Suzanne A Blum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6250163/publications.pdf

Version: 2024-02-01

66 2,633 27 50
papers citations h-index g-index

68 68 1955
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Exploring chemistry with single-molecule and -particle fluorescence microscopy. Trends in Chemistry, 2022, 4, 5-14.	8.5	12
2	Single-Micelle and Single-Zinc-Particle Imaging Provides Insights into the Physical Processes Underpinning Organozinc Reactions in Water. Journal of the American Chemical Society, 2022, 144, 3285-3296.	13.7	14
3	Superresolved Motions of Single Molecular Catalysts during Polymerization Show Wide Distributions. Journal of the American Chemical Society, 2022, 144, 10591-10598.	13.7	5
4	Reactivity Differences of Rieke Zinc Arise Primarily from Salts in the Supernatant, Not in the Solids. Journal of the American Chemical Society, 2022, 144, 12081-12091.	13.7	8
5	Does Selectivity of Molecular Catalysts Change with Time? Polymerization lmaged by Singleâ€Molecule Spectroscopy. Angewandte Chemie, 2021, 133, 1574-1579.	2.0	1
6	Does Selectivity of Molecular Catalysts Change with Time? Polymerization lmaged by Singleâ€Molecule Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 1550-1555.	13.8	15
7	Main-group metalated heterocycles through Lewis acid cyclization. Trends in Chemistry, 2021, 3, 645-659.	8.5	3
8	Repurposing π Electrophilic Cyclization/Dealkylation for Group Transfer. Angewandte Chemie - International Edition, 2021, 60, 25776-25780.	13.8	4
9	Origins of Batch-to-Batch Variation: Organoindium Reagents from Indium Metal. Organometallics, 2020, 39, 2575-2579.	2.3	9
10	Borylative Heterocyclization without Air-Free Techniques. Journal of Organic Chemistry, 2020, 85, 10350-10368.	3.2	16
11	Mechanism of an Elusive Solvent Effect in Organozinc Reagent Synthesis. Chemistry - A European Journal, 2020, 26, 15094-15098.	3.3	9
12	Organic and Organometallic Chemistry at the Single-Molecule, -Particle, and -Molecular-Catalyst-Turnover Level by Fluorescence Microscopy. Accounts of Chemical Research, 2019, 52, 2244-2255.	15.6	31
13	Microscopy Reveals: Impact of Lithium Salts on Elementary Steps Predicts Organozinc Reagent Synthesis and Structure. Journal of the American Chemical Society, 2019, 141, 9879-9884.	13.7	21
14	Single-Polymer–Particle Growth Kinetics with Molecular Catalyst Speciation and Single-Turnover Imaging. ACS Catalysis, 2019, 9, 3375-3383.	11,2	14
15	Copper-Catalyzed Aminoboration from Hydrazones To Generate Borylated Pyrazoles. Organic Letters, 2019, 21, 1283-1286.	4.6	29
16	Evidence for Dynamic Chemical Kinetics at Individual Molecular Ruthenium Catalysts. Angewandte Chemie, 2018, 130, 1588-1591.	2.0	9
17	Evidence for Dynamic Chemical Kinetics at Individual Molecular Ruthenium Catalysts. Angewandte Chemie - International Edition, 2018, 57, 1572-1575.	13.8	32
18	Kinetics of the Same Reaction Monitored over Nine Orders of Magnitude in Concentration: When Are Unique Subensemble and Single†Turnover Reactivity Displayed?. Angewandte Chemie, 2018, 130, 12203-12208.	2.0	3

#	Article	IF	Citations
19	Transition-Metal-Free Synthesis of Borylated Thiophenes via Formal Thioboration. Organic Letters, 2018, 20, 6673-6677.	4.6	21
20	Kinetics of the Same Reaction Monitored over Nine Orders of Magnitude in Concentration: When Are Unique Subensemble and Single†Turnover Reactivity Displayed?. Angewandte Chemie - International Edition, 2018, 57, 12027-12032.	13.8	22
21	An Oxyboration Route to a Single Regioisomer of Borylated Dihydrofurans and Isochromenes. Journal of Organic Chemistry, 2018, 83, 11204-11217.	3.2	20
22	Structure–Reactivity Studies, Characterization, and Transformation of Intermediates by Lithium Chloride in the Direct Insertion of Alkyl and Aryl Iodides to Metallic Zinc Powder. Organometallics, 2017, 36, 2389-2396.	2.3	27
23	Structureâ€"Reactivity Studies of Intermediates for Mechanistic Information by Subensemble Fluorescence Microscopy. ACS Catalysis, 2017, 7, 3786-3791.	11.2	9
24	Single Turnover at Molecular Polymerization Catalysts Reveals Spatiotemporally Resolved Reactions. Angewandte Chemie - International Edition, 2017, 56, 13772-13775.	13.8	40
25	Single Turnover at Molecular Polymerization Catalysts Reveals Spatiotemporally Resolved Reactions. Angewandte Chemie, 2017, 129, 13960-13963.	2.0	9
26	Boron–Heteroatom Addition Reactions via Borylative Heterocyclization: Oxyboration, Aminoboration, and Thioboration. Accounts of Chemical Research, 2017, 50, 2598-2609.	15.6	65
27	Mechanistic Studies of Formal Thioboration Reactions of Alkynes. Journal of Organic Chemistry, 2017, 82, 8165-8178.	3.2	24
28	Catalystâ€Free Formal Thioboration to Synthesize Borylated Benzothiophenes and Dihydrothiophenes. Angewandte Chemie - International Edition, 2016, 55, 14286-14290.	13.8	68
29	Role of LiCl in Generating Soluble Organozinc Reagents. Journal of the American Chemical Society, 2016, 138, 11156-11159.	13.7	79
30	Catalystâ€Free Formal Thioboration to Synthesize Borylated Benzothiophenes and Dihydrothiophenes. Angewandte Chemie, 2016, 128, 14498-14502.	2.0	14
31	Oxyboration with and without a Catalyst: Borylated Isoxazoles via Bâ \in "O Ï f -Bond Addition. Organic Letters, 2016, 18, 480-483.	4.6	58
32	Kinetic Study of Carbophilic Lewis Acid Catalyzed Oxyboration and the Noninnocent Role of Sodium Chloride. Organometallics, 2016, 35, 655-662.	2.3	14
33	Catalyst-Free Synthesis of Borylated Lactones from Esters via Electrophilic Oxyboration. Journal of the American Chemical Society, 2016, 138, 2126-2129.	13.7	111
34	Oxyboration: Synthesis of Borylated Benzofurans. Organic Syntheses, 2016, 93, 228-244.	1.0	8
35	NMR spectroscopy studies of electronic effects and equilibrium in the organogold-to-boron transmetalation reaction and studies towards its application to the alkoxyboration addition of boronâ \in oxygen \parallel f bonds to alkynes. Tetrahedron, 2015, 71, 4445-4449.	1.9	16
36	Catalyst Inefficiencies: Supported Ring-Opening Metathesis Polymerization Catalyst Yields Its Ensemble Rate from a Small Number of Molecular Active Sites. ACS Catalysis, 2015, 5, 2290-2295.	11.2	26

3

#	Article	IF	Citations
37	Aminoboration: Addition of B–N σ Bonds across C–C π Bonds. Journal of the American Chemical Society, 2015, 137, 10144-10147.	13.7	92
38	Mechanistic Studies of Gold and Palladium Cooperative Dual-Catalytic Cross-Coupling Systems. ACS Catalysis, 2014, 4, 622-629.	11.2	50
39	GOLD-CATALYZED CROSS-COUPLING REACTIONS. Catalytic Science Series, 2014, , 393-412.	0.0	1
40	Selectivity, Compatibility, Downstream Functionalization, and Silver Effect in the Gold and Palladium Dual-Catalytic Synthesis of Lactones. Organometallics, 2014, 33, 5448-5456.	2.3	49
41	Alkoxyboration: Ring-Closing Addition of B–O σ Bonds across Alkynes. Journal of the American Chemical Society, 2014, 136, 4740-4745.	13.7	104
42	BODIPY Fluorophore Toolkit for Probing Chemical Reactivity and for Tagging Reactive Functional Groups. European Journal of Organic Chemistry, 2014, 2014, 3347-3354.	2.4	14
43	Phase Separation Polymerization of Dicyclopentadiene Characterized by In Operando Fluorescence Microscopy. Journal of the American Chemical Society, 2013, 135, 12324-12328.	13.7	37
44	Small Number of Active Sites and Single-Locus Kinetics Revealed in (salph)Co-Catalyzed Ethylene Oxide Polymerization. ACS Catalysis, 2013, 3, 2150-2153.	11.2	11
45	Opportunities and challenges in single-molecule and single-particle fluorescence microscopy for mechanistic studies of chemical reactions. Nature Chemistry, 2013, 5, 993-999.	13.6	142
46	Synthesis of Alkenylgold(I) Compounds via Sequential Hydrozirconation and Zirconium to Gold Transmetalation. Organometallics, 2012, 31, 5990-5993.	2.3	20
47	Mechanistic Studies of Azaphilic versus Carbophilic Activation by Gold(I) in the Gold/Palladium Dual-Catalyzed Rearrangement of Alkenyl Vinyl Aziridines. Organometallics, 2012, 31, 6843-6850.	2.3	66
48	Organogold Reactivity with Palladium, Nickel, and Rhodium: Transmetalation, Cross-Coupling, and Dual Catalysis. Accounts of Chemical Research, 2011, 44, 603-613.	15.6	186
49	Nickel-Catalyzed Cross-Coupling of Organogold Reagents. Organometallics, 2011, 30, 1299-1302.	2.3	43
50	Homogeneous vs Heterogeneous Polymerization Catalysis Revealed by Single-Particle Fluorescence Microscopy. Journal of the American Chemical Society, 2011, 133, 18145-18147.	13.7	56
51	Real-Time Imaging of Platinumâ^'Sulfur Ligand Exchange Reactions at the Single-Molecule Level via a General Chemical Technique. Organometallics, 2011, 30, 2901-2907.	2.3	28
52	Deconvoluting Subensemble Chemical Reaction Kinetics of Platinum–Sulfur Ligand Exchange Detected with Single-Molecule Fluorescence Microscopy. Inorganic Chemistry, 2011, 50, 9201-9203.	4.0	19
53	Gold and Rhodium Transmetalation: Mechanistic Insights and Dual-Metal Reactivity. Organometallics, 2011, 30, 1776-1779.	2.3	45
54	Direct Observation of Gold/Palladium Transmetalation in an Organogold Heck Reaction. Organometallics, 2011, 30, 4811-4813.	2.3	26

#	Article	IF	CITATIONS
55	Single-Molecule Imaging of Platinum Ligand Exchange Reaction Reveals Reactivity Distribution. Journal of the American Chemical Society, 2010, 132, 15167-15169.	13.7	45
56	Relative Kinetic Basicities of Organogold Compounds. Organometallics, 2010, 29, 1712-1716.	2.3	92
57	Palladium-Catalyzed Carboauration of Alkynes and Palladium/Gold Cross-Coupling. Organometallics, 2009, 28, 1275-1277.	2.3	138
58	Catalyzed Catalysis Using Carbophilic Lewis Acidic Gold and Lewis Basic Palladium: Synthesis of Substituted Butenolides and Isocoumarins. Journal of the American Chemical Society, 2009, 131, 18022-18023.	13.7	228
59	A General Fluorescence Resonance Energy Transfer (FRET) Method for Observation and Quantification of Organometallic Complexes under Reaction Conditions. Organometallics, 2009, 28, 4643-4645.	2.3	23
60	Toward the Single-Molecule Investigation of Organometallic Reaction Mechanisms: Single-Molecule Imaging of Fluorophore-Tagged Palladium(II) Complexes. Organometallics, 2008, 27, 2172-2175.	2.3	35
61	Synthetic and Mechanistic Studies of Strained Heterocycle Opening Reactions Mediated by Zirconium(IV) Imido Complexes. Organometallics, 2005, 24, 1647-1659.	2.3	25
62	Nitro and Nitroso Metathesis Reactions with Monomeric Zirconium Imido Complexes. Organometallics, 2004, 23, 4003-4005.	2.3	22
63	Epoxide-Opening and Group-Transfer Reactions Mediated by Monomeric Zirconium Imido Complexes. Journal of the American Chemical Society, 2003, 125, 14276-14277.	13.7	33
64	Enantioselective Oxidation of Di-tert-Butyl Disulfide with a Vanadium Catalyst: Progress toward Mechanism Elucidationâ€. Journal of Organic Chemistry, 2003, 68, 150-155.	3.2	110
65	Application of Physical Organic Methods to the Investigation of Organometallic Reaction Mechanisms. Journal of Organic Chemistry, 2003, 68, 4127-4137.	3.2	25
66	Repurposing π Electrophilic Cyclization/Dealkylation for Group Transfer. Angewandte Chemie, 0, , .	2.0	0