
Vladimir Kirkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6247376/publications.pdf Version: 2024-02-01

VIADIMID KIDKIN

#	Article	IF	CITATIONS
1	Targeting autophagy in disease: established and new strategies. Autophagy, 2022, 18, 473-495.	9.1	77
2	History of the Selective Autophagy Research: How Did It Begin and Where Does It Stand Today?. Journal of Molecular Biology, 2020, 432, 3-27.	4.2	97
3	An atypical LIR motif within UBA5 (ubiquitin like modifier activating enzyme 5) interacts with GABARAP proteins and mediates membrane localization of UBA5. Autophagy, 2020, 16, 256-270.	9.1	41
4	Selective Autophagy Receptors in Neuronal Health and Disease. Journal of Molecular Biology, 2020, 432, 2483-2509.	4.2	54
5	Identification of ovarian high-grade serous carcinoma cell lines that show estrogen-sensitive growth as xenografts in immunocompromised mice. Scientific Reports, 2020, 10, 10799.	3.3	11
6	Atg8-Family Proteins—Structural Features and Molecular Interactions in Autophagy and Beyond. Cells, 2020, 9, 2008.	4.1	57
7	Pharmacologic Inhibitor of DNA-PK, M3814, Potentiates Radiotherapy and Regresses Human Tumors in Mouse Models. Molecular Cancer Therapeutics, 2020, 19, 1091-1101.	4.1	94
8	Combined targeting of MEK and the glucocorticoid receptor for the treatment of RAS-mutant multiple myeloma. BMC Cancer, 2020, 20, 269.	2.6	10
9	A Diversity of Selective Autophagy Receptors Determines the Specificity of the Autophagy Pathway. Molecular Cell, 2019, 76, 268-285.	9.7	353
10	Driving next-generation autophagy researchers towards translation (DRIVE), an international PhD training program on autophagy. Autophagy, 2019, 15, 347-351.	9.1	4
11	Suppression of interferon gene expression overcomes resistance to MEK inhibition in KRAS-mutant colorectal cancer. Oncogene, 2019, 38, 1717-1733.	5.9	29
12	Love laughs at Locksmiths: Ubiquitylation of p62 unlocks its autophagy receptor potential. Cell Research, 2017, 27, 595-597.	12.0	5
13	FKBP8 recruits LC3A to mediate Parkinâ€independent mitophagy. EMBO Reports, 2017, 18, 947-961.	4.5	295
14	Structural and Functional Analysis of a Novel Interaction Motif within UFM1-activating Enzyme 5 (UBA5) Required for Binding to Ubiquitin-like Proteins and Ufmylation. Journal of Biological Chemistry, 2016, 291, 9025-9041.	3.4	69
15	The pharmacological audit trail (PhAT): Use of tumor models to address critical issues in the preclinical development of targeted anticancer drugs. Drug Discovery Today: Disease Models, 2016, 21, 23-32.	1.2	8
16	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
17	Caging the Elephant: Selective Autophagy Tackles Giant Intracellular Protein Crystals. Molecular Cell, 2015, 58, 5-7.	9.7	2

VLADIMIR KIRKIN

#	Article	IF	CITATIONS
19	Interactions between Autophagy Receptors and Ubiquitin-like Proteins Form the Molecular Basis for Selective Autophagy. Molecular Cell, 2014, 53, 167-178.	9.7	849
20	ATG8 Family Proteins Act as Scaffolds for Assembly of the ULK Complex. Journal of Biological Chemistry, 2012, 287, 39275-39290.	3.4	257
21	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
22	Ubiquitin networks in cancer. Current Opinion in Genetics and Development, 2011, 21, 21-28.	3.3	85
23	Immune modulation by Fas ligand reverse signaling: lymphocyte proliferation is attenuated by the intracellular Fas ligand domain. Blood, 2011, 117, 519-529.	1.4	26
24	CIN85 regulates dopamine receptor endocytosis and governs behaviour in mice. EMBO Journal, 2010, 29, 2421-2432.	7.8	34
25	Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Reports, 2010, 11, 45-51.	4.5	1,045
26	Selective Autophagy in Cancer Development and Therapy. Cancer Research, 2010, 70, 3431-3434.	0.9	196
27	NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle, 2009, 8, 1986-1990.	2.6	399
28	A Role for NBR1 in Autophagosomal Degradation of Ubiquitinated Substrates. Molecular Cell, 2009, 33, 505-516.	9.7	974
29	A Role for Ubiquitin in Selective Autophagy. Molecular Cell, 2009, 34, 259-269.	9.7	1,098
30	NBR1 co-operates with p62 in selective autophagy of ubiquitinated targets. Autophagy, 2009, 5, 732-733.	9.1	163
31	The Fas ligand intracellular domain is released by ADAM10 and SPPL2a cleavage in T-cells. Cell Death and Differentiation, 2007, 14, 1678-1687.	11.2	124
32	Role of ubiquitin- and Ubl-binding proteins in cell signaling. Current Opinion in Cell Biology, 2007, 19, 199-205.	5.4	172
33	Fas ligand is localized to membrane rafts, where it displays increased cell death–inducing activity. Blood, 2006, 107, 2384-2391.	1.4	69
34	Hyperforin acts as an Angiogenesis Inhibitorin vitroandin vivo. Planta Medica, 2005, 71, 999-1004.	1.3	49
35	Binding of the Intracellular Fas Ligand (FasL) Domain to the Adaptor Protein PSTPIP Results in a Cytoplasmic Localization of FasL. Journal of Biological Chemistry, 2005, 280, 40012-40024.	3.4	51
36	The role of Bcl-2 family members in tumorigenesis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1644, 229-249.	4.1	462

VLADIMIR KIRKIN

#	Article	IF	CITATIONS
37	MAZ51, an indolinone that inhibits endothelial cell and tumor cell growthin vitro, suppresses tumor growthin vivo. International Journal of Cancer, 2004, 112, 986-993.	5.1	59
38	Differential in vivo and in vitro expression of vascular endothelial growth factor (VEGF)-C and VEGF-D in tumors and its relationship to lymphatic metastasis in immunocompetent rats. Cancer Research, 2003, 63, 713-22.	0.9	143
39	Inhibition of tumour cell growth by hyperforin, a novel anticancer drug from St. John's wort that acts by induction of apoptosis. Oncogene, 2002, 21, 1242-1250.	5.9	236
40	Characterization of indolinones which preferentially inhibit VEGF-C- and VEGF-D-induced activation of VEGFR-3 rather than VEGFR-2. FEBS Journal, 2001, 268, 5530-5540.	0.2	89
41	Markers for the lymphatic endothelium: In search of the holy grail?. Microscopy Research and Technique, 2001, 55, 61-69.	2.2	170
42	Characterization of indolinones which preferentially inhibit VEGF-C- and VEGF-D-induced activation of VEGFR-3 rather than VEGFR-2. FEBS Journal, 2001, 268, 5530-5540.	0.2	4