Helena Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6248120/publications.pdf

Version: 2024-02-01

26630 62596 9,792 241 56 citations h-index papers

g-index 247 247 247 7824 docs citations times ranked citing authors all docs

80

#	Article	IF	CITATIONS
1	Compatible solutes of organisms that live in hot saline environments. Environmental Microbiology, 2002, 4, 501-509.	3.8	250
2	Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga. Archives of Microbiology, 1997, 167, 217-232.	2.2	207
3	Comparative study of the thermostabilizing properties of mannosylglycerate and other compatible solutes on model enzymes. Extremophiles, 2002, 6, 209-216.	2.3	178
4	Model for carbon metabolism in biological phosphorus removal processes based on in vivo13C-NMR labelling experiments. Water Research, 1996, 30, 2128-2138.	11.3	170
5	NMR studies of electron transfer mechanisms in a protein with interacting redox centres: Desulfovibrio gigas cytochrome c3. FEBS Journal, 1984, 141, 283-296.	0.2	156
6	Yeast Life-Span Extension by Calorie Restriction Is Independent of NAD Fluctuation. Science, 2003, 302, 2124-2126.	12.6	152
7	Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1325, 63-70.	2.6	150
8	Rubredoxin Oxidase, a New Flavo-Hemo-Protein, Is the Site of Oxygen Reduction to Water by the "Strict Anaerobe" Desulfovibrio gigas. Biochemical and Biophysical Research Communications, 1993, 193, 100-105.	2.1	145
9	Methods for detection and visualization of intracellular polymers stored by polyphosphate-accumulating microorganisms. Journal of Microbiological Methods, 2002, 51, 1-18.	1.6	141
10	Overview on sugar metabolism and its control in – The input from in vivo NMR. FEMS Microbiology Reviews, 2005, 29, 531-554.	8.6	139
11	From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnology Advances, 2013, 31, 764-788.	11.7	139
12	Is the Glycolytic Flux in Lactococcus lactisPrimarily Controlled by the Redox Charge?. Journal of Biological Chemistry, 2002, 277, 28088-28098.	3.4	124
13	Relationship between Glycolysis and Exopolysaccharide Biosynthesis in Lactococcus lactis. Applied and Environmental Microbiology, 2001, 67, 33-41.	3.1	121
14	Archaeal Binding Protein-Dependent ABC Transporter: Molecular and Biochemical Analysis of the Trehalose/Maltose Transport System of the Hyperthermophilic Archaeon <i>Thermococcus litoralis</i> Journal of Bacteriology, 1998, 180, 680-689.	2.2	116
15	High-affinity maltose/trehalose transport system in the hyperthermophilic archaeon Thermococcus litoralis. Journal of Bacteriology, 1996, 178, 4773-4777.	2.2	109
16	In vivo nuclear magnetic resonance studies of glycolytic kinetics inLactococcus lactis. , 1999, 64, 200-212.		107
17	Thermostabilization of Proteins by Diglycerol Phosphate, a New Compatible Solute from the Hyperthermophile Archaeoglobus fulgidus. Applied and Environmental Microbiology, 2000, 66, 1974-1979.	3.1	106
18	Effects of Temperature, Salinity, and Medium Composition on Compatible Solute Accumulation by <i>Thermococcus</i> spp. Applied and Environmental Microbiology, 1998, 64, 3591-3598.	3.1	102

#	Article	IF	CITATIONS
19	Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo13C-NMR. FEBS Journal, 2000, 267, 3859-3868.	0.2	100
20	The urgent need for microbiology literacy in society. Environmental Microbiology, 2019, 21, 1513-1528.	3.8	99
21	Pathway and regulation of erythritol formation in Leuconostoc oenos. Journal of Bacteriology, 1993, 175, 3941-3948.	2.2	97
22	New compatible solutes related to Di-myo-inositol-phosphate in members of the order Thermotogales. Journal of Bacteriology, 1996, 178, 5644-5651.	2.2	96
23	Stress response by solute accumulation in archaea. Current Opinion in Microbiology, 2005, 8, 729-736.	5.1	92
24	Combined effect of the growth temperature and salinity of the medium on the accumulation of compatible solutes by Rhodothermus marinus and Rhodothermus obamensis. Extremophiles, 1999, 3, 163-172.	2.3	91
25	Nutraceutical production by propionibacteria. Dairy Science and Technology, 2002, 82, 103-112.	0.9	90
26	Color Stabilization of Malvidin 3-Glucoside:Â Self-Aggregation of the Flavylium Cation and Copigmentation with the Z-Chalcone Form. Journal of Physical Chemistry B, 1998, 102, 3578-3585.	2.6	89
27	Engineering Lactococcus lactis for Production of Mannitol: High Yields from Food-Grade Strains Deficient in Lactate Dehydrogenase and the Mannitol Transport System. Applied and Environmental Microbiology, 2004, 70, 1466-1474.	3.1	89
28	Aerobic Metabolism of Carbon Reserves by the "Obligate Anaerobe" Desulfovibrio gigas. Biochemical and Biophysical Research Communications, 1993, 195, 551-557.	2.1	88
29	Purification and characterization of an NADH-rubredoxin oxidoreductase involved in the utilization of oxygen by Desulfovibrio gigas. FEBS Journal, 1993, 216, 443-448.	0.2	87
30	Photochromism of the Synthetic 4',7-Dihydroxyflavylium Chloride. Journal of the American Chemical Society, 1994, 116, 1249-1254.	13.7	87
31	Biochemical and genetic characterization of the pathways for trehalose metabolism in Propionibacterium freudenreichii, and their role in stress response. Microbiology (United Kingdom), 2007, 153, 270-280.	1.8	84
32	Effect of Different NADH Oxidase Levels on Glucose Metabolism by <i>Lactococcus lactis</i> : Kinetics of Intracellular Metabolite Pools Determined by In Vivo Nuclear Magnetic Resonance. Applied and Environmental Microbiology, 2002, 68, 6332-6342.	3.1	82
33	The intricate side of systems biology. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9452-9457.	7.1	81
34	Maltose Metabolism in the Hyperthermophilic Archaeon Thermococcus litoralis: Purification and Characterization of Key Enzymes. Journal of Bacteriology, 1999, 181, 3358-3367.	2.2	80
35	Elucidation of the multiple equilibria of malvin in aqueous solution by One- and two-dimensional NMR. Phytochemistry, 1993, 33, 1227-1232.	2.9	77
36	Role of N Î ³ -Acetyldiaminobutyrate as an Enzyme Stabilizer and an Intermediate in the Biosynthesis of Hydroxyectoine. Applied and Environmental Microbiology, 1999, 65, 3774-3779.	3.1	75

#	Article	IF	CITATIONS
37	Characterization of the individual glucose uptake systems of ⟨i⟩Lactococcus lactis⟨/i⟩: mannoseâ€PTS, cellobioseâ€PTS and the novel GlcU permease. Molecular Microbiology, 2009, 71, 795-806.	2.5	74
38	Are Compatible Solutes Compatible with Biological Treatment of Saline Wastewater? Batch and Continuous Studies Using Submerged Anaerobic Membrane Bioreactors (SAMBRs). Environmental Science & Echnology, 2010, 44, 7437-7442.	10.0	73
39	Assignment of the redox potentials to the four haems inDesulfovibrio vulgariscytochromec3by 2D-NMR. FEBS Letters, 1992, 314, 155-158.	2.8	72
40	Salinisphaera shabanensis gen. nov., sp. nov., a novel, moderately halophilic bacterium from the brine–seawater interface of the Shaban Deep, Red Sea. Extremophiles, 2003, 7, 29-34.	2.3	72
41	Pseudovitamin is the corrinoid produced by <i>Lactobacillus reuteri</i> CRL1098 under anaerobic conditions. FEBS Letters, 2007, 581, 4865-4870.	2.8	72
42	Structural basis for the network of functional cooperativities in cytochrome c3 from Desulfovibrio gigas: solution structures of the oxidised and reduced states. Journal of Molecular Biology, 2000, 298, 61-82.	4.2	69
43	¹³ C Nuclear Magnetic Resonance Studies of Citrate and Glucose Cometabolism by <i>Lactococcus lactis</i> . Applied and Environmental Microbiology, 1994, 60, 1739-1748.	3.1	69
44	Uncoupling effect of nitrite during denitrification byPseudomonas fluorescens: An in vivo31P-NMR study. Biotechnology and Bioengineering, 1996, 52, 176-182.	3.3	68
45	Pathway for the Synthesis of Mannosylglycerate in the Hyperthermophilic Archaeon Pyrococcus horikoshii. Journal of Biological Chemistry, 2001, 276, 43580-43588.	3.4	67
46	Contribution of Citrate Metabolism to the Growth of <i>Lactococcus lactis</i> CRL264 at Low pH. Applied and Environmental Microbiology, 2008, 74, 1136-1144.	3.1	67
47	The 9-anthroate chromophore as a fluorescent probe for water. The Journal of Physical Chemistry, 1989, 93, 336-343.	2.9	65
48	Identification of novel esterase-active enzymes from hot environments by use of the host bacterium Thermus thermophilus. Frontiers in Microbiology, 2015, 6, 275.	3.5	65
49	Application of ¹³ C Nuclear Magnetic Resonance To Elucidate the Unexpected Biosynthesis of Erythritol by <i>Leuconostoc oenos</i> . Applied and Environmental Microbiology, 1992, 58, 2271-2279.	3.1	65
50	Automated smoother for the numerical decoupling of dynamics models. BMC Bioinformatics, 2007, 8, 305.	2.6	64
51	Response of a strict anaerobe to oxygen: survival strategies in Desulfovibrio gigas. Microbiology (United Kingdom), 2003, 149, 1513-1522.	1.8	63
52	Biosynthesis of Mannosylglycerate in the Thermophilic Bacterium Rhodothermus marinus. Journal of Biological Chemistry, 1999, 274, 35407-35414.	3.4	62
53	Solution structure of plantaricin C, a novel lantibiotic. FEBS Journal, 1999, 264, 833-839.	0.2	61
54	[26] Organic solutes from thermophiles and hyperthermophiles. Methods in Enzymology, 2001, 334, 302-315.	1.0	61

#	Article	IF	Citations
55	Protein Stabilization by Osmolytes from Hyperthermophiles. Journal of Biological Chemistry, 2004, 279, 48680-48691.	3.4	61
56	High Yields of 2,3-Butanediol and Mannitol in Lactococcus lactis through Engineering of NAD+Cofactor Recycling. Applied and Environmental Microbiology, 2011, 77, 6826-6835.	3.1	59
57	Uniport of anionic citrate and proton consumption in citrate metabolism generates a proton motive force in Leuconostoc oenos. Journal of Bacteriology, 1994, 176, 4899-4905.	2.2	58
58	Solution structure of Desulfovibrio vulgaris (Hildenborough) ferrocytochrome c 3: structural basis for functional cooperativity 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1998, 281, 719-739.	4.2	58
59	Towards Enhanced Galactose Utilization by <i>Lactococcus lactis</i> . Applied and Environmental Microbiology, 2010, 76, 7048-7060.	3.1	57
60	Leuconostoc ficulneum sp. nov., a novel lactic acid bacterium isolated from a ripe fig, and reclassification of Lactobacillus fructosus as Leuconostoc fructosum comb. nov International Journal of Systematic and Evolutionary Microbiology, 2002, 52, 647-655.	1.7	57
61	NMR Redox Studies of Desrulfovibrio vulgaris Cytochrome c3. Electron Transfer Mechanisms. FEBS Journal, 1982, 127, 151-155.	0.2	56
62	Enhancement of trehalose production in dairy propionibacteria through manipulation of environmental conditions. International Journal of Food Microbiology, 2004, 91, 195-204.	4.7	53
63	Regulation of glycolysis in Lactococcus lactis: an unfinished systems biological case study. IET Systems Biology, 2006, 153, 286.	2.0	53
64	Thermodynamics of all-or-none water channel closure in red cells. Journal of Membrane Biology, 1984, 81, 105-111.	2.1	52
65	Trehalose, a temperature―and salt―nduced solute with implications in pathobiology of <i>Acinetobacter baumannii</i> . Environmental Microbiology, 2017, 19, 5088-5099.	3.8	52
66	Different Physiological Roles of ATP- and PP i -Dependent Phosphofructokinase Isoenzymes in the Methylotrophic Actinomycete Amycolatopsis methanolica. Journal of Bacteriology, 2001, 183, 7231-7240.	2.2	51
67	Compatible Solutes of the Hyperthermophile Palaeococcus ferrophilus: Osmoadaptation and Thermoadaptation in the Order Thermococcales. Applied and Environmental Microbiology, 2005, 71, 8091-8098.	3.1	50
68	Engineering Trehalose Synthesis in Lactococcus lactis for Improved Stress Tolerance. Applied and Environmental Microbiology, 2011, 77, 4189-4199.	3.1	50
69	Metabolic Pathway for Propionate Utilization by Phosphorus-Accumulating Organisms in Activated Sludge: 13C Labeling and In Vivo Nuclear Magnetic Resonance. Applied and Environmental Microbiology, 2003, 69, 241-251.	3.1	49
70	Specialized Roles of the Two Pathways for the Synthesis of Mannosylglycerate in Osmoadaptation and Thermoadaptation of Rhodothermus marinus*. Journal of Biological Chemistry, 2004, 279, 9892-9898.	3.4	49
71	Diversity of bacteria and archaea from two shallow marine hydrothermal vents from Vulcano Island. Extremophiles, 2017, 21, 733-742.	2.3	48
72	Acetate Utilization in <i>Lactococcus lactis</i> Deficient in Lactate Dehydrogenase: a Rescue Pathway for Maintaining Redox Balance. Journal of Bacteriology, 1999, 181, 5521-5526.	2.2	48

#	Article	IF	CITATIONS
73	The use of the n-(9-anthroyloxy) stearic acid to probe the water content of sodium dodecyl sulfate, dodecyltimethylammonium chloride, and triton X-100 micelles. Journal of Colloid and Interface Science, 1991, 141, 439-453.	9.4	47
74	Design of new enzyme stabilizers inspired by glycosides of hyperthermophilic microorganisms. Carbohydrate Research, 2008, 343, 3025-3033.	2.3	47
75	Effect of pH on Axial Ligand Coordination of Cytochromec†Â†fromMethylophilus methylotrophusand Horse Heart Cytochromecâ€. Biochemistry, 2000, 39, 8234-8242.	2.5	46
76	Different glycolytic pathways for glucose and fructose in the halophilic archaeon Halococcus saccharolyticus. Archives of Microbiology, 2001, 175, 52-61.	2,2	46
77	Cultures of rat astrocytes challenged with a steady supply of glutamate: New model to study flux distribution in the glutamate-glutamine cycle. Glia, 2005, 51, 286-296.	4.9	46
78	Annual changes in the concentration of minerals and organic compounds of Quercus suber leaves. Physiologia Plantarum, 2006, 127, 100-110.	5.2	46
79	13C and proton NMR studies of horse cytochrome c. Systematic assignment of methyl and methine resonances in both oxidation states. FEBS Journal, 1992, 206, 721-728.	0.2	45
80	Pathways for utilization of carbon reserves in Desulfovibrio gigas under fermentative and respiratory conditions. Journal of Bacteriology, 1997, 179, 3972-3980.	2.2	45
81	Glucose Metabolism and Kinetics of Phosphorus Removal by the Fermentative Bacterium <i>Microlunatus phosphovorus</i> . Applied and Environmental Microbiology, 1999, 65, 3920-3928.	3.1	45
82	Protein stabilization by compatible solutes. FEBS Journal, 2003, 270, 4606-4614.	0.2	44
83	Lysine-2,3-Aminomutase and \hat{l}^2 -Lysine Acetyltransferase Genes of Methanogenic Archaea Are Salt Induced and Are Essential for the Biosynthesis of <i>N</i> ^{$\hat{l}\mu$} -Acetyl- \hat{l}^2 -Lysine and Growth at High Salinity. Applied and Environmental Microbiology, 2003, 69, 6047-6055.	3.1	43
84	Inhibition of formation of α-synuclein inclusions by mannosylglycerate in a yeast model of Parkinson's disease. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4065-4072.	2.4	43
85	Structural basis for phosphatidylinositol-phosphate biosynthesis. Nature Communications, 2015, 6, 8505.	12.8	43
86	Carbon Flux Analysis by ¹³ C Nuclear Magnetic Resonance To Determine the Effect of CO ₂ on Anaerobic Succinate Production by Corynebacterium glutamicum. Applied and Environmental Microbiology, 2014, 80, 3015-3024.	3.1	42
87	Comparison of glucose fermentation by suspended and gel-entrapped yeast cells: An in vivo nuclear magnetic resonance study. Biotechnology and Bioengineering, 1993, 41, 647-653.	3.3	41
88	Bifunctional CTP:Inositol-1-Phosphate Cytidylyltransferase/CDP-Inositol:Inositol-1-Phosphate Transferase, the Key Enzyme for Di- myo -Inositol-Phosphate Synthesis in Several (Hyper)thermophiles. Journal of Bacteriology, 2007, 189, 5405-5412.	2.2	41
89	Involvement of a labile axial histidine in coupling electron and proton transfer in Methylophilus methylotrophus cytochrome c". FEBS Journal, 1992, 208, 427-433.	0.2	40
90	Effect of pyruvate kinase overproduction on glucose metabolism of Lactococcus lactis. Microbiology (United Kingdom), 2004, 150, 1103-1111.	1.8	40

#	Article	IF	CITATIONS
91	The Bacterium Thermus thermophilus, Like Hyperthermophilic Archaea, Uses a Two-Step Pathway for the Synthesis of Mannosylglycerate. Applied and Environmental Microbiology, 2003, 69, 3272-3279.	3.1	39
92	Characterization of the Biosynthetic Pathway of Glucosylglycerate in the Archaeon Methanococcoides burtonii. Journal of Bacteriology, 2006, 188, 1022-1030.	2.2	39
93	The lactate dehydrogenases encoded by the <i>ldh</i> and <i>ldhB</i> genes in <i>Lactococcus lactis</i> exhibit distinct regulation and catalytic propertiesâ€fâ°â€fcomparative modeling to probe the molecular basis. FEBS Journal, 2007, 274, 5924-5936.	4.7	39
94	X-ray structure of a CDP-alcohol phosphatidyltransferase membrane enzyme and insights into its catalytic mechanism. Nature Communications, 2014, 5, 4169.	12.8	39
95	Isolation of P590 from Methanosarcina barkeri: Evidence for the presence of sulfite reductase activity. Biochemical and Biophysical Research Communications, 1982, 108, 1002-1009.	2.1	38
96	Ferredoxin from Methanosarcina barkeri: Evidence for the Presence of a Three-Iron Center. FEBS Journal, 1982, 126, 95-98.	0.2	38
97	13 C and proton NMR studies of horse cytochrome c. FEBS Letters, 1986, 194, 73-77.	2.8	38
98	Glucose fermentation to acetate and alanine in resting cell suspensions of Pyrococcus furiosus: Proposal of a novel glycolytic pathway based on 13C labelling data and enzyme activities. FEMS Microbiology Letters, 1994, 121, 107-114.	1.8	38
99	Distribution of Genes for Synthesis of Trehalose and Mannosylglycerate in Thermus spp. and Direct Correlation of These Genes with Halotolerance. Applied and Environmental Microbiology, 2005, 71, 2460-2466.	3.1	38
100	Organic solutes in Rubrobacter xylanophilus: the first example of di-myo-inositol-phosphate in a thermophile. Extremophiles, 2007, 11, 667-673.	2.3	38
101	Engineering Corynebacterium glutamicum for the production of 2,3-butanediol. Microbial Cell Factories, 2015, 14, 171.	4.0	38
102	Catabolism of mannitol in Lactococcus lactis MG1363 and a mutant defective in lactate dehydrogenase. Microbiology (United Kingdom), 2002, 148, 3467-3476.	1.8	37
103	Nitrate and Ammonium Assimilation by Roots of Maize (Zea maysL.) Seedlings as Investigated byln Vivo15N-NMR. Journal of Experimental Botany, 1992, 43, 633-639.	4.8	36
104	A Gene from the Mesophilic Bacterium Dehalococcoides ethenogenes Encodes a Novel Mannosylglycerate Synthase. Journal of Bacteriology, 2004, 186, 4075-4084.	2.2	36
105	Intramolecular Fluorescence Quenching of Tyrosine by the Peptide α-Carbonyl Group Revisited. Journal of Physical Chemistry A, 2004, 108, 2155-2166.	2.5	36
106	The High-Affinity Maltose/Trehalose ABC Transporter in the Extremely Thermophilic Bacterium Thermus thermophilus HB27 Also Recognizes Sucrose and Palatinose. Journal of Bacteriology, 2005, 187, 1210-1218.	2.2	36
107	<i>Thermococcus kodakar ensis</i> Mutants Deficient in Di- <i>myo</i> -Inositol Phosphate Use Aspartate To Cope with Heat Stress. Journal of Bacteriology, 2010, 192, 191-197.	2.2	36
108	The metabolic pH response in Lactococcus lactis: An integrative experimental and modelling approach. Computational Biology and Chemistry, 2009, 33, 71-83.	2.3	35

#	Article	IF	CITATIONS
109	Effects of ethanol on Saccharomyces cerevisiae as monitored by in vivo 31P and 13C nuclear magnetic resonance. Archives of Microbiology, 1990, 153, 384-391.	2.2	34
110	Proteins containing the factor F430 from methanosarcina barkeri and methanobacterium thermoautotrophicum. BBA - Proteins and Proteomics, 1983, 742, 84-90.	2.1	33
111	The Fate of Acetic Acid during Glucose Co-Metabolism by the Spoilage Yeast Zygosaccharomyces bailii. PLoS ONE, 2012, 7, e52402.	2.5	33
112	A variant of the hyperthermophile <i>Archaeoglobus fulgidus</i> adapted to grow at high salinity. FEMS Microbiology Letters, 2003, 218, 239-244.	1.8	32
113	Metabolic and Transcriptional Analysis of Acid Stress in Lactococcus lactis, with a Focus on the Kinetics of Lactic Acid Pools. PLoS ONE, 2013, 8, e68470.	2.5	32
114	Proteolytic activity in infected and noninfected insect cells: Degradation of HIV-1 Pr55gag particles. Biotechnology and Bioengineering, 1999, 65, 133-143.	3.3	31
115	NMR studies on energy metabolism of immobilized primary neurons and astrocytes during hypoxia, ischemia and hypoglycemia. NMR in Biomedicine, 2000, 13, 438-448.	2.8	31
116	Characterization and NMR studies of a novel cytochrome c isolated from Methylophilus methylotrophus which shows a redox-linked change of spin state. BBA - Proteins and Proteomics, 1988, 954, 277-286.	2.1	30
117	Excited state proton transfer in synthetic flavylium salts: 4-methyl-7-hydroxyflavylium and 4′,7-dihydroxyflavylium Example of a four-level molecular device to invert the population of the excited state. New Journal of Chemistry, 1998, 22, 1093-1098.	2.8	30
118	Natural sweetening of food products by engineering Lactococcus lactis for glucose production. Metabolic Engineering, 2006, 8, 456-464.	7.0	30
119	Protein Stabilisation by Compatible Solutes: Effect of Mannosylglycerate on Unfolding Thermodynamics and Activity of Ribonuclease A. ChemBioChem, 2003, 4, 734-741.	2.6	29
120	The Physiological Role, Biosynthesis, and Mode of Action of Compatible Solutes from (Hyper)Thermophiles., 0,, 86-103.		29
121	Proton NMR studies of horse ferricytochrome c Completion of the assignment of the well resolved hyperfine shifted resonances. FEBS Letters, 1987, 226, 179-185.	2.8	28
122	Demonstration of a Novel Glycolytic Pathway in the Hyperthermophilic Archaeon Thermococcus zilligii by13C-Labeling Experiments and Nuclear Magnetic Resonance Analysis. Journal of Bacteriology, 2000, 182, 4632-4636.	2.2	28
123	Identification of glucoselysine-6-phosphate deglycase, an enzyme involved in the metabolism of the fructation product glucoselysine. Biochemical Journal, 2005, 392, 263-269.	3.7	28
124	Salt adaptation in Acinetobacter baylyi: identification and characterization of a secondary glycine betaine transporter. Archives of Microbiology, 2011, 193, 723-730.	2.2	28
125	Evolution of the biosynthesis of diâ€ <i>myo</i> â€inositol phosphate, a marker of adaptation to hot marine environments. Environmental Microbiology, 2012, 14, 691-701.	3.8	28
126	Mannitol, a compatible solute synthesized by <i><scp>A</scp>cinetobacter baylyi</i> in a twoâ€step pathway including a saltâ€induced and saltâ€dependent mannitolâ€1â€phosphate dehydrogenase. Environmental Microbiology, 2013, 15, 2187-2197.	3.8	28

#	Article	IF	CITATIONS
127	Involvement of free and conjugated polyamines and free amino acids in the adventitious rooting of micropropagated cork oak and grapevine shoots. Plant Physiology and Biochemistry, 2002, 40, 1071-1080.	5.8	27
128	Overview on sugar metabolism and its control in <i>Lactococcus lactis</i> â€" The input from in vivo NMR. FEMS Microbiology Reviews, 2005, 29, 531-554.	8.6	27
129	Tracking Local Conformational Changes of Ribonuclease A Using Picosecond Time-Resolved Fluorescence of the Six Tyrosine Residues. Biophysical Journal, 2007, 92, 4401-4414.	0.5	27
130	Elucidation of metabolic pathways in glycogenâ€accumulating organisms with ⟨i⟩in vivo⟨li⟩⟨sup⟩C nuclear magnetic resonance. Environmental Microbiology, 2007, 9, 2694-2706.	3.8	27
131	Fluorescence Lifetimes of Tyrosine Residues in Cytochrome c′′ as Local Probes to Study Protein Unfolding. Journal of Physical Chemistry B, 2009, 113, 4466-4474.	2.6	27
132	Occurrence of 1-Glyceryl-1-myo-Inosityl Phosphate in Hyperthermophiles. Applied and Environmental Microbiology, 2006, 72, 6169-6173.	3.1	26
133	Pitfalls in assigning heme axial coordination by EPR. FEBS Letters, 1993, 317, 233-236.	2.8	25
134	Biochemical basis for glucose-induced inhibition of malolactic fermentation in Leuconostoc oenos. Journal of Bacteriology, 1997, 179, 5347-5354.	2.2	25
135	Mannosylglycerate and Di- <i>myo</i> -Inositol Phosphate Have Interchangeable Roles during Adaptation of Pyrococcus furiosus to Heat Stress. Applied and Environmental Microbiology, 2014, 80, 4226-4233.	3.1	25
136	α-d-Mannopyranosyl-(1â†'2)-α-d-glucopyranosyl-(1â†'2)-glycerate in the thermophilic bacterium Petrotoga miothermaâ€fâ^'â€fstructure, cellular content and function. FEBS Journal, 2007, 274, 3120-3127.	4.7	24
137	Construction of a branched chain at C-3 of a hexopyranoside. Synthesis of miharamycin sugar moiety analogs. Carbohydrate Research, 2000, 325, 1-15.	2.3	22
138	Metabolism of lactic acid bacteria studied by nuclear magnetic resonance. Antonie Van Leeuwenhoek, 2002, 82, 249-261.	1.7	22
139	The $\hat{l}\pm$ -Phosphoglucomutase of Lactococcus lactis Is Unrelated to the $\hat{l}\pm$ -d-Phosphohexomutase Superfamily and Is Encoded by the Essential Gene pgmH. Journal of Biological Chemistry, 2006, 281, 36864-36873.	3.4	22
140	Relationship between Protein Stabilization and Protein Rigidification Induced by Mannosylglycerate. Journal of Molecular Biology, 2009, 394, 237-250.	4.2	22
141	Mannosylglycerate: structural analysis of biosynthesis and evolutionary history. Extremophiles, 2014, 18, 835-852.	2.3	22
142	DAS28, CDAI and SDAI cut-offs do not translate the same information: results from the Rheumatic Diseases Portuguese Register Reuma.pt. Rheumatology, 2015, 54, 286-291.	1.9	22
143	Potential applications of stress solutes from extremophiles in protein folding diseases and healthcare. Extremophiles, 2016, 20, 251-259.	2.3	22
144	A highly thermostable trehalase from the thermophilic bacterium Rhodothermus marinus. Extremophiles, 2007, 11, 115-122.	2.3	21

#	Article	IF	CITATIONS
145	Mannitolâ€1â€phosphate dehydrogenases/phosphatases: a family of novel bifunctional enzymes for bacterial adaptation to osmotic stress. Environmental Microbiology, 2015, 17, 711-719.	3.8	21
146	A New Pathway for Mannitol Metabolism in Yeasts Suggests a Link to the Evolution of Alcoholic Fermentation. Frontiers in Microbiology, 2019, 10, 2510.	3.5	21
147	Characterization of the haem environment in Methylophilus methylotrophus ferricytochrome c" by 1H-NMR. FEBS Journal, 1993, 215, 817-824.	0.2	20
148	[11 Two-dimensional nuclear magnetic resonance of paramagnetic metalloproteins. Methods in Enzymology, 1993, 227, 1-16.	1.0	20
149	Electron-Dense Granules in Desulfovibrio gigas do not Consist of Inorganic Triphosphate but of a Glucose Pentakis(Diphosphate). FEBS Journal, 1996, 242, 327-331.	0.2	20
150	pH Dependence of Structural and Functional Properties of Oxidized Cytochrome c" from Methylophilus methylotrophus. Journal of Biological Chemistry, 1997, 272, 24800-24804.	3.4	20
151	NMR structure of Desulfovibrio gigas rubredoxin: a model for studying protein stabilization by compatible solutes. Extremophiles, 2001, 5, 303-311.	2.3	20
152	Unfolding of Ubiquitin Studied by Picosecond Time-Resolved Fluorescence of the Tyrosine Residue. Biophysical Journal, 2004, 87, 2609-2620.	0.5	20
153	Characterization of the improved sensitivity obtained using a flow method for oxygenating and mixing cell suspensions in NMR. Journal of Magnetic Resonance, 1986, 68, 345-349.	0.5	19
154	Immobilization of Primary Astrocytes and Neurons for On-Line Monitoring of Biochemical Processes by NMR. Developmental Neuroscience, 1996, 18, 478-483.	2.0	19
155	Metabolism of 3- ¹³ C-Malate in Primary Cultures of Mouse Astrocytes. Developmental Neuroscience, 2000, 22, 456-462.	2.0	19
156	Biosynthetic Pathways of Inositol and Glycerol Phosphodiesters Used by the Hyperthermophile Archaeoglobus fulgidus in Stress Adaptation. Journal of Bacteriology, 2006, 188, 8128-8135.	2.2	19
157	Earliest events in \hat{l}_{\pm} -synuclein fibrillation probed with the fluorescence of intrinsic tyrosines. Journal of Photochemistry and Photobiology B: Biology, 2016, 154, 16-23.	3.8	19
158	8 Characterization and Quantification of Compatible Solutes in (Hyper)thermophilic Microorganisms. Methods in Microbiology, 2006, , 173-199.	0.8	18
159	A Unique \hat{l}^2 -1,2-Mannosyltransferase of <i>Thermotoga maritima</i> That Uses Di- <i>myo</i> -Inositol Phosphate as the Mannosyl Acceptor. Journal of Bacteriology, 2009, 191, 6105-6115.	2.2	18
160	A novel limb in the osmoregulatory network of <i>Methanosarcina mazei</i> Gö1: N ^ε â€acetylâ€Î²â€lysine can be substituted by glutamate and alanine. Environmental Microbiology, 2009, 11, 1056-1065.	3.8	18
161	Complex coordination of multi-scale cellular responses to environmental stress. Molecular BioSystems, 2011, 7, 731-741.	2.9	18
162	[39] In vivo nuclear magnetic resonance in study of physiology of sulfate-reducing bacteria. Methods in Enzymology, 1994, , 543-558.	1.0	17

#	Article	IF	Citations
163	Di-myo-inositol phosphate and novel UDP-sugars accumulate in the extreme hyperthermophile Pyrolobus fumarii. Extremophiles, 2008, 12, 383-389.	2.3	17
164	Two Alternative Pathways for the Synthesis of the Rare Compatible Solute Mannosylglucosylglycerate in <i>Petrotoga mobilis</i>	2.2	17
165	Effect of ethanol on the metabolism of primary astrocytes studied by 13C- and 31P-NMR spectroscopy. Journal of Neuroscience Research, 2001, 66, 803-811.	2.9	16
166	Crystal Structure of Archaeoglobus fulgidus CTP:Inositol-1-Phosphate Cytidylyltransferase, a Key Enzyme for Di-myo-Inositol-Phosphate Synthesis in (Hyper)Thermophiles. Journal of Bacteriology, 2011, 193, 2177-2185.	2.2	16
167	Pipelines for New Chemicals: a strategy to create new value chains and stimulate innovation-based economic revival in Southern European countries. Environmental Microbiology, 2014, 16, 9-18.	3.8	16
168	Structural and Functional Characterization of Phosphatidylinositol-Phosphate Biosynthesis in Mycobacteria. Journal of Molecular Biology, 2020, 432, 5137-5151.	4.2	16
169	Ligand orientation and haem electronic structure in ferricytochrome c′′ from Methylophilus methylotrophus studied by 13 C NMR. European Biophysics Journal, 1996, 25, 19-24.	2.2	15
170	High Yield of Methylophilus methylotrophus Cytochrome c″ by Coexpression with Cytochrome c Maturation Gene Cluster from Escherichia coli. Protein Expression and Purification, 2000, 20, 444-450.	1.3	15
171	Structural determinants of protein stabilization by solutes FEBS Journal, 2005, 272, 999-1011.	4.7	15
172	Use of In Vivo ¹³ C Nuclear Magnetic Resonance Spectroscopy To Elucidate <scp>I</scp> -Arabinose Metabolism in Yeasts. Applied and Environmental Microbiology, 2008, 74, 1845-1855.	3.1	15
173	Subcellular metabolic organization in the context of dynamic energy budget and biochemical systems theories. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3429-3442.	4.0	15
174	Organic solutes in the deepest phylogenetic branches of the Bacteria: identification of α(1–6)glucosyl-α(1–2)glucosylglycerate in Persephonella marina. Extremophiles, 2013, 17, 137-146.	2.3	15
175	A novel pathway for the synthesis of inositol phospholipids uses cytidine diphosphate (<scp>CDP</scp>)â€inositol as donor of the polar head group. Environmental Microbiology, 2015, 17, 2492-2504.	3.8	15
176	Frenchay dysarthria assessment (FDA-2) in Parkinson's disease: cross-cultural adaptation and psychometric properties of the European Portuguese version. Journal of Neurology, 2017, 264, 21-31.	3.6	15
177	Real-world Longterm Effectiveness of Tumor Necrosis Factor Inhibitors in Psoriatic Arthritis Patients from the Rheumatic Diseases Portuguese Register. Journal of Rheumatology, 2020, 47, 690-700.	2.0	15
178	Trehaloseâ€6â€phosphateâ€mediated phenotypic change in <i>Acinetobacter baumannii</i> i>. Environmental Microbiology, 2020, 22, 5156-5166.	3.8	15
179	In vivo 31P-and 13C-NMR studies of ATP synthesis and methane formation by Methanosarcina barkeri. FEBS Journal, 1989, 180, 421-427.	0.2	14
180	In vivo 31P-NMR studies of Desulfovibrio species. Detection of a novel phosphorus-containing compund. FEBS Journal, 1991, 201, 283-287.	0.2	14

#	Article	IF	Citations
181	High yield of mannosylglycerate production by upshock fermentation and bacterial milking of trehalose-deficient mutant Thermus thermophilus RQ-1. Applied Microbiology and Biotechnology, 2007, 75, 1039-1045.	3.6	14
182	Structural Analysis of Thermus thermophilus HB27 Mannosyl-3-phosphoglycerate Synthase Provides Evidence for a Second Catalytic Metal Ion and New Insight into the Retaining Mechanism of Glycosyltransferases. Journal of Biological Chemistry, 2010, 285, 17857-17868.	3.4	14
183	Synthesis of GDP-Mannose and Mannosylglycerate from Labeled Mannose by Genetically Engineered Escherichia coli without Loss of Specific Isotopic Enrichment. Applied and Environmental Microbiology, 2003, 69, 233-240.	3.1	13
184	Thermal Unfolding Kinetics of Ubiquitin in the Microsecond-to-Second Time Range Probed by Tyr-59 Fluorescence. Journal of Physical Chemistry B, 2010, 114, 9912-9919.	2.6	13
185	Organic Compatible Solutes of Prokaryotes that Thrive in Hot Environments: The Importance of Ionic Compounds for Thermostabilization., 2011,, 497-520.		13
186	Two-dimensional NMR studies of electron transfer in cytochrome c3. Journal of Magnetic Resonance, 1984, 59, 177-180.	0.5	12
187	Structural evidence for a proton transfer pathway coupled with haem reduction of cytochrome c″ from Methylophilus methylotrophus. Journal of Biological Inorganic Chemistry, 2006, 11, 189-196.	2.6	12
188	23Na multiple quantum filtered NMR characterisation of Na+ binding and dynamics in animal cells: a comparative study and effect of Na+/Li+ competition. European Biophysics Journal, 2013, 42, 503-519.	2.2	12
189	Combined transcriptomics–metabolomics profiling of the heat shock response in the hyperthermophilic archaeon Pyrococcus furiosus. Extremophiles, 2019, 23, 101-118.	2.3	12
190	A difference method for the reduction of "auto―peaks in autocorrelation spectra. Journal of Magnetic Resonance, 1983, 55, 463-467.	0.5	11
191	Solution structure of Methylophilus methylotrophus cytochrome c″: insights into the structural basis of haem-ligand detachment1 1Edited by P. E. Wright. Journal of Molecular Biology, 2001, 308, 353-365.	4.2	11
192	13 C-NMR studies of horse ferrocytochrome c. FEBS Letters, 1985, 184, 240-244.	2.8	10
193	Statistical Inference Methods for Sparse Biological Time Series Data. BMC Systems Biology, 2011, 5, 57.	3.0	10
194	Stereospecificity of Corynebacterium glutamicum 2,3-butanediol dehydrogenase and implications for the stereochemical purity of bioproduced 2,3-butanediol. Applied Microbiology and Biotechnology, 2016, 100, 10573-10583.	3.6	10
195	Application of 59Co NMR to the investigation of interactions between cobalt sepulchrate and various counterions. Canadian Journal of Chemistry, 1991, 69, 567-569.	1.1	9
196	Determination of the methionine haem ligand conformation in cytochromecH fromMethylophilus methylotrophus by two-dimensional1H NMR. Magnetic Resonance in Chemistry, 1993, 31, S90-S95.	1.9	9
197	Nmr Studies Of Wine Chemistry And Wine Bacteria. Annual Reports on NMR Spectroscopy, 1999, , 179-202.	1.5	9
198	Genetic analysis of the role of the ABC transporter Ota and Otb in glycine betaine transport in Methanosarcina mazei $G\tilde{A}\P1$. Archives of Microbiology, 2009, 191, 291-301.	2.2	9

#	Article	IF	CITATIONS
199	Three-Dimensional Structure of Mannosyl-3-phosphoglycerate Phosphatase from <i>Thermus thermophilus </i> HB27: A New Member of the Haloalcanoic Acid Dehalogenase Superfamily. Biochemistry, 2011, 50, 9551-9567.	2.5	9
200	Effects of the source of inorganic nitrogen on C and N interaction in maize callus tissue: phosphoenolpyruvate carboxylase activity, cytosolic pH and 15N amino acids. Physiologia Plantarum, 1993, 89, 618-625.	5.2	8
201	Integrated Process for Bioenergy Production and Water Recycling in the Dairy Industry: Selection of Kluyveromyces Strains for Direct Conversion of Concentrated Lactose-Rich Streams into Bioethanol. Microorganisms, 2019, 7, 545.	3.6	8
202	Metabolism of lactic acid bacteria studied by nuclear magnetic resonance. Antonie Van Leeuwenhoek, 2002, 82, 249-61.	1.7	8
203	Cytochrome c″ from the obligate methylotroph Methylophilus methylotrophus, an unexpected homolog of sphaeroides heme protein from the phototroph Rhodobacter sphaeroides. Biochimica Et Biophysica Acta - Bioenergetics, 1999, 1412, 47-55.	1.0	7
204	Glycerol Phosphate Cytidylyltransferase Stereospecificity Is Key to Understanding the Distinct Stereochemical Compositions of Glycerophosphoinositol in Bacteria and Archaea. Applied and Environmental Microbiology, 2017, 83, .	3.1	7
205	Production of mannosylglycerate in Saccharomyces cerevisiae by metabolic engineering and bioprocess optimization. Microbial Cell Factories, 2018, 17, 178.	4.0	7
206	In vivo nuclear magnetic resonance studies of the metabolism of methanol and pyruvate by Methanosarcina barkeri. FEMS Microbiology Letters, 1990, 87, 361-366.	1.8	6
207	Application of 31P NMR to Monitor Phosphorus Compounds and their Changes During Germination of Legume Seeds. Journal of Experimental Botany, 1990, 41, 79-87.	4.8	6
208	Mannosylglycerate stabilizes staphylococcal nuclease with restriction of slow $\hat{l}^2 \hat{a} \in \mathbb{S}$ heet motions. Protein Science, 2012, 21, 1126-1137.	7.6	6
209	Four quartets. Application to two-dimensional NMR. Journal of Magnetic Resonance, 1984, 58, 344-347.	0.5	5
210	An unusual conformation of the methionine haem ligand in cytochrome cL established by two-dimensional 1H-NMR. FEBS Journal, 1994, 223, 783-789.	0.2	5
211	Crystallization and preliminary X-ray analysis of mannosyl-3-phosphoglycerate synthase from <i>Thermus thermophilus</i> HB27. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 1014-1017.	0.7	5
212	Assessment of the Efficacy of Solutes from Extremophiles on Protein Aggregation in Cell Models of Huntington's and Parkinson's Diseases. Neurochemical Research, 2011, 36, 1005-1011.	3.3	5
213	Psychosocial impact of Parkinson's diseaseâ€associated dysarthria: Crossâ€cultural adaptation and validation of the Dysarthria Impact Profile into European Portuguese. Geriatrics and Gerontology International, 2018, 18, 767-774.	1.5	5
214	Solvent effects on the conformation of nucleotides. Part 1. The conformation of $5\hat{a}\in^2$ -adenosine monophosphate in water $\hat{a}\in^4$ dimethyl sulphoxide using nuclear Overhauser effects and lanthanide relaxation probes. Journal of the Chemical Society Perkin Transactions II, 1983, , 1693-1697.	0.9	4
215	Bacterial abl-like genes: production of the archaeal osmolyte \$\$ {N^{varepsilon }}{ext{ - acetyl - }}eta {ext{ - lysine}} \$\$ by homologous overexpression of the yodP–kamA genes in Bacillus subtilis. Applied Microbiology and Biotechnology, 2011, 91, 689-697.	3.6	4
216	High-resolution structure of an atypical α-phosphoglucomutase related to eukaryotic phosphomannomutases. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 2008-2016.	2.5	4

#	Article	IF	Citations
217	Malate Metabolism by Desulfovibrio gigas and its Link to Sulfate and Fumarate Reduction: Purification of the Malic Enzyme and Detection of NAD(P)+ Transhydrogenase Activity. Anaerobe, 1995, 1, 227-235.	2.1	3
218	Cloning and sequence analysis of the gene encoding Methylophilus methylotrophus cytochrome $callet \in \mathbb{R}^3$, a unique protein with a perpendicular orientation of the histidinyl ligands. Biochimica Et Biophysica Acta - Bioenergetics, 1999, 1413, 55-61.	1.0	3
219	Production and crystallization of α-phosphoglucomutase fromLactococcus lactis. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1113-1115.	0.7	3
220	Crystallization and preliminary X-ray characterization of cytochromec′′ from the obligate methylotrophMethylophilus methylotrophus. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 580-583.	2.5	2
221	Enhancing the fluorescence of tyr-59 in ubiquitin by blocking proton transfer. Physical Chemistry Chemical Physics, 2009, 11, 3580.	2.8	2
222	Backbone and side chain 1H, 15N and 13C assignments for a thiol-disulphide oxidoreductase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Biomolecular NMR Assignments, 2010, 4, 151-154.	0.8	2
223	Production, crystallization and preliminary X-ray analysis of CTP:inositol-1-phosphate cytidylyltransferase fromArchaeoglobus fulgidus. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1463-1465.	0.7	2
224	Glutamine synthetase 2 is not essential for biosynthesis of compatible solutes in Halobacillus halophilus. Frontiers in Microbiology, 2014, 5, 168.	3.5	2
225	Exploring the Potential of Corynebacterium glutamicum to Produce the Compatible Solute Mannosylglycerate. Frontiers in Bioengineering and Biotechnology, 2021, 9, 748155.	4.1	2
226	NMR and Immobilized Cells. , 2001, , 123-138.		2
227	Compatible Solutes of (Hyper)thermophiles and Their Role in Protein Stabilization. , 2007, , 9-24.		2
228	Metabolism of lactic acid bacteria studied by nuclear magnetic resonance., 2002,, 249-261.		1
229	Role of Periplasmic Trehalase in Uptake of Trehalose by the Thermophilic Bacterium Rhodothermus marinus. Journal of Bacteriology, 2008, 190, 1871-1878.	2.2	1
230	Gluconeotrehalose is the principal organic solute in the psychrotolerant bacterium Carnobacterium strain 17-4. Extremophiles, 2011, 15, 463-472.	2.3	1
231	Crystallization and preliminary X-ray analysis of mannosyl-3-phosphoglycerate phosphatase		
	fróm <i>Thermus thermophilus</i> HB27. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 390-396.	0.7	1
232	from <i>Thermus thermophilus</i> HB27. Acta Crystallographica Section F: Structural Biology	2.8	1
232	from <i>Thermus thermophilus </i> Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 390-396. António Xavier and his contribution to the development of Bioinorganic Chemistry. FEBS Letters, 2012,		

#	Article	IF	CITATIONS
235	Structural analysis of Thermus thermophilus HB27 mannosyl-3-phosphoglycerate synthase. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s142-s142.	0.3	0
236	International conference on extremophiles 2014. Extremophiles, 2014, 18, 789-790.	2.3	0
237	Structural Basis for Phosphatidylinositol-Phosphate Biosynthesis. Biophysical Journal, 2016, 110, 61a.	0.5	O
238	Structure of a Phosphatidylinositol-Phosphate Synthase from Mycobacteria. Biophysical Journal, 2018, 114, 236a.	0.5	0
239	Membrane proteins involved in bacterial phospholipid biosynthesis as drug targets?. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C397-C397.	0.1	0
240	In vivo nuclear magnetic resonance studies of the metabolism of methanol and pyruvate by Methanosarcina barkeri. FEMS Microbiology Letters, 1990, 87, 361-366.	1.8	0
241	Nodulation in clover roots: Correlation with vacuolar pH. FEMS Microbiology Letters, 1992, 96, 119-123.	1.8	0