
Christopher D Kontos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6250725/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pearls of wisdom for aspiring physician-scientist residency applicants and program directors. JCI Insight, 2022, 7, .	2.3	5
2	Endothelial Regulation of Microvascular Growth and Stability by Angâ€īie and VEGF Signaling Pathways: A Mechanistic Computational Systems Biology Model. FASEB Journal, 2022, 36, .	0.2	0
3	Computational Systems Biology Modeling of the Angiopoietinâ€īie Signaling Pathway and its Crosstalk with α5β1 Integrin in Endothelial Cells. FASEB Journal, 2021, 35, .	0.2	0
4	A systems biology model of junctional localization and downstream signaling of the Ang–Tie signaling pathway. Npj Systems Biology and Applications, 2021, 7, 34.	1.4	7
5	Addressing the physician-scientist pipeline: strategies to integrate research into clinical training programs. Journal of Clinical Investigation, 2020, 130, 1058-1061.	3.9	19
6	Angiopoietin-Tie Signaling Pathway in Endothelial Cells: A Computational Model. IScience, 2019, 20, 497-511.	1.9	46
7	Mitochondrial dysfunction in human immunodeficiency virusâ€l transgenic mouse cardiac myocytes. Journal of Cellular Physiology, 2019, 234, 4432-4444.	2.0	14
8	Haploâ€insufficiency of Bcl2â€associated athanogene 3 in mice results in progressive left ventricular dysfunction, βâ€adrenergic insensitivity, and increased apoptosis. Journal of Cellular Physiology, 2018, 233, 6319-6326.	2.0	32
9	Dysregulation of mitochondrial bioenergetics and quality control by HIVâ€1 Tat in cardiomyocytes. Journal of Cellular Physiology, 2018, 233, 748-758.	2.0	22
10	Association of Variants in <i>BAG3</i> With Cardiomyopathy Outcomes in African American Individuals. JAMA Cardiology, 2018, 3, 929.	3.0	57
11	Infection-Induced Vascular Permeability Aids Mycobacterial Growth. Journal of Infectious Diseases, 2017, 215, jiw355.	1.9	46
12	Angiopoietin-1 promotes atherosclerosis by increasing the proportion of circulating Gr1 ⁺ monocytes. Cardiovascular Research, 2017, 113, 81-89.	1.8	17
13	BAG3 (Bcl-2–Associated Athanogene-3) Coding Variant in Mice Determines Susceptibility to Ischemic Limb Muscle Myopathy by Directing Autophagy. Circulation, 2017, 136, 281-296.	1.6	51
14	Precision Medicine for Heart Failure. Circulation: Heart Failure, 2017, 10, .	1.6	9
15	Methods for Acute and Subacute Murine Hindlimb Ischemia. Journal of Visualized Experiments, 2016, , .	0.2	19
16	Subacute limb ischemia induces skeletal muscle injury in genetically susceptible mice independent of vascular density. Journal of Vascular Surgery, 2016, 64, 1101-1111.e2.	0.6	40
17	Tie1: an orphan receptor provides context for angiopoietin-2/Tie2 signaling. Journal of Clinical Investigation, 2016, 126, 3188-3191.	3.9	30
18	Phosphorylation of Threonine 794 on Tie1 by Rac1/PAK1 Reveals a Novel Angiogenesis Regulatory Pathway. PLoS ONE, 2015, 10, e0139614.	1.1	8

CHRISTOPHER D KONTOS

#	Article	IF	CITATIONS
19	Muscle cell derived angiopoietin-1 contributes to both myogenesis and angiogenesis in the ischemic environment. Frontiers in Physiology, 2015, 6, 161.	1.3	28
20	Gene Therapy for the Prevention of Vein Graft Disease. , 2015, , 227-246.		0
21	Angiopoietin-1 enhances skeletal muscle regeneration in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R576-R589.	0.9	40
22	More than skin deep: connecting melanocyte pigmentation and angiogenic diseases. Journal of Clinical Investigation, 2014, 124, 76-79.	3.9	13
23	Targeting VE-PTP activates TIE2 and stabilizes the ocular vasculature. Journal of Clinical Investigation, 2014, 124, 4564-4576.	3.9	174
24	Abstract 14: Caskin2 is a Novel Regulator of Endothelial Cell Quiescence. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .	1.1	1
25	Gene therapy for the prevention of vein graft disease. Translational Research, 2013, 161, 321-338.	2.2	21
26	Inhibiting the Inhibitor: Targeting Vascular Endothelial Protein Tyrosine Phosphatase to Promote Tumor Vascular Maturation. Journal of the National Cancer Institute, 2013, 105, 1163-1165.	3.0	3
27	p53 Functions in Endothelial Cells to Prevent Radiation-Induced Myocardial Injury in Mice. Science Signaling, 2012, 5, ra52.	1.6	74
28	Skeletal Muscle–Specific Genetic Determinants Contribute to the Differential Strain-Dependent Effects of Hindlimb Ischemia in Mice. American Journal of Pathology, 2012, 180, 2156-2169.	1.9	66
29	In vivo tumor targeting by a NGR-decorated micelle of a recombinant diblock copolypeptide. Journal of Controlled Release, 2011, 155, 144-151.	4.8	63
30	Cadmium induction of reactive oxygen species activates the mTOR pathway, leading to neuronal cell death. Free Radical Biology and Medicine, 2011, 50, 624-632.	1.3	214
31	A systems biology perspective on sVEGFR1: its biological function, pathogenic role and therapeutic use. Journal of Cellular and Molecular Medicine, 2010, 14, 528-552.	1.6	161
32	VEGF and soluble VEGF receptor-1 (sFlt-1) distributions in peripheral arterial disease: an in silico model. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H2174-H2191.	1.5	59
33	Inactivation of the tumour suppressor, PTEN, in smooth muscle promotes a pro-inflammatory phenotype and enhances neointima formation. Cardiovascular Research, 2010, 86, 274-282.	1.8	78
34	Phosphatase and Tensin Homologue on Chromosome 10 (PTEN) Directs Prostaglandin E2-mediated Fibroblast Responses via Regulation of E Prostanoid 2 Receptor Expression. Journal of Biological Chemistry, 2009, 284, 32264-32271.	1.6	20
35	Computational kinetic model of VEGF trapping by soluble VEGF receptor-1: effects of transendothelial and lymphatic macromolecular transport. Physiological Genomics, 2009, 38, 29-41.	1.0	18
36	Angiopoietin-2 Confers Atheroprotection in apoE ^{â^'/â^'} Mice by Inhibiting LDL Oxidation via Nitric Oxide. Circulation Research, 2009, 104, 1333-1336.	2.0	43

#	Article	IF	CITATIONS
37	Endogenous <i>S</i> -nitrosothiols protect against myocardial injury. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6297-6302.	3.3	201
38	A nuclease-resistant RNA aptamer specifically inhibits angiopoietin-1-mediated Tie2 activation and function. Angiogenesis, 2008, 11, 395-401.	3.7	18
39	Phosphatase and tensin homolog (PTEN) regulates hepatic lipogenesis, microsomal triglyceride transfer protein, and the secretion of apolipoprotein B-containing lipoproteins. Hepatology, 2008, 48, 1799-1809.	3.6	42
40	High Cholesterol Feeding in C57/Blc6 Mice Alters Expression within The VEGF Receptor-Ligand Family in Corporal Tissue. Journal of Sexual Medicine, 2008, 5, 1137-1148.	0.3	4
41	A VEGF Trap Inhibits the Beneficial Effect of bFGF on Vasoreactivity in Corporal Tissues of Hypercholesterolemic Rabbits. Journal of Sexual Medicine, 2008, 5, 2069-2078.	0.3	9
42	Plasma Levels of Soluble Tie2 and Vascular Endothelial Growth Factor Distinguish Critical Limb Ischemia From Intermittent Claudication in Patients With Peripheral Arterial Disease. Journal of the American College of Cardiology, 2008, 52, 387-393.	1.2	96
43	RNA Aptamer-targeted Inhibition of NF-κB Suppresses Non-small Cell Lung Cancer Resistance to Doxorubicin. Molecular Therapy, 2008, 16, 66-73.	3.7	70
44	Inhibition of In Vivo Tumor Angiogenesis and Growth Via Systemic Delivery of an Angiopoietin 2-Specific RNA Aptamer. Journal of Surgical Research, 2008, 146, 16-23.	0.8	50
45	Up-regulating Sphingosine 1-Phosphate Receptor-2 Signaling Impairs Chemotactic, Wound-healing, and Morphogenetic Responses in Senescent Endothelial Cells. Journal of Biological Chemistry, 2008, 283, 30363-30375.	1.6	46
46	Systemic Overexpression of Angiopoietin-2 Promotes Tumor Microvessel Regression and Inhibits Angiogenesis and Tumor Growth. Cancer Research, 2007, 67, 3835-3844.	0.4	88
47	Impaired Angiogenesis After Hindlimb Ischemia in Type 2 Diabetes Mellitus. Circulation Research, 2007, 101, 948-956.	2.0	192
48	In Mice With Type 2 Diabetes, a Vascular Endothelial Growth Factor (VEGF)-Activating Transcription Factor Modulates VEGF Signaling and Induces Therapeutic Angiogenesis After Hindlimb Ischemia. Diabetes, 2007, 56, 656-665.	0.3	109
49	VECF Induces Tie2 Shedding via a Phosphoinositide 3-Kinase/Akt–Dependent Pathway to Modulate Tie2 Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2619-2626.	1.1	147
50	Engineered transcription factors for therapeutic angiogenesis. Current Opinion in Molecular Therapeutics, 2007, 9, 145-52.	2.8	6
51	H1 RNA polymerase III promoter-driven expression of an RNA aptamer leads to high-level inhibition of intracellular protein activity. Nucleic Acids Research, 2006, 34, 3577-3584.	6.5	49
52	An engineered vascular endothelial growth factor-activating transcription factor induces therapeutic angiogenesis in ApoE knockout mice with hindlimb ischemia. Journal of Vascular Surgery, 2006, 44, 166-175.	0.6	39
53	A Comparison of Antiangiogenic Therapies for the Prevention of Liver Metastases. Journal of Surgical Research, 2006, 131, 97-104.	0.8	14
	Negative Regulation of Myofibroblast Differentiation by PTEN (Phosphatase and Tensin Homolog) Tj ETOq0 0 0 r	gBT /Over	ock 10 Tf 50

54 112-121.

#	Article	IF	CITATIONS
55	Efficacy and mechanism of adenovirus-mediated VEGF-165 gene therapy for augmentation of skin flap viability. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H127-H137.	1.5	28
56	APOE4 -VLDL Inhibits the HDL-Activated Phosphatidylinositol 3-Kinase/Akt Pathway via the Phosphoinositol Phosphatase SHIP2. Circulation Research, 2006, 99, 829-836.	2.0	21
57	A crucial role for GRK2 in regulation of endothelial cell nitric oxide synthase function in portal hypertension. Nature Medicine, 2005, 11, 952-958.	15.2	234
58	Cholesterol Feeding Reduces Vascular Endothelial Growth Factor Signaling in Rabbit Corporal Tissues. Journal of Sexual Medicine, 2005, 2, 634-640.	0.3	28
59	Modulation of phosphatidylinositol 3-kinase signaling reduces intimal hyperplasia in aortocoronary saphenous vein grafts. Journal of Thoracic and Cardiovascular Surgery, 2005, 129, 1405-1413.	0.4	28
60	Adenovirus-Mediated Intraarterial Delivery of PTEN Inhibits Neointimal Hyperplasia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 354-358.	1.1	47
61	PTEN as an effector in the signaling of antimigratory G protein-coupled receptor. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4312-4317.	3.3	149
62	Loss of Phosphatase and Tensin Homologue Increases Transforming Growth Factor β–Mediated Invasion with Enhanced SMAD3 Transcriptional Activity. Cancer Research, 2005, 65, 11276-11281.	0.4	42
63	Systemic soluble Tie2 expression inhibits and regresses corneal neovascularization. Biochemical and Biophysical Research Communications, 2005, 332, 194-199.	1.0	19
64	Engineered Zinc Finger–Activating Vascular Endothelial Growth Factor Transcription Factor Plasmid DNA Induces Therapeutic Angiogenesis in Rabbits With Hindlimb Ischemia. Circulation, 2004, 110, 2467-2475.	1.6	71
65	IQGAP1, a Novel Vascular Endothelial Growth Factor Receptor Binding Protein, Is Involved in Reactive Oxygen Species—Dependent Endothelial Migration and Proliferation. Circulation Research, 2004, 95, 276-283.	2.0	223
66	Responses of vascular endothelial cells to angiogenic signaling are important for tumor cell survival. FASEB Journal, 2004, 18, 326-328.	0.2	39
67	Acute local subcutaneous VEGF165 injection for augmentation of skin flap viability: efficacy and mechanism. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R1219-R1229.	0.9	51
68	Targeting the Tie2/Tek Receptor in Astrocytomas. American Journal of Pathology, 2004, 164, 467-476.	1.9	55
69	Functional Significance of Tie2 Signaling in the Adult Vasculature. Endocrine Reviews, 2004, 59, 51-71.	7.1	150
70	Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5028-5033.	3.3	150
71	Activation of Vascular Endothelial Growth Factor Receptor-1 Sustains Angiogenesis and Bcl-2 Expression Via the Phosphatidylinositol 3-Kinase Pathway in Endothelial Cells. Diabetes, 2003, 52, 2959-2968.	0.3	115
72	Endothelin-1 Activates Endothelial Cell Nitric-oxide Synthase via Heterotrimeric G-protein βγ Subunit Signaling to Protein Kinase B/Akt. Journal of Biological Chemistry, 2003, 278, 49929-49935.	1.6	132

#	Article	IF	CITATIONS
73	PTEN Modulates Vascular Endothelial Growth Factor-Mediated Signaling and Angiogenic Effects. Journal of Biological Chemistry, 2002, 277, 10760-10766.	1.6	168
74	Inhibition of Vascular Smooth Muscle Cell Proliferation, Migration, and Survival by the Tumor Suppressor Protein PTEN. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 745-751.	1.1	98
75	Deletion of the Carboxyl Terminus of Tie2 Enhances Kinase Activity, Signaling, and Function. Journal of Biological Chemistry, 2002, 277, 31768-31773.	1.6	50
76	The Endothelial Receptor Tyrosine Kinase Tie1 Activates Phosphatidylinositol 3-Kinase and Akt To Inhibit Apoptosis. Molecular and Cellular Biology, 2002, 22, 1704-1713.	1.1	91
77	Vascular Endothelial Growth Factor Receptor-1 Modulates Vascular Endothelial Growth Factor-Mediated Angiogenesis via Nitric Oxide. American Journal of Pathology, 2001, 159, 993-1008.	1.9	265
78	HCPTPA, a Protein Tyrosine Phosphatase That Regulates Vascular Endothelial Growth Factor Receptor-mediated Signal Transduction and Biological Activity. Journal of Biological Chemistry, 1999, 274, 38183-38188.	1.6	79
79	Allelic and locus heterogeneity in inherited venous malformations. Human Molecular Genetics, 1999, 8, 1279-1289.	1.4	121
80	Angiogenesis. Current Atherosclerosis Reports, 1999, 1, 165-171.	2.0	20
81	Tyrosine 1101 of Tie2 Is the Major Site of Association of p85 and Is Required for Activation of Phosphatidylinositol 3-Kinase and Akt. Molecular and Cellular Biology, 1998, 18, 4131-4140.	1.1	202