-139.	2.4	5

#	Article	IF	CITATIONS
271	Identification of the riparian sources of aquatic dissolved organic carbon. Environment International, 1994, 20, 11-19.	10.0	67
272	Importance of hydrology in the reversal of acidification in till soils, Gårdsjön, Sweden. Applied Geochemistry, 1993, 8, 61-66.	3.0	15
273	Catchment process studies. , 1991, , 75-160.		6