
Alexandra Cristina Senegaglia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6248926/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Treatment of Chronic Kidney Disease with Extracellular Vesicles from Mesenchymal Stem Cells and CD133+ Expanded Cells: A Comparative Preclinical Analysis. International Journal of Molecular Sciences, 2022, 23, 2521.	4.1	9
2	Safety and long-term improvement of mesenchymal stromal cell infusion in critically COVID-19 patients: a randomized clinical trial. Stem Cell Research and Therapy, 2022, 13, 122.	5.5	29
3	HLA-G and CD152 Expression Levels Encourage the Use of Umbilical Cord Tissue-Derived Mesenchymal Stromal Cells as an Alternative for Immunosuppressive Therapy. Cells, 2022, 11, 1339.	4.1	3
4	Chromosomal aberrations after induced pluripotent stem cells reprogramming. Genetics and Molecular Biology, 2021, 44, e20200147.	1.3	5
5	Adipose tissue-derived stromal/stem cells + cholecalciferol: a pilot study in recent-onset type 1 diabetes patients. Archives of Endocrinology and Metabolism, 2021, 65, 342-351.	0.6	10
6	Dental Pulp from Human Exfoliated Deciduous Teeth-derived Stromal Cells Demonstrated Neuronal Potential: In Vivo and In Vitro Studies. Current Stem Cell Research and Therapy, 2021, 16, 495-506.	1.3	13
7	3D Poly(Lactic Acid) Scaffolds Promote Different Behaviors on Endothelial Progenitors and Adipose-Derived Stromal Cells in Comparison With Standard 2D Cultures. Frontiers in Bioengineering and Biotechnology, 2021, 9, 700862.	4.1	10
8	Canine dental pulp and umbilical cord-derived mesenchymal stem cells as alternative sources for cell therapy in dogs. Research in Veterinary Science, 2021, 140, 117-124.	1.9	5
9	Combined Use of Tocilizumab and Mesenchymal Stromal Cells in the Treatment of Severe Covid-19: Case Report. Cell Transplantation, 2021, 30, 096368972110210.	2.5	14
10	Effect of Hydroxyapatite Microspheres, Amoxicillin–Hydroxyapatite and Collagen–Hydroxyapatite Composites on Human Dental Pulp-Derived Mesenchymal Stem Cells. Materials, 2021, 14, 7515.	2.9	5
11	Cytotoxicity of fluconazole on canine dental pulp-derived stem cells. Journal of Oral Biology and Craniofacial Research, 2020, 10, 361-368.	1.9	Ο
12	Quality control and immunomodulatory potential for clinical-grade equine bone marrow-derived mesenchymal stromal cells and conditioned medium. Research in Veterinary Science, 2020, 132, 407-415.	1.9	3
13	Recovery of motricity and micturition after transplantation of mesenchymal stem cells in rats subjected to spinal cord injury. Neuroscience Letters, 2020, 734, 135134.	2.1	5
14	Allogenic Adipose Tissue-Derived Stromal/Stem Cells and Vitamin D Supplementation in Patients With Recent-Onset Type 1 Diabetes Mellitus: A 3-Month Follow-Up Pilot Study. Frontiers in Immunology, 2020, 11, 993.	4.8	23
15	Infusion of Mesenchymal Stem Cells to Treat Graft Versus Host Disease: the Role of HLA-G and the Impact of its Polymorphisms. Stem Cell Reviews and Reports, 2020, 16, 459-471.	3.8	15
16	The Expression Profile of Dental Pulp-Derived Stromal Cells Supports Their Limited Capacity to Differentiate into Adipogenic Cells. International Journal of Molecular Sciences, 2020, 21, 2753.	4.1	9
17	Lung Tissue Damage Associated with Allergic Asthma in BALB/c Mice Could Be Controlled with a Single Injection of Mesenchymal Stem Cells from Human Bone Marrow up to 14 d After Transplantation. Cell Transplantation, 2020, 29, 096368972091325.	2.5	8
18	183-OR: Allogenic Adipose-Derived Mesenchymal Stem Cells (ASCs) and Vitamin D Supplementation in Patients with Recent-Onset Type 1 Diabetes Mellitus: A 6-Month Follow-Up Pilot Study. Diabetes, 2020, 69, .	0.6	0

#	Article	IF	CITATIONS
19	Comparison of the Efficacy of Surgical Decompression Alone and Combined With Canine Adipose Tissue-Derived Stem Cell Transplantation in Dogs With Acute Thoracolumbar Disk Disease and Spinal Cord Injury. Frontiers in Veterinary Science, 2019, 6, 383.	2.2	12
20	Influence of Adipose Tissue-Derived Stem Cells on the Burn Wound Healing Process. Stem Cells International, 2019, 2019, 1-10.	2.5	40
21	Systemic Infusion of Expanded CD133 ⁺ Cells and Expanded CD133 ⁺ Cell-Derived EVs for the Treatment of Ischemic Cardiomyopathy in a Rat Model of AMI. Stem Cells International, 2019, 2019, 1-11.	2.5	8
22	Temporomandibular joint regeneration: proposal of a novel treatment for condylar resorption after orthognathic surgery using transplantation of autologous nasal septum chondrocytes, and the first human case report. Stem Cell Research and Therapy, 2018, 9, 94.	5.5	10
23	Human adipose-derived stem cells (ADSC) and human periodontal ligament stem cells (PDLSC) as cellular substrates of a toxicity prediction assay. Regulatory Toxicology and Pharmacology, 2018, 92, 75-82.	2.7	12
24	Expanded CD133+ Cells from Human Umbilical Cord Blood Improved Heart Function in Rats after Severe Myocardial Infarction. Stem Cells International, 2018, 2018, 1-11.	2.5	8
25	The Protein Content of Extracellular Vesicles Derived from Expanded Human Umbilical Cord Blood-Derived CD133+ and Human Bone Marrow-Derived Mesenchymal Stem Cells Partially Explains Why both Sources are Advantageous for Regenerative Medicine. Stem Cell Reviews and Reports, 2017, 13. 244-257.	5.6	52
26	Collection, processing and freezing of equine bone marrow cells. Cryobiology, 2017, 78, 95-100.	0.7	6
27	Tissue-Derived Signals for Mesenchymal Stem Cell Stimulation: Role of Cardiac and Umbilical Cord Microenvironments. Cells Tissues Organs, 2017, 203, 173-182.	2.3	15
28	Natural Killer Cell Assessment in Peripheral Circulation and Bronchoalveolar Lavage Fluid of Patients with Severe Sepsis: A Case Control Study. International Journal of Molecular Sciences, 2017, 18, 616.	4.1	4
29	Intratracheal therapy with autologous bone marrow-derived mononuclear cells reduces airway inflammation in horses with recurrent airway obstruction. Respiratory Physiology and Neurobiology, 2016, 232, 35-42.	1.6	24
30	Expanded endothelial progenitor cells mitigate lung injury in septic mice. Stem Cell Research and Therapy, 2015, 6, 230.	5.5	24
31	Emergence of clonal chromosomal alterations during the mesenchymal stromal cell cultivation. Molecular Cytogenetics, 2015, 8, 94.	0.9	12
32	Direct intracardiac injection of umbilical cord-derived stromal cells and umbilical cord blood-derived endothelial cells for the treatment of ischemic cardiomyopathy. Experimental Biology and Medicine, 2015, 240, 969-978.	2.4	11
33	Genetic evaluation of mesenchymal stem cells by G-banded karyotyping in a Cell Technology Center. Revista Brasileira De Hematologia E Hemoterapia, 2014, 36, 202-207.	0.7	38
34	Polysome Profiling Shows the Identity of Human Adipose-Derived Stromal/Stem Cells in Detail and Clearly Distinguishes Them from Dermal Fibroblasts. Stem Cells and Development, 2014, 23, 2791-2802.	2.1	9
35	Brazilian minipig as a large-animal model for basic research and stem cell-based tissue engineering. Characterization and in vitro differentiation of bone marrow-derived mesenchymal stem cells. Journal of Applied Oral Science, 2014, 22, 218-227.	1.8	13
36	Comparison of Two Surgical Techniques for Creating an Acute Myocardial Infarct in Rats. Brazilian Journal of Cardiovascular Surgery, 2014, 29, 505-12.	0.6	2

#	Article	IF	CITATIONS
37	Autologous Transplantation of Bone Marrow Adult Stem Cells for the Treatment of Idiopathic Dilated Cardiomyopathy. Arquivos Brasileiros De Cardiologia, 2014, 103, 521-9.	0.8	1
38	The epigenetic modifiers 5-aza-2'-deoxycytidine and trichostatin A influence adipocyte differentiation in human mesenchymal stem cells. Brazilian Journal of Medical and Biological Research, 2013, 46, 405-416.	1.5	34
39	Transplantation of SNAP-treated adipose tissue-derived stem cells improves cardiac function and induces neovascularization after myocardium infarct in rats. Experimental and Molecular Pathology, 2011, 90, 149-156.	2.1	22
40	Cytomegalovirusâ€specific CD8 ⁺ T cells targeting different HLA/peptide combinations correlate with protection but at different threshold frequencies. British Journal of Haematology, 2010, 148, 311-322.	2.5	20
41	Are purified or expanded cord blood-derived CD133 ⁺ cells better at improving cardiac function?. Experimental Biology and Medicine, 2010, 235, 119-129.	2.4	38
42	Expression of cardiac function genes in adult stem cells is increased by treatment with nitric oxide agents. Biochemical and Biophysical Research Communications, 2009, 378, 456-461.	2.1	20
43	Dissimilar Differentiation of Mesenchymal Stem Cells from Bone Marrow, Umbilical Cord Blood, and Adipose Tissue. Experimental Biology and Medicine, 2008, 233, 901-913.	2.4	357
44	Formação in vitro de túbulos capilares a partir de células de sangue de cordão umbilical humano com perspectivas para aplicação terapêutica. Brazilian Journal of Cardiovascular Surgery, 2008, 23, 467-473.	0.6	10
45	Cell transplantation: Differential effects of myoblasts and mesenchymal stem cells. International Journal of Cardiology, 2006, 111, 423-429.	1.7	28
46	Cell Transplantation After The Coculture of Skeletal Myoblasts and Mesenchymal Stem Cells in the Regeneration of the Myocardium Scar: An Experimental Study in Rats. Transplantation Proceedings, 2006, 38, 1596-1602.	0.6	27
47	Simultaneous Autologous Transplantation of Cocultured Mesenchymal Stem Cells and Skeletal Myoblasts Improves Ventricular Function in a Murine Model of Chagas Disease. Circulation, 2006, 114, I-120-I-124.	1.6	65
48	CFU-GM Assay Can Be Predictive of Umbilical Cord Blood Engraftment Blood, 2006, 108, 5212-5212.	1.4	2
49	A comparação entre o transplante de células tronco mononucleares e mesenquimais no infarto do miocárdio. Brazilian Journal of Cardiovascular Surgery, 2005, 20, 270-278.	0.6	15
50	Transplante celular: análise funcional, imunocitoquÃmica e histopatológica em modelo experimental de miocardiopatia isquêmica utilizando diferentes células. Brazilian Journal of Cardiovascular Surgery, 2004, 19, 261-266.	0.6	7
51	O transplante em conjunto de células mioblásticas esqueléticas e mesenquimais (cocultivadas) na disfunção ventricular pós-infarto do miocárdio. Arquivos Brasileiros De Cardiologia, 2004, 83, 288-293.	0.8	8
52	Could the coculture of skeletal myoblasts and mesenchymal stem cells be a solution for postinfarction myocardial scar?. Transplantation Proceedings, 2004, 36, 991-992.	0.6	18
53	Aneural culture of rat myoblasts for myocardial transplant. Transplantation Proceedings, 2004, 36, 1023-1024.	0.6	3
54	Establishing an islet transplantation program in a developing country. Transplantation Proceedings, 2004, 36, 1700-1703.	0.6	5

#	Article	IF	CITATIONS
55	Expansão de células-tronco da medula óssea e do sangue de cordão umbilical humano. Revista Brasileira De Hematologia E Hemoterapia, 0, 31, 9-14.	0.7	5
56	Mesenchymal Stromal Cells Modulate PAF-stimulated Equine Alveolar Macrophages. Brazilian Archives of Biology and Technology, 0, 62, .	0.5	0
57	Management of Airway Remodeling in a Mouse Model of Allergic Airways Inflammation Using Extracellular Vesicles from Human Bone Marrow-Derived Mesenchymal Stromal Cells. Brazilian Archives of Biology and Technology, 0, 65, .	0.5	2