Martin H Magnusson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6247299/publications.pdf Version: 2024-02-01

MADTIN H MACNUSSON

#	Article	IF	CITATIONS
1	Quantitative laser diagnostics on trimethylindium pyrolysis and photolysis for functional nanoparticle growth. Measurement Science and Technology, 2022, 33, 055201.	2.6	2
2	Stability of supported aerosol-generated nanoparticles in liquid media. Scientific Reports, 2021, 11, 9276.	3.3	0
3	Airborne Gold Nanoparticle Detection Using Photoluminescence Excited with a Continuous Wave Laser. Applied Spectroscopy, 2021, 75, 1402-1409.	2.2	4
4	Aerotaxy: gas-phase epitaxy of quasi 1D nanostructures. Nanotechnology, 2021, 32, 025605.	2.6	11
5	Dual topography of laminin corona on gallium arsenide nanowires. Biointerphases, 2020, 15, 051007.	1.6	0
6	Calculation of Hole Concentrations in Zn Doped GaAs Nanowires. Nanomaterials, 2020, 10, 2524.	4.1	2
7	The compositional homogeneity of the metal particle during vapor–liquid–solid growth of nanowires. Scientific Reports, 2020, 10, 11041.	3.3	0
8	Optical far-field extinction of a single GaAs nanowire towards in situ size control of aerotaxy nanowire growth. Nanotechnology, 2020, 31, 134001.	2.6	8
9	Predicting the deposition spot radius and the nanoparticle concentration distribution in an electrostatic precipitator. Aerosol Science and Technology, 2020, 54, 718-728.	3.1	14
10	From diffusion limited to incorporation limited growth of nanowires. Journal of Crystal Growth, 2019, 525, 125192.	1.5	15
11	In situ observation of synthesized nanoparticles in ultra-dilute aerosols via X-ray scattering. Nano Research, 2019, 12, 25-31.	10.4	9
12	Surface smoothing and native oxide suppression on Zn doped aerotaxy GaAs nanowires. Journal of Applied Physics, 2019, 125, 025303.	2.5	9
13	Towards Nanowire Tandem Junction Solar Cells on Silicon. IEEE Journal of Photovoltaics, 2018, 8, 733-740.	2.5	53
14	<i>n</i> -type doping and morphology of GaAs nanowires in Aerotaxy. Nanotechnology, 2018, 29, 285601.	2.6	15
15	Electron Tomography Reveals the Droplet Covered Surface Structure of Nanowires Grown by Aerotaxy. Small, 2018, 14, e1801285.	10.0	5
16	GaAsP Nanowires Grown by Aerotaxy. Nano Letters, 2016, 16, 5701-5707.	9.1	36
17	Recombination dynamics in aerotaxy-grown Zn-doped GaAs nanowires. Nanotechnology, 2016, 27, 455704.	2.6	16
18	Zn-doping of GaAs nanowires grown by Aerotaxy. Journal of Crystal Growth, 2015, 414, 181-186.	1.5	28

Martin H Magnusson

#	Article	IF	CITATIONS
19	Semiconductor nanostructures enabled by aerosol technology. Frontiers of Physics, 2014, 9, 398-418.	5.0	19
20	InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit. Science, 2013, 339, 1057-1060.	12.6	1,093
21	Continuous gas-phase synthesis of nanowires with tunable properties. Nature, 2012, 492, 90-94.	27.8	156
22	Axial InP Nanowire Tandem Junction Grown on a Silicon Substrate. Nano Letters, 2011, 11, 2028-2031.	9.1	114
23	Nanowires With Promise for Photovoltaics. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 1050-1061.	2.9	123
24	Degenerate p-doping of InP nanowires for large area tunnel diodes. Applied Physics Letters, 2011, 99, .	3.3	28
25	Compaction of agglomerates of aerosol nanoparticles: A compilation of experimental data. Journal of Nanoparticle Research, 2005, 7, 43-49.	1.9	42
26	Size- and Composition-Controlled Au–Ga Aerosol Nanoparticles. Aerosol Science and Technology, 2004, 38, 948-954.	3.1	14
27	Nanoscale tungsten aerosol particles embedded in GaAs. Applied Physics Letters, 2002, 80, 2976-2978.	3.3	4
28	One-dimensional heterostructures in semiconductor nanowhiskers. Applied Physics Letters, 2002, 80, 1058-1060.	3.3	581
29	One-dimensional Steeplechase for Electrons Realized. Nano Letters, 2002, 2, 87-89.	9.1	656
30	Approaches to increasing yield in evaporation/condensation nanoparticle generation. Journal of Aerosol Science, 2002, 33, 1309-1325.	3.8	37
31	Microscopic aspects of the deposition of nanoparticles from the gas phase. Journal of Aerosol Science, 2002, 33, 1341-1359.	3.8	85
32	Fabrication of Si-based nanoimprint stamps with sub-20 nm features. Microelectronic Engineering, 2002, 61-62, 449-454.	2.4	49
33	Nanostructured Deposition of Nanoparticles from the Gas Phase. Particle and Particle Systems Characterization, 2002, 19, 321-326.	2.3	41
34	Growth and characterization of GaAs and InAs nano-whiskers and InAs/GaAs heterostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 1126-1130.	2.7	123
35	Reduction of the Schottky barrier height on silicon carbide using Au nano-particles. Solid-State Electronics, 2002, 46, 1433-1440.	1.4	69
36	Title is missing!. Journal of Nanoparticle Research, 2002, 4, 351-356.	1.9	4

Martin H Magnusson

#	Article	IF	CITATIONS
37	Size-, shape-, and position-controlled GaAs nano-whiskers. Applied Physics Letters, 2001, 79, 3335-3337.	3.3	249
38	Gold nanoparticle single-electron transistor with carbon nanotube leads. Applied Physics Letters, 2001, 79, 2106-2108.	3.3	87
39	Positioning of nanometer-sized particles on flat surfaces by direct deposition from the gas phase. Applied Physics Letters, 2001, 78, 3708-3710.	3.3	85
40	Single-crystalline Tungsten Nanoparticles Produced by Thermal Decomposition of Tungsten Hexacarbonyl. Journal of Materials Research, 2000, 15, 1564-1569.	2.6	49
41	Aerosol Fabrication of Nanocrystals of InP. Japanese Journal of Applied Physics, 1999, 38, 1056-1059.	1.5	6
42	Single-electron devices via controlled assembly of designed nanoparticles. Microelectronic Engineering, 1999, 47, 179-183.	2.4	30
43	Characterization of III-V semiconductor nanoparticles using TEM techniques. European Physical Journal D, 1999, 9, 547-550.	1.3	0
44	Gold Nanoparticles: Production, Reshaping, and Thermal Charging. Journal of Nanoparticle Research, 1999, 1, 243-251.	1.9	284
45	Size-selected gold nanoparticles by aerosol technology. Scripta Materialia, 1999, 12, 45-48.	0.5	136
46	Assembly and analysis of quantum devices using SPM based methods. Microelectronics Reliability, 1998, 38, 943-950.	1.7	3
47	Feasibility study of nanoparticle synthesis from powders of compounds with incongruent sublimation behavior by the evaporation/ condensation method. Scripta Materialia, 1998, 10, 565-573.	0.5	7
48	Size-selected nanocrystals of III–V semiconductor materials by the aerotaxy method. Journal of Aerosol Science, 1998, 29, 737-748.	3.8	19
49	Agglomeration of nanoparticles on substrate surfaces due to particle interactions during deposition. Journal of Aerosol Science, 1998, 29, S1281-S1282.	3.8	1
50	Ãngström-level, real-time control of the formation of quantum devices. Semiconductor Science and Technology, 1998, 13, A119-A123.	2.0	4
51	InP nanocrystals via aerosol route. , 0, , .		0
52	Aerosol fabrication of nanocrystals of InP and related materials. , 0, , .		0
53	Enhanced Optical Biosensing by Aerotaxy Ga(As)P Nanowire Platforms Suitable for Scalable Production. ACS Applied Nano Materials, 0, , .	5.0	3