Gudrun Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6249002/publications.pdf

Version: 2024-02-01

39 papers 3,556 citations

30 h-index 330143 37 g-index

42 all docs 42 docs citations

times ranked

42

4382 citing authors

#	Article	IF	CITATIONS
1	Tunable Tannic Acid–Zein Adhesives for Bonding Different Substrates. Advanced Sustainable Systems, 2022, 6, .	5.3	7
2	Design and mechanistic understanding of graphene oxide reinforced zein nanocomposites with improved mechanical, barrier and thermal properties. Journal of Materials Science, 2019, 54, 12533-12552.	3.7	15
3	Strong Adhesives from Corn Protein and Tannic Acid. Advanced Sustainable Systems, 2019, 3, 1900077.	5.3	22
4	Zein–Laponite nanocomposites with improved mechanical, thermal and barrier properties. Journal of Materials Science, 2018, 53, 7387-7402.	3.7	34
5	High Strength Adhesives from Catechol Crossâ€Linking of Zein Protein and Plant Phenolics. Advanced Sustainable Systems, 2018, 2, 1700159.	5.3	46
6	Robust and Degradable Hydrogels from Poly(ethylene glycol) and Semi-Interpenetrating Collagen. Macromolecules, 2014, 47, 6408-6417.	4.8	20
7	A review on tough and sticky hydrogels. Colloid and Polymer Science, 2013, 291, 2031-2047.	2.1	312
8	Robust and Adhesive Hydrogels from Crossâ€Linked Poly(ethylene glycol) and Silicate for Biomedical Use. Macromolecular Bioscience, 2013, 13, 59-66.	4.1	43
9	Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: Structural, mechanical and cell adhesion characteristics. Materials Science and Engineering C, 2013, 33, 1800-1807.	7.3	109
10	Robust and Semiâ€Interpenetrating Hydrogels from Poly(ethylene glycol) and Collagen for Elastomeric Tissue Scaffolds. Macromolecular Bioscience, 2012, 12, 1490-1501.	4.1	46
11	Physically Crosslinked Nanocomposites from Silicateâ€Crosslinked PEO: Mechanical Properties and Osteogenic Differentiation of Human Mesenchymal Stem Cells. Macromolecular Bioscience, 2012, 12, 779-793.	4.1	116
12	Highly Extensible, Tough, and Elastomeric Nanocomposite Hydrogels from Poly(ethylene glycol) and Hydroxyapatite Nanoparticles. Biomacromolecules, 2011, 12, 1641-1650.	5 . 4	299
13	Mechanically Tough Pluronic F127/Laponite Nanocomposite Hydrogels from Covalently and Physically Cross-Linked Networks. Macromolecules, 2011, 44, 8215-8224.	4.8	150
14	Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomaterialia, 2011, 7, 4139-4148.	8.3	210
15	Highly Extensible Bioâ€Nanocomposite Fibers. Macromolecular Rapid Communications, 2011, 32, 50-57.	3.9	46
16	Assessment of using Laponite \hat{A}^{\otimes} cross-linked poly(ethylene oxide) for controlled cell adhesion and mineralization. Acta Biomaterialia, 2011, 7, 568-577.	8.3	149
17	Highly Extensible Bioâ€Nanocomposite Films with Directionâ€Dependent Properties. Advanced Functional Materials, 2010, 20, 429-436.	14.9	81
18	Tuning Cell Adhesion by Incorporation of Charged Silicate Nanoparticles as Cross‣inkers to Polyethylene Oxide. Macromolecular Bioscience, 2010, 10, 1416-1423.	4.1	77

#	Article	IF	Citations
19	Macromol. Biosci. 12/2010. Macromolecular Bioscience, 2010, 10, .	4.1	0
20	Development of Biomedical Polymer-Silicate Nanocomposites: A Materials Science Perspective. Materials, 2010, 3, 2986-3005.	2.9	130
21	Shear-Induced Nanometer and Micrometer Structural Responses in Nanocomposite Hydrogels. Macromolecules, 2010, 43, 1041-1049.	4.8	33
22	Addition of Chitosan to Silicate Cross-Linked PEO for Tuning Osteoblast Cell Adhesion and Mineralization. ACS Applied Materials & Samp; Interfaces, 2010, 2, 3119-3127.	8.0	64
23	Thermosensitive and Dissolution Properties in Nanocomposite Polymer Hydrogels. Macromolecular Rapid Communications, 2009, 30, 1492-1497.	3.9	32
24	Silicate Crossâ€Linked Bioâ€Nanocomposite Hydrogels from PEO and Chitosan. Macromolecular Bioscience, 2009, 9, 1028-1035.	4.1	46
25	Nanocomposite polymer hydrogels. Colloid and Polymer Science, 2009, 287, 1-11.	2.1	629
26	Heterogeneity in nanocomposite hydrogels from poly(ethylene oxide) cross-linked with silicate nanoparticles. Physical Chemistry Chemical Physics, 2009, 11, 2760.	2.8	34
27	Polymer/Clay Nanocomposites: Influence of Ionic Strength on the Structure and Adhesion Characteristics in Multilayered Films. Macromolecular Materials and Engineering, 2008, 293, 771-780.	3.6	14
28	Supramolecular structures in nanocomposite multilayered films. Physical Chemistry Chemical Physics, 2006, 8, 1739.	2.8	32
29	Dynamic Responses in Nanocomposite Hydrogels. Macromolecules, 2006, 39, 1614-1619.	4.8	77
30	Structure and thermal properties of multilayered Laponite/PEO nanocomposite films. Polymer, 2006, 47, 7339-7348.	3.8	42
31	Structural Effects of Crosslinking a Biopolymer Hydrogel Derived from Marine Mussel Adhesive Protein. Macromolecular Bioscience, 2006, 6, 711-718.	4.1	48
32	Unusual Multilayered Structures in Poly(ethylene oxide)/Laponite Nanocomposite Films. Macromolecular Rapid Communications, 2005, 26, 143-149.	3.9	49
33	Large Scale Structures in Nanocomposite Hydrogels. Macromolecules, 2005, 38, 2047-2049.	4.8	99
34	Dynamic Responses in Polymer-Clay Gels. Materials Research Society Symposia Proceedings, 2004, 840, Q2.7.1.	0.1	0
35	Orientation and relaxation of polymer–clay solutions studied by rheology and small-angle neutron scattering. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 3102-3112.	2.1	31
36	Layered structures of shear-oriented and multilayered PEO/silicate nanocomposite films. Physical Chemistry Chemical Physics, 2004, 6, 2977.	2.8	37

GUDRUN SCHMIDT

#	Article	IF	CITATIONS
37	Small-Angle Neutron Scattering from Viscoelastic Polymerâ^'Clay Solutions. Macromolecules, 2002, 35, 4725-4732.	4.8	113
38	Rheology and flow-birefringence from viscoelastic polymer-clay solutions. Rheologica Acta, 2002, 41, 45-54.	2.4	100
39	Shear Orientation of Viscoelastic Polymerâ [°] Clay Solutions Probed by Flow Birefringence and SANS. Macromolecules, 2000, 33, 7219-7222.	4.8	164