List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6247026/publications.pdf Version: 2024-02-01

Νιίσια ΜάσβÃ

#	Article	IF	CITATIONS
1	Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience, 2012, 5, 505-509.	12.9	1,406
2	The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 2013, 3, 961-968.	18.8	1,369
3	Estimating Global "Blue Carbon―Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLoS ONE, 2012, 7, e43542.	2.5	1,082
4	Seagrass sediments as a global carbon sink: Isotopic constraints. Global Biogeochemical Cycles, 2010, 24, .	4.9	495
5	Mediterranean warming triggers seagrass (<i>Posidonia oceanica</i>) shoot mortality. Global Change Biology, 2010, 16, 2366-2375.	9.5	424
6	Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. Global Biogeochemical Cycles, 2010, 24, .	4.9	412
7	The future of Blue Carbon science. Nature Communications, 2019, 10, 3998.	12.8	406
8	Global analysis of seagrass restoration: the importance of largeâ€scale planting. Journal of Applied Ecology, 2016, 53, 567-578.	4.0	348
9	Rhizome elongation and seagrass clonal growth. Marine Ecology - Progress Series, 1998, 174, 269-280.	1.9	324
10	A marine heatwave drives massive losses from the world's largest seagrass carbon stocks. Nature Climate Change, 2018, 8, 338-344.	18.8	318
11	Will the Oceans Help Feed Humanity?. BioScience, 2009, 59, 967-976.	4.9	305
12	Mediterranean seagrass vulnerable to regional climate warming. Nature Climate Change, 2012, 2, 821-824.	18.8	282
13	Assessing the capacity of seagrass meadows for carbon burial: Current limitations and future strategies. Ocean and Coastal Management, 2013, 83, 32-38.	4.4	264
14	ECOLOGY: Rapid Domestication of Marine Species. Science, 2007, 316, 382-383.	12.6	242
15	Recent trend reversal for declining European seagrass meadows. Nature Communications, 2019, 10, 3356.	12.8	227
16	Growth and population dynamics of Posidonia oceanica on the Spanish Mediterranean coast:elucidating seagrass decline. Marine Ecology - Progress Series, 1996, 137, 203-213.	1.9	222
17	Sequestration of macroalgal carbon: the elephant in the Blue Carbon room. Biology Letters, 2018, 14, 20180236.	2.3	222
18	Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks. Journal of Ecology, 2015, 103, 296-302.	4.0	199

#	Article	IF	CITATIONS
19	Implications of Extreme Life Span in Clonal Organisms: Millenary Clones in Meadows of the Threatened Seagrass Posidonia oceanica. PLoS ONE, 2012, 7, e30454.	2.5	195
20	Reconstruction of seagrass dynamics: age determinations and associated tools for the seagrass ecologist. Marine Ecology - Progress Series, 1994, 107, 195-209.	1.9	173
21	Mediterranean seagrass (Posidonia oceanica) loss between 1842 and 2009. Biological Conservation, 2014, 176, 183-190.	4.1	166
22	Carbon and nitrogen translocation between seagrass ramets. Marine Ecology - Progress Series, 2002, 226, 287-300.	1.9	159
23	Consequences of Mediterranean warming events in seagrass (Posidonia oceanica) flowering records. Global Change Biology, 2007, 13, 224-235.	9.5	157
24	Paradigms in the Recovery of Estuarine and Coastal Ecosystems. Estuaries and Coasts, 2015, 38, 1202-1212.	2.2	154
25	Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nature Communications, 2019, 10, 4313.	12.8	150
26	Growth patterns of Western Mediterranean seagrasses:species-specific responses to seasonal forcing. Marine Ecology - Progress Series, 1996, 133, 203-215.	1.9	147
27	Footprints of climate change on Mediterranean Sea biota. Frontiers in Marine Science, 2015, 2, .	2.5	145
28	Habitat characteristics provide insights of carbon storage in seagrass meadows. Marine Pollution Bulletin, 2018, 134, 106-117.	5.0	145
29	Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea. Global Change Biology, 2022, 28, 5708-5725.	9.5	144
30	Effects of fish farm waste on Posidonia oceanica meadows: Synthesis and provision of monitoring and management tools. Marine Pollution Bulletin, 2008, 56, 1618-1629.	5.0	142
31	Coupling of Seagrass (Cymodocea Nodosa) Patch Dynamics to Subaqueous dune Migration. Journal of Ecology, 1995, 83, 381.	4.0	140
32	Meadow maintenance, growth and productivity of a mixed Philippine seagrass bed. Marine Ecology - Progress Series, 1995, 124, 215-225.	1.9	139
33	Allometric scaling of plant life history. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15777-15780.	7.1	136
34	Root production and belowground seagrass biomass. Marine Ecology - Progress Series, 1998, 171, 97-108.	1.9	129
35	Sulfur cycling and seagrass (Posidonia oceanica) status in carbonate sediments. Biogeochemistry, 2003, 66, 223-239.	3.5	128
36	Global ecological impacts of marine exotic species. Nature Ecology and Evolution, 2019, 3, 787-800.	7.8	128

#	Article	IF	CITATIONS
37	Leaf nutrient resorption, leaf lifespan and the retention of nutrients in seagrass systems. Aquatic Botany, 1999, 65, 141-158.	1.6	127
38	Sedimentation of organic matter from fish farms in oligotrophic Mediterranean assessed through bulk and stable isotope (δ13C and δ15N) analyses. Aquaculture, 2007, 262, 268-280.	3.5	123
39	Sediment deposition and production in SE-Asia seagrass meadows. Estuarine, Coastal and Shelf Science, 2003, 56, 909-919.	2.1	121
40	Reviews and syntheses: ²¹⁰ Pb-derived sediment and carbon accumulation rates in vegetated coastal ecosystems – setting the record straight. Biogeosciences, 2018, 15, 6791-6818.	3.3	121
41	Response of seagrass indicators to shifts in environmental stressors: A global review and management synthesis. Ecological Indicators, 2016, 63, 310-323.	6.3	120
42	Integrating within-species variation in thermal physiology into climate change ecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180550.	4.0	118
43	Connecting the Dots: Responses of Coastal Ecosystems to Changing Nutrient Concentrations. Environmental Science & Technology, 2011, 45, 9122-9132.	10.0	113
44	Seasonal sea ice cover as principal driver of spatial and temporal variation in depth extension and annual production of kelp in Greenland. Global Change Biology, 2012, 18, 2981-2994.	9.5	113
45	Food supply confers calcifiers resistance to ocean acidification. Scientific Reports, 2016, 6, 19374.	3.3	112
46	Diversity of European seagrass indicators: patterns within and across regions. Hydrobiologia, 2013, 704, 265-278.	2.0	110
47	Pathways to bridge the biophysical realism gap in ecosystem services mapping approaches. Ecological Indicators, 2017, 74, 241-260.	6.3	110
48	Effectiveness of protection of seagrass (Posidonia oceanica) populations in Cabrera National Park (Spain). Environmental Conservation, 2002, 29, 509-518.	1.3	105
49	Role of carbonate burial in Blue Carbon budgets. Nature Communications, 2019, 10, 1106.	12.8	105
50	Seagrass meadows as a globally significant carbonate reservoir. Biogeosciences, 2015, 12, 4993-5003.	3.3	104
51	Impacts of milkfish (Chanos chanos) aquaculture on carbon and nutrient fluxes in the Bolinao area, Philippines. Marine Pollution Bulletin, 2002, 44, 685-696.	5.0	103
52	Implications of conserving an ecosystem modifier: Increasing green turtle (Chelonia mydas) densities substantially alters seagrass meadows. Biological Conservation, 2010, 143, 2730-2738.	4.1	99
53	Submerged macrophyte seed bank in a Mediterranean temporary marsh: abundance and relationship with established vegetation. Oecologia, 1993, 94, 1-6.	2.0	93
54	The relationship between seagrass (Posidonia oceanica) decline and sulfide porewater concentration in carbonate sediments. Estuarine, Coastal and Shelf Science, 2007, 73, 583-588.	2.1	93

#	Article	IF	CITATIONS
55	Magnitude and fate of the production of four co-occurring Western Mediterranean seagrass species. Marine Ecology - Progress Series, 1997, 155, 29-44.	1.9	92
56	Tipping Elements in the Arctic Marine Ecosystem. Ambio, 2012, 41, 44-55.	5.5	91
57	Changing Paradigms in Seagrass Restoration. Restoration Ecology, 2012, 20, 427-430.	2.9	89
58	Growth response of the seagrass Cymodocea nodosa to experimental burial and erosion. Marine Ecology - Progress Series, 1994, 107, 307-311.	1.9	88
59	Interannual changes in seagrass (<i>Posidonia oceanica</i>) growth and environmental change in the Spanish Mediterranean littoral zone. Limnology and Oceanography, 1997, 42, 800-810.	3.1	86
60	Direct evidence of imbalanced seagrass (Posidonia oceanica) shoot population dynamics in the Spanish Mediterranean. Estuaries and Coasts, 2005, 28, 53-62.	1.7	85
61	Recolonization dynamics in a mixed seagrass meadow: The role of clonal versus sexual processes. Estuaries and Coasts, 2004, 27, 770-780.	1.7	84
62	Nonlinear processes in seagrass colonisation explained by simple clonal growth rules. Oikos, 2005, 108, 165-175.	2.7	82
63	Biomass and dynamics of Thalassia testudinum in the Mexican Caribbean: elucidating rhizome growth. Marine Ecology - Progress Series, 1993, 95, 185-192.	1.9	81
64	Testing the predictive power of seagrass depth limit models. Estuaries and Coasts, 2007, 30, 652-656.	2.2	80
65	Patterns of seagrass (Posidonia oceanica) flowering in the Western Mediterranean. Marine Biology, 2006, 148, 723-742.	1.5	76
66	Growth patterns and demography of pioneer Caribbean seagrasses Halodule wrightii and Syringodium filiforme. Marine Ecology - Progress Series, 1994, 109, 99-104.	1.9	76
67	Seagrass (Posidonia oceanica) vertical growth as an early indicator of fish farm-derived stress. Estuarine, Coastal and Shelf Science, 2006, 67, 475-483.	2.1	74
68	Herbivory on Posidonia oceanica:magnitude and variability in the Spanish Mediterranean. Marine Ecology - Progress Series, 1996, 130, 147-155.	1.9	74
69	Deterioration of Sediment Quality in Seagrass Meadows (Posidonia oceanica) Invaded by Macroalgae (Caulerpa sp.). Estuaries and Coasts, 2009, 32, 456-466.	2.2	73
70	Current state of seagrass ecosystem services: Research and policy integration. Ocean and Coastal Management, 2017, 149, 107-115.	4.4	73
71	Growth, flowering, and population dynamics of temperate Western Australian seagrasses. Marine Ecology - Progress Series, 1999, 184, 105-118.	1.9	71
72	Assessing the <scp>CO</scp> ₂ capture potential of seagrass restoration projects. Journal of Applied Ecology, 2013, 50, 1341-1349.	4.0	68

#	Article	IF	CITATIONS
73	Clonality in seagrasses, emergent properties and seagrass landscapes. Marine Ecology - Progress Series, 2005, 290, 291-296.	1.9	68
74	Mediterranean Seagrass Growth and Demography Responses to Experimental Warming. Estuaries and Coasts, 2012, 35, 1205-1213.	2.2	67
75	Effect of environmental factors (wave exposure and depth) and anthropogenic pressure in the C sink capacity of <i>Posidonia oceanica</i> meadows. Limnology and Oceanography, 2017, 62, 1436-1450.	3.1	66
76	Migration of largeâ€scale subaqueous bedforms measured with seagrasses (<i>Cymodocea nodosa</i>) as tracers. Limnology and Oceanography, 1994, 39, 126-133.	3.1	65
77	Long photoperiods sustain high pH in Arctic kelp forests. Science Advances, 2016, 2, e1501938.	10.3	63
78	Uncertainty of detecting sea change. Nature, 1992, 356, 190-190.	27.8	61
79	Glacial vicariance drives phylogeographic diversification in the amphi-boreal kelp Saccharina latissima. Scientific Reports, 2018, 8, 1112.	3.3	61
80	Flowering of Thalassia testudinum banks ex König in the Mexican Caribbean: age-dependence and interannual variability. Aquatic Botany, 1992, 43, 249-255.	1.6	60
81	GENOMIC DNA ISOLATION FROM GREEN AND BROWN ALGAE (CAULERPALES AND FUCALES) FOR MICROSATELLITE LIBRARY CONSTRUCTION1. Journal of Phycology, 2006, 42, 741-745.	2.3	60
82	Benthic input rates predict seagrass (Posidonia oceanica) fish farm-induced decline. Marine Pollution Bulletin, 2008, 56, 1332-1342.	5.0	60
83	Opportunities for blue carbon strategies in China. Ocean and Coastal Management, 2020, 194, 105241.	4.4	60
84	Fairy circle landscapes under the sea. Science Advances, 2017, 3, e1603262.	10.3	60
85	Eelgrass Zostera marina in subarctic Greenland: dense meadows with slow biomass turnover in cold waters. Marine Ecology - Progress Series, 2015, 518, 107-121.	1.9	60
86	Seasonal dynamics of <i>Posidonia oceanica</i> in Magalluf Bay (Mallorca, Spain): Temperature effects on seagrass mortality. Limnology and Oceanography, 2009, 54, 2170-2182.	3.1	59
87	Macroalgae contribute to nested mosaics of pH variability in a subarctic fjord. Biogeosciences, 2015, 12, 4895-4911.	3.3	59
88	The Response of Experimental Rocky Shore Communities to Nutrient Additions. Ecosystems, 2003, 6, 577-594.	3.4	58
89	Spatial and temporal variation in the elemental and stable isotopic content of the seagrasses Posidonia oceanica and Cymodocea nodosa from the Illes Balears, Spain. Marine Biology, 2007, 151, 219-232.	1.5	58
90	Thermal tolerance of Mediterranean marine macrophytes: Vulnerability to global warming. Ecology and Evolution, 2018, 8, 12032-12043.	1.9	58

#	Article	IF	CITATIONS
91	Ocean warming compresses the three-dimensional habitat of marine life. Nature Ecology and Evolution, 2020, 4, 109-114.	7.8	58
92	Biomineralization changes with food supply confer juvenile scallops (<i>Argopecten purpuratus</i>) resistance to ocean acidification. Global Change Biology, 2016, 22, 2025-2037.	9.5	57
93	Seasonality of eelgrass biomass across gradients in temperature and latitude. Marine Ecology - Progress Series, 2014, 506, 71-85.	1.9	57
94	Trace metal accumulation in marine macrophytes: Hotspots of coastal contamination worldwide. Science of the Total Environment, 2017, 576, 520-527.	8.0	56
95	Modelling formation of complex topography by the seagrass Posidonia oceanica. Estuarine, Coastal and Shelf Science, 2005, 65, 717-725.	2.1	55
96	Transitional and coastal waters ecological status assessment: advances and challenges resulting from implementing the European Water Framework Directive. Hydrobiologia, 2013, 704, 213-229.	2.0	55
97	Effects of seagrass Thalassia testudinum on sediment redox. Marine Ecology - Progress Series, 2001, 219, 149-158.	1.9	55
98	Endophytic bacterial community of a Mediterranean marine angiosperm (Posidonia oceanica). Frontiers in Microbiology, 2012, 3, 342.	3.5	53
99	Nitrogen-fixing bacteria in Mediterranean seagrass (Posidonia oceanica) roots. Aquatic Botany, 2016, 131, 57-60.	1.6	53
100	Sources of organic matter in seagrass-colonized sediments: A stable isotope study of the silt and clay fraction from Posidonia oceanica meadows in the western Mediterranean. Organic Geochemistry, 2005, 36, 949-961.	1.8	51
101	Comparative Analysis of Stability—Genetic Diversity in Seagrass (Posidonia oceanica) Meadows Yields Unexpected Results. Estuaries and Coasts, 2010, 33, 878-889.	2.2	51
102	Sulfide invasion in the seagrass Posidonia oceanica at Mediterranean fish farms: assessment using stable sulfur isotopes. Marine Ecology - Progress Series, 2007, 345, 93-104.	1.9	50
103	Residence time and Posidonia oceanica in Cabrera Archipelago National Park, Spain. Continental Shelf Research, 2005, 25, 1339-1352.	1.8	49
104	Greener pastures? Highâ€density feeding aggregations of green turtles precipitate species shifts in seagrass meadows. Journal of Ecology, 2013, 101, 1158-1168.	4.0	49
105	Iron Additions Reduce Sulfate Reduction Rates and Improve Seagrass Growth on Organic-Enriched Carbonate Sediments. Ecosystems, 2005, 8, 721-730.	3.4	47
106	Feed-backs between genetic structure and perturbation-driven decline in seagrass (Posidonia) Tj ETQq0 0 0 rgBT	Overlock	101f 50 142
107	Functional changes due to invasive species: Food web shifts at shallow Posidonia oceanica seagrass beds colonized by the alien macroalga Caulerpa racemosa. Estuarine, Coastal and Shelf Science, 2011, 93, 106-116.	2.1	47
_			

108Global unbalance in seaweed production, research effort and biotechnology markets. Biotechnology
Advances, 2014, 32, 1028-1036.11.747

#	Article	IF	CITATIONS
109	Vertical growth of Thalassia testudinum: seasonal and interannual variability. Aquatic Botany, 1994, 47, 1-11.	1.6	46
110	Resource translocation within seagrass clones: allometric scaling to plant size and productivity. Oecologia, 2006, 150, 362-372.	2.0	45
111	Groundwater effects on diversity and abundance of lagoonal seagrasses in Kenya and on Zanzibar Island (East Africa). Marine Ecology - Progress Series, 2002, 231, 75-83.	1.9	45
112	Plant-microbe interactions in seagrass meadows. Coastal and Estuarine Studies, 2005, , 31-60.	0.4	43
113	Bacterial Community Dynamics in a Seagrass (Posidonia oceanica) Meadow Sediment. Estuaries and Coasts, 2009, 32, 276-286.	2.2	43
114	Marinomonas alcarazii sp. nov., M. rhizomae sp. nov., M. foliarum sp. nov., M. posidonica sp. nov. and M. aquiplantarum sp. nov., isolated from the microbiota of the seagrass Posidonia oceanica. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 2191-2196.	1.7	43
115	Response to experimental warming in northern eelgrass populations: comparison across a range of temperature adaptations. Marine Ecology - Progress Series, 2018, 589, 59-72.	1.9	43
116	Patch dynamics of the Mediterranean seagrass Posidonia oceanica: Implications for recolonisation process. Aquatic Botany, 2008, 89, 397-403.	1.6	42
117	Stable Isotope (δ13C, δ15N, δ18O, δD) Composition and Nutrient Concentration of Red Sea Primary Producers. Frontiers in Marine Science, 2018, 5, .	2.5	41
118	Green turtle herbivory dominates the fate of seagrass primary production in the Lakshadweep islands (Indian Ocean). Marine Ecology - Progress Series, 2013, 485, 235-243.	1.9	41
119	Growth and sediment space occupation by seagrass Cymodocea nodosa roots. Marine Ecology - Progress Series, 2001, 224, 291-298.	1.9	41
120	Modeling nonlinear seagrass clonal growth: Assessing the efficiency of space occupation across the seagrass flora. Estuaries and Coasts, 2006, 29, 72-80.	2.2	40
121	Iron Additions Reduce Sulfide Intrusion and Reverse Seagrass (Posidonia oceanica) Decline in Carbonate Sediments. Ecosystems, 2007, 10, 745-756.	3.4	40
122	Metabolic Imbalance in Coastal Vegetated (Posidonia oceanica) and Unvegetated Benthic Ecosystems. Ecosystems, 2010, 13, 459-471.	3.4	40
123	Boat anchoring impacts coastal populations of the pen shell, the largest bivalve in the Mediterranean. Biological Conservation, 2013, 160, 105-113.	4.1	40
124	Evolutionary history of the seagrass genus Posidonia. Marine Ecology - Progress Series, 2011, 421, 117-130.	1.9	40
125	Global warming enhances sulphide stress in a key seagrass species (NW Mediterranean). Global Change Biology, 2013, 19, 3629-3639.	9.5	39
126	Dynamics of carbon sources supporting burial in seagrass sediments under increasing anthropogenic pressure. Limnology and Oceanography, 2017, 62, 1451-1465.	3.1	39

#	Article	IF	CITATIONS
127	Herbivory on the seagrass Cymodocea nodosa (Ucria) Ascherson in contrasting Spanish Mediterranean habitats. Journal of Experimental Marine Biology and Ecology, 1996, 204, 103-111.	1.5	38
128	Flowering Frequency of Philippine Seagrasses. Botanica Marina, 1997, 40, .	1.2	36
129	Title is missing!. Hydrobiologia, 2002, 484, 167-175.	2.0	35
130	Annual variation in leaf photosynthesis and leaf nutrient content of four Mediterranean seagrasses. Botanica Marina, 2004, 47, .	1.2	34
131	Fish farming enhances biomass and nutrient loss in Posidonia oceanica (L.) Delile. Estuarine, Coastal and Shelf Science, 2009, 81, 390-400.	2.1	34
132	Effects of sediment sulfides on seagrass Posidonia oceanica meristematic activity. Marine Ecology - Progress Series, 2008, 372, 1-6.	1.9	31
133	Iron Deficiency in Seagrasses and Macroalgae in the Red Sea Is Unrelated to Latitude and Physiological Performance. Frontiers in Marine Science, 2018, 5, .	2.5	30
134	Growth and population dynamics of Thalassodendron ciliatum in a Kenyan back-reef lagoon. Aquatic Botany, 1996, 55, 1-11.	1.6	29
135	Light-dependence of the metabolic balance of a highly productive Philippine seagrass community. Journal of Experimental Marine Biology and Ecology, 2005, 316, 55-67.	1.5	29
136	Aeolian transport of seagrass (Posidonia oceanica) beach-cast to terrestrial systems. Estuarine, Coastal and Shelf Science, 2017, 196, 31-44.	2.1	29
137	Tropical seagrass <i>Halophila stipulacea</i> shifts thermal tolerance during Mediterranean invasion. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20193001.	2.6	29
138	Differentiation in fitness-related traits in response to elevated temperatures between leading and trailing edge populations of marine macrophytes. PLoS ONE, 2018, 13, e0203666.	2.5	28
139	Carbon and Nitrogen Concentrations, Stocks, and Isotopic Compositions in Red Sea Seagrass and Mangrove Sediments. Frontiers in Marine Science, 2019, 6, .	2.5	28
140	Longâ€ŧerm records of trace metal content of western Mediterranean seagrass (<i>Posidonia) Tj ETQq0 0 0 rgBT 2010, 115, .</i>	/Overlock 3.3	10 Tf 50 22 27
141	Rapid growth of seaweed biotechnology provides opportunities for developing nations. Nature Biotechnology, 2013, 31, 591-592.	17.5	27
142	Climate change stimulates the growth of the intertidal macroalgae Ascophyllum nodosum near the northern distribution limit. Ambio, 2017, 46, 119-131.	5.5	27
143	Sociocultural valuation of ecosystem services for operational ecosystem management: mapping applications by decision contexts in Europe. Regional Environmental Change, 2019, 19, 2245-2259.	2.9	27
144	Resilience of seagrass populations to thermal stress does not reflect regional differences in ocean climate. New Phytologist, 2022, 233, 1657-1666.	7.3	27

#	Article	IF	CITATIONS
145	The use of sociocultural valuation in sustainable environmental management. Ecosystem Services, 2018, 29, 158-167.	5.4	26
146	Estimating leaf age of the seagrass Posidonia oceanica (L.) Delile using the plastochrone interval index. Aquatic Botany, 1994, 49, 59-65.	1.6	25
147	High Organic Carbon Export Precludes Eutrophication Responses in Experimental Rocky Shore Communities. Ecosystems, 2003, 6, 144-153.	3.4	25
148	Scaling of ramet size and spacing in seagrasses: implications for stand development. Aquatic Botany, 2003, 77, 87-98.	1.6	25
149	Degrading seagrass (Posidonia oceanica) ecosystems: a source of dissolved matter in the Mediterranean. Hydrobiologia, 2010, 649, 13-23.	2.0	25
150	Exploring the robustness of macrophyte-based classification methods to assessÂthe ecological status of coastal and transitional ecosystems under the Water Framework Directive. Hydrobiologia, 2013, 704, 279-291.	2.0	25
151	Expanding Greenland seagrass meadows contribute new sediment carbon sinks. Scientific Reports, 2018, 8, 14024.	3.3	25
152	Marine forests of the Mediterranean-Atlantic Cystoseira tamariscifolia complex show a southern Iberian genetic hotspot and no reproductive isolation in parapatry. Scientific Reports, 2018, 8, 10427.	3.3	25
153	Effects of Posidonia Oceanica Beach-Cast on Germination, Growth and Nutrient Uptake of Coastal Dune Plants. PLoS ONE, 2013, 8, e70607.	2.5	25
154	Distribution and Pathogenicity of the Protist Labyrinthula sp. in western Mediterranean Seagrass Meadows. Estuaries and Coasts, 2011, 34, 1161-1168.	2.2	24
155	Seagrass Herbivory Levels Sustain Site-Fidelity in a Remnant Dugong Population. PLoS ONE, 2015, 10, e0141224.	2.5	23
156	Thresholds of irradiance for seagrass Posidonia oceanica meadow metabolism. Marine Ecology - Progress Series, 2012, 466, 69-79.	1.9	23
157	Characterization of 12 polymorphic microsatellite markers in the sugar kelp Saccharina latissima. Journal of Applied Phycology, 2016, 28, 3071-3074.	2.8	22
158	In the blind-spot of governance – Stakeholder perceptions on seagrasses to guide the management of an important ecosystem services provider. Science of the Total Environment, 2019, 688, 1081-1091.	8.0	22
159	Seagrass (<i>Halophila stipulacea</i>) invasion enhances carbon sequestration in the Mediterranean Sea. Global Change Biology, 2021, 27, 2592-2607.	9.5	22
160	Sequential overgrazing by green turtles causes archipelago-wide functional extinctions of seagrass meadows. Biological Conservation, 2021, 260, 109195.	4.1	22
161	Fish farming impact on decomposition of Posidonia oceanica litter. Journal of Experimental Marine Biology and Ecology, 2009, 369, 58-64.	1.5	21
162	Canopy-Forming Macroalgae Facilitate Recolonization of Sub-Arctic Intertidal Fauna and Reduce Temperature Extremes. Frontiers in Marine Science, 2018, 5, .	2.5	21

#	Article	IF	CITATIONS
163	Seagrass Beds and Coastal Biogeochemistry. , 2007, , 135-157.		21

164 Epiphyte dynamics and carbon metabolism in a nutrient enriched Mediterranean seagrass (Posidonia) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

165	Ecological effects of nonâ€native species in marine ecosystems relate to coâ€occurring anthropogenic pressures. Global Change Biology, 2020, 26, 1248-1258.	9.5	20
166	Seasonality of caulerpenyne content in native <i>Caulerpa prolifera</i> and invasive <i>C. taxifolia</i> and <i>C. racemosa</i> var. <i>cylindracea</i> in the western Mediterranean Sea. Botanica Marina, 2010, 53, 367-375.	1.2	19
167	Warming enhances sulphide stress of Mediterranean seagrass (Posidonia oceanica). Estuarine, Coastal and Shelf Science, 2012, 113, 240-247.	2.1	19
168	SELECTIVE ELIMINATION OF CHLOROPLASTIDIAL DNA FOR METAGENOMICS OF BACTERIA ASSOCIATED WITH THE GREEN ALGA <i>CAULERPA TAXIFOLIA</i> (BRYOPSIDOPHYCEAE) ¹ . Journal of Phycology, 2012, 48, 483-490.	2.3	19
169	Seagrass blue carbon stocks and sequestration rates in the Colombian Caribbean. Scientific Reports, 2021, 11, 11067.	3.3	19
170	Investing in Blue Natural Capital to Secure a Future for the Red Sea Ecosystems. Frontiers in Marine Science, 2021, 7, .	2.5	19
171	Elucidating seagrass population dynamics: Theory, constraints, and practice. Limnology and Oceanography, 2003, 48, 2070-2074.	3.1	17
172	Ecosystem metabolism in a temporary Mediterranean marsh (Doñana National Park, SW Spain). Biogeosciences, 2011, 8, 963-971.	3.3	17
173	Sedimentary iron inputs stimulate seagrass (Posidonia oceanica) population growth in carbonate sediments. Estuarine, Coastal and Shelf Science, 2008, 76, 710-713.	2.1	16
174	Effects of Seagrass Rhizospheres on Sediment Redox Conditions in SE Asian Coastal Ecosystems. Estuaries and Coasts, 2010, 33, 107-117.	2.2	16
175	Stunted Mangrove Trees in the Oligotrophic Central Red Sea Relate to Nitrogen Limitation. Frontiers in Marine Science, 2020, 7, .	2.5	16
176	Climateâ€driven impacts of exotic species on marine ecosystems. Global Ecology and Biogeography, 2021, 30, 1043-1055.	5.8	16
177	Leaf production, shoot demography, and flowering of Thalassodendron ciliatum along the east African coast. Aquatic Botany, 2001, 70, 243-258.	1.6	14
178	Biomares, a LIFE project to restore and manage the biodiversity of Prof. Luiz Saldanha Marine Park. Journal of Coastal Conservation, 2014, 18, 643-655.	1.6	14
179	Getting turfed: The population and habitat impacts of Lophocladia lallemandii invasions on endemic Posidonia oceanica meadows. Aquatic Botany, 2014, 116, 76-82.	1.6	14
180	Warming Threatens to Propel the Expansion of the Exotic Seagrass Halophila stipulacea. Frontiers in Marine Science, 2021, 8, .	2.5	13

#	Article	IF	CITATIONS
181	pH gradients in the diffusive boundary layer of subarctic macrophytes. Polar Biology, 2017, 40, 2343-2348.	1.2	12
182	Ecophysiological responses of three Mediterranean invasive seaweeds (Acrothamnion preissii,) Tj ETQq0 0 0 rgBT Bulletin, 2015, 96, 418-423.	/Overlock 5.0	10 Tf 50 70 11
183	Thermal Performance of Seaweeds and Seagrasses Across a Regional Climate Gradient. Frontiers in Marine Science, 2022, 9, .	2.5	11
184	Uncertainty analysis along the ecological quality status of water bodies: The response of the Posidonia oceanica multivariate index (POMI) in three Mediterranean regions. Marine Pollution Bulletin, 2012, 64, 926-931.	5.0	10
185	Climate warming and Mediterranean seagrass. Nature Climate Change, 2013, 3, 3-4.	18.8	10
186	Warming effect on nitrogen fixation in Mediterranean macrophyte sediments. Biogeosciences, 2019, 16, 167-175.	3.3	10
187	Genetic diversity and biogeographical patterns of Caulerpa prolifera across the Mediterranean and Mediterranean/Atlantic transition zone. Marine Biology, 2015, 162, 557-569.	1.5	9
188	Seagrass as major source of transparent exopolymer particles in the oligotrophic Mediterranean coast. Biogeosciences, 2017, 14, 5069-5075.	3.3	8
189	Dinucleotide microsatellite markers in the genus Caulerpa. Journal of Applied Phycology, 2011, 23, 715-719.	2.8	6
190	Spatio-temporal variation in macrofauna community structure in Mediterranean seagrass wrack. Food Webs, 2020, 25, e00178.	1.2	6
191	eDNA Reveals the Associated Metazoan Diversity of Mediterranean Seagrass Sediments. Diversity, 2022, 14, 549.	1.7	6
192	Preface: dynamics and functions of seagrass ecosystems. Hydrobiologia, 2010, 649, 1-2.	2.0	5
193	Seagrass Thermal Limits and Vulnerability to Future Warming. Frontiers in Marine Science, 2022, 9, .	2.5	5
194	A population genetics toolbox for the threatened canopy-forming brown seaweeds Cystoseira tamariscifolia and C. amentacea (Fucales, Sargassaceae). Journal of Applied Phycology, 2017, 29, 627-629.	2.8	4
195	Decreasing carbonate load of seagrass leaves with increasing latitude. Aquatic Botany, 2019, 159, 103147.	1.6	3
196	A mathematical model for interâ \in specific interactions in seagrasses. Oikos, 2022, 2022, .	2.7	3
197	Reply to †Increased food supply mitigates ocean acidification effects on calcification but exacerbates effects on growth'. Scientific Reports, 2018, 8, 9799.	3.3	2
198	Meristematic activity of Mediterranean seagrass (Posidonia oceanica) shoots. Aquatic Botany, 2012, 101, 28-33.	1.6	1

NURIA MARBÃ

#	Article	IF	CITATIONS
199	Continuous photoperiod of the Artic summer stimulates the photosynthetic response of some marine macrophytes. Aquatic Botany, 2019, 158, 103126.	1.6	1
200	Reply to: Indiscriminate data aggregation in ecological meta-analysis underestimates impacts of invasive species. Nature Ecology and Evolution, 2020, 4, 315-317.	7.8	1
201	Degradative potential of marine bacterial isolates from the aquatic plant <i>Posidonia oceanica</i> . , 2009, , .		0