
## James G Elkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6248898/publications.pdf Version: 2024-02-01



LAMES C. FLEINS

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | n-Butanol or isobutanol as a value-added fuel additive to inhibit microbial degradation of stored gasoline. Fuel Communications, 2022, 12, 100072.                                                                                               | 5.2 | 1         |
| 2  | Implementation of a self-consistent slab model of bilayer structure in the <i>SasView</i> suite.<br>Journal of Applied Crystallography, 2021, 54, 363-370.                                                                                       | 4.5 | 15        |
| 3  | Solvent-induced membrane stress in biofuel production: molecular insights from small-angle scattering and all-atom molecular dynamics simulations. Green Chemistry, 2020, 22, 8278-8288.                                                         | 9.0 | 9         |
| 4  | Complete Genome Sequences of Four Natural <i>Pseudomonas</i> Isolates That Catabolize a Wide<br>Range of Aromatic Compounds Relevant to Lignin Valorization. Microbiology Resource<br>Announcements, 2020, 9, .                                  | 0.6 | 1         |
| 5  | Impact of Fatty-Acid Labeling of Bacillus subtilis Membranes on the Cellular Lipidome and Proteome.<br>Frontiers in Microbiology, 2020, 11, 914.                                                                                                 | 3.5 | 8         |
| 6  | Complete Genome Sequence of Caloramator sp. Strain E03, a Novel Ethanologenic, Thermophilic,<br>Obligately Anaerobic Bacterium. Microbiology Resource Announcements, 2019, 8, .                                                                  | 0.6 | 0         |
| 7  | Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus<br>Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses. Applied and Environmental<br>Microbiology, 2018, 84, .                         | 3.1 | 33        |
| 8  | Insights into the Evolution of Host Association through the Isolation and Characterization of a Novel Human Periodontal Pathobiont, <i>Desulfobulbus oralis</i> . MBio, 2018, 9, .                                                               | 4.1 | 32        |
| 9  | Development and characterization of stable anaerobic thermophilic methanogenic microbiomes fermenting switchgrass at decreasing residence times. Biotechnology for Biofuels, 2018, 11, 243.                                                      | 6.2 | 37        |
| 10 | Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum. Scientific Reports, 2017, 7, 43355.                                                                                   | 3.3 | 24        |
| 11 | <i>Bacillus subtilis</i> Lipid Extract, A Branched-Chain Fatty Acid Model Membrane. Journal of<br>Physical Chemistry Letters, 2017, 8, 4214-4217.                                                                                                | 4.6 | 42        |
| 12 | Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in<br>Escherichia coli Enables Bioconversion of Model Aromatic Compounds. Applied and Environmental<br>Microbiology, 2017, 83, .                          | 3.1 | 49        |
| 13 | Expression of a heat-stable NADPH-dependent alcohol dehydrogenase from Thermoanaerobacter pseudethanolicus 39E in Clostridium thermocellum 1313 results in increased hydroxymethylfurfural resistance. Biotechnology for Biofuels, 2017, 10, 66. | 6.2 | 15        |
| 14 | The in vivo structure of biological membranes and evidence for lipid domains. PLoS Biology, 2017, 15, e2002214.                                                                                                                                  | 5.6 | 123       |
| 15 | The effect of switchgrass loadings on feedstock solubilization and biofuel production by Clostridium thermocellum. Biotechnology for Biofuels, 2017, 10, 233.                                                                                    | 6.2 | 15        |
| 16 | Manufacturing demonstration of microbially mediated zinc sulfide nanoparticles in pilot-plant scale reactors. Applied Microbiology and Biotechnology, 2016, 100, 7921-7931.                                                                      | 3.6 | 32        |
| 17 | Expression of a heat-stable NADPH-dependent alcohol dehydrogenase in Caldicellulosiruptor bescii results in furan aldehyde detoxification. Biotechnology for Biofuels, 2015, 8, 102.                                                             | 6.2 | 21        |
| 18 | Cellulosic ethanol production via consolidated bioprocessing at 75°C by engineered<br>Caldicellulosiruptor bescii. Biotechnology for Biofuels, 2015, 8, 163.                                                                                     | 6.2 | 52        |

JAMES G ELKINS

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Community Analysis of Plant Biomass-Degrading Microorganisms from Obsidian Pool, Yellowstone<br>National Park. Microbial Ecology, 2015, 69, 333-345.                                                                                      | 2.8  | 20        |
| 20 | Fermentation of Dilute Acid Pretreated Populus by Clostridium thermocellum, Caldicellulosiruptor bescii, and Caldicellulosiruptor obsidiansis. Bioenergy Research, 2015, 8, 1014-1021.                                                    | 3.9  | 5         |
| 21 | Determination of the cellulase activity distribution in Clostridium thermocellum and<br>Caldicellulosiruptor obsidiansis cultures using a fluorescent substrate. Journal of Environmental<br>Sciences, 2015, 34, 212-218.                 | 6.1  | 6         |
| 22 | A comparative multidimensional LC-MS proteomic analysis reveals mechanisms for furan aldehyde<br>detoxification in Thermoanaerobacter pseudethanolicus 39E. Biotechnology for Biofuels, 2014, 7, 165.                                     | 6.2  | 17        |
| 23 | Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from<br>lignocellulosic biomass. Biotechnology for Biofuels, 2013, 6, 85.                                                                       | 6.2  | 111       |
| 24 | Thermodesulfobacterium geofontis sp. nov., a hyperthermophilic, sulfate-reducing bacterium isolated<br>from Obsidian Pool, Yellowstone National Park. Extremophiles, 2013, 17, 251-263.                                                   | 2.3  | 36        |
| 25 | Continuous live cell imaging of cellulose attachment by microbes under anaerobic and thermophilic conditions using confocal microscopy. Journal of Environmental Sciences, 2013, 25, 849-856.                                             | 6.1  | 4         |
| 26 | Characterizing the interplay between multiple levels of organization within bacterial sigma factor regulatory networks. Nature Communications, 2013, 4, 1755.                                                                             | 12.8 | 15        |
| 27 | Complete Genome Sequence of the Hyperthermophilic Sulfate-Reducing Bacterium<br><i>Thermodesulfobacterium geofontis</i> OPF15 <sup>T</sup> . Genome Announcements, 2013, 1,<br>e0016213.                                                  | 0.8  | 4         |
| 28 | Caldicellulosiruptor Core and Pangenomes Reveal Determinants for Noncellulosomal Thermophilic<br>Deconstruction of Plant Biomass. Journal of Bacteriology, 2012, 194, 4015-4028.                                                          | 2.2  | 96        |
| 29 | Anaerobic High-Throughput Cultivation Method for Isolation of Thermophiles Using Biomass-Derived Substrates. , 2012, 908, 153-168.                                                                                                        |      | 11        |
| 30 | Spatial and temporal dynamics of cellulose degradation and biofilm formation by<br>Caldicellulosiruptor obsidiansis and Clostridium thermocellum. AMB Express, 2011, 1, 30.                                                               | 3.0  | 34        |
| 31 | Mathematical modeling of hydrolysate diffusion and utilization in cellulolytic biofilms of the extreme thermophile Caldicellulosiruptor obsidiansis. Bioresource Technology, 2011, 102, 3155-3162.                                        | 9.6  | 15        |
| 32 | Engineered microbial systems for enhanced conversion of lignocellulosic biomass. Current Opinion in Biotechnology, 2010, 21, 657-662.                                                                                                     | 6.6  | 93        |
| 33 | <i>Caldicellulosiruptor obsidiansis</i> sp. nov., an Anaerobic, Extremely Thermophilic, Cellulolytic<br>Bacterium Isolated from Obsidian Pool, Yellowstone National Park. Applied and Environmental<br>Microbiology, 2010, 76, 1014-1020. | 3.1  | 91        |
| 34 | Complete Genome Sequence of the Cellulolytic Thermophile <i>Caldicellulosiruptor obsidiansis</i> OB47 <sup>T</sup> . Journal of Bacteriology, 2010, 192, 6099-6100.                                                                       | 2.2  | 39        |
| 35 | Controlled microfluidic production of alginate beads for in situ encapsulation of microbes. , 2009, , .                                                                                                                                   |      | 5         |
| 36 | The complete genome sequence of Staphylothermus marinus reveals differences in sulfur metabolism<br>among heterotrophic Crenarchaeota. BMC Genomics, 2009, 10, 145.                                                                       | 2.8  | 26        |

JAMES G ELKINS

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans. Genome<br>Biology, 2008, 9, R158.                                                                                             | 8.8 | 104       |
| 38 | A korarchaeal genome reveals insights into the evolution of the Archaea. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8102-8107.                                      | 7.1 | 253       |
| 39 | Genome Sequence of <i>Thermofilum pendens</i> Reveals an Exceptional Loss of Biosynthetic<br>Pathways without Genome Reduction. Journal of Bacteriology, 2008, 190, 2957-2965.                                       | 2.2 | 53        |
| 40 | Orthologs of the small RPB8 subunit of the eukaryotic RNA polymerases are conserved in hyperthermophilic Crenarchaeota and "Korarchaeota". Biology Direct, 2007, 2, 38.                                              | 4.6 | 39        |
| 41 | Cultivating the uncultured. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15681-15686.                                                                                  | 7.1 | 721       |
| 42 | Cloning and characterization of a second acid phosphatase from Sinorhizobium meliloti strain 104A14. Archives of Microbiology, 2001, 176, 255-263.                                                                   | 2.2 | 13        |
| 43 | Factors Affecting Catalase Expression in Pseudomonas aeruginosa Biofilms and Planktonic Cells.<br>Applied and Environmental Microbiology, 2001, 67, 1375-1379.                                                       | 3.1 | 36        |
| 44 | Effect of Catalase on Hydrogen Peroxide Penetration into Pseudomonas aeruginosa Biofilms. Applied and Environmental Microbiology, 2000, 66, 836-838.                                                                 | 3.1 | 161       |
| 45 | Protective Role of Catalase in <i>Pseudomonas aeruginosa</i> Biofilm Resistance to Hydrogen<br>Peroxide. Applied and Environmental Microbiology, 1999, 65, 4594-4600.                                                | 3.1 | 218       |
| 46 | Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide<br>dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Molecular Microbiology,<br>1999, 34, 1082-1093. | 2.5 | 379       |
| 47 | [44] Pseudomonas aeruginosa biofilm sensitivity to biocides: Use of hydrogen peroxide as model<br>antimicrobial agent for examining resistance mechanisms. Methods in Enzymology, 1999, 310, 599-608.                | 1.0 | 52        |
| 48 | Expression and Regulation of Phosphate Stress Inducible Genes in Sinorhizobium meliloti. Molecular<br>Plant-Microbe Interactions, 1998, 11, 1094-1101.                                                               | 2.6 | 35        |