Yan Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6245633/publications.pdf

Version: 2024-02-01

22153 39675 10,949 192 59 94 citations h-index g-index papers 196 196 196 14173 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Preventing inhomogeneous elemental distribution and phase segregation in mixed Pb-Sn inorganic perovskites via incorporating PbS quantum dots. Journal of Energy Chemistry, 2022, 65, 179-185.	12.9	13
2	Recent progress in inorganic tin perovskite solar cells. Materials Today Energy, 2022, 23, 100891.	4.7	16
3	Constructing two-dimensional heterojunction through decorating covalent organic framework with MoS2 for enhanced photoelectrochemical water oxidation. Journal of Environmental Chemical Engineering, 2022, 10, 106900.	6.7	6
4	Over 8% efficient CsSnI ₃ -based mesoporous perovskite solar cells enabled by two-step thermal annealing and surface cationic coordination dual treatment. Journal of Materials Chemistry A, 2022, 10, 3642-3649.	10.3	35
5	Enhanced photoelectrochemical water splitting using a cobalt-sulfide-decorated BiVO4 photoanode. Chinese Journal of Catalysis, 2022, 43, 433-441.	14.0	39
6	A stable self-powered ultraviolet photodetector using CH ₃ NH ₃ PbCl ₃ with weak-light detection capacity under working conditions. Journal of Materials Chemistry C, 2022, 10, 7147-7153.	5 . 5	8
7	Self-Assembly Vertical Graphene-Based MoO3 Nanosheets for High Performance Supercapacitors. Nanomaterials, 2022, 12, 2057.	4.1	1
8	2D Materials as Electron Transport Layer for Lowâ€Temperature Solutionâ€Processed Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000566.	5 . 8	12
9	Efficient Activation and Electroreduction of Carbon Dioxide on an Electrocatalyst Cadmium Carbonate. ACS Applied Energy Materials, 2021, 4, 2073-2080.	5.1	14
10	Minimizing energy loss in two-dimensional tin halide perovskite solar cellsâ€"A perspective. APL Materials, 2021, 9, .	5.1	13
11	Interface engineering for high-efficiency perovskite solar cells. Journal of Applied Physics, 2021, 129, .	2.5	38
12	Fully Inorganic CsSnI ₃ Mesoporous Perovskite Solar Cells with High Efficiency and Stability via Coadditive Engineering. Solar Rrl, 2021, 5, 2100069.	5 . 8	29
13	Efficient and Stable Large-Area Perovskite Solar Cells with Inorganic Perovskite/Carbon Quantum Dot-Graded Heterojunction. Research, 2021, 2021, 9845067.	5.7	9
14	Boosting electrocatalytic activity of Ni2P nanosheets via incorporation of Ru nanoparticles for efficient hydrogen generation in alkaline media. Applied Surface Science, 2021, 554, 149560.	6.1	10
15	Effect of a Cocatalyst on a Photoanode in Water Splitting: A Study of Scanning Electrochemical Microscopy. Analytical Chemistry, 2021, 93, 12221-12229.	6. 5	17
16	Two-dimensional hetero-nanostructured electrocatalyst of Ni/NiFe-layered double oxide for highly efficient hydrogen evolution reaction in alkaline medium. Chemical Engineering Journal, 2021, 426, 131827.	12.7	42
17	Modulated growth of high-quality CsPbl ₃ perovskite film using a molybdenum modified SnO ₂ layer for highly efficient solar cells. Journal of Materials Chemistry A, 2021, 9, 25567-25575.	10.3	25
18	Controlling Quantum-Well Width Distribution and Crystal Orientation in Two-Dimensional Tin Halide Perovskites via a Strong Interlayer Electrostatic Interaction. ACS Applied Materials & Samp; Interfaces, 2021, 13, 49907-49915.	8.0	13

#	Article	IF	Citations
19	Interconnected SnO ₂ Nanocrystals Electron Transport Layer for Highly Efficient Flexible Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900229.	5.8	31
20	Stability Issue of Perovskite Solar Cells under Realâ€World Operating Conditions. Energy Technology, 2020, 8, 1900744.	3.8	25
21	Effective Magnetic Field Regulation of the Radical Pair Spin States in Electrocatalytic CO $<$ sub $>$ 2 $<$ /sub $>$ Reduction. Journal of Physical Chemistry Letters, 2020, 11 , 48-53.	4.6	54
22	Stabilization of Inorganic CsPb _{0.5} Sn _{0.5} I ₂ Br Perovskite Compounds by Antioxidant Tea Polyphenol. Solar Rrl, 2020, 4, 1900457.	5.8	43
23	Interfacial engineering of bismuth with reduced graphene oxide hybrid for improving CO2 electroreduction performance. Electrochimica Acta, 2020, 357, 136840.	5.2	17
24	Stable and efficient full-printable solar cells using inorganic metal oxide framework and inorganic perovskites. Applied Materials Today, 2020, 20, 100644.	4.3	10
25	AgBi3I10 rudorffite for photovoltaic application. Solar Energy, 2020, 206, 436-442.	6.1	21
26	Controlling layered Ruddlesden–Popper perovskites <i>via</i> solvent additives. Nanoscale, 2020, 12, 7330-7338.	5.6	9
27	Investigation on In–TiO2 composites as highly efficient elecctrocatalyst for CO2 reduction. Electrochimica Acta, 2020, 340, 135948.	5.2	11
28	In Situ Growth of Ru Nanoparticles on (Fe,Ni)(OH) ₂ to Boost Hydrogen Evolution Activity at High Current Density in Alkaline Media. Small Methods, 2020, 4, 1900796.	8.6	82
29	Efficient CsSnl ₃ -based inorganic perovskite solar cells based on a mesoscopic metal oxide framework <i>via</i> incorporating a donor element. Journal of Materials Chemistry A, 2020, 8, 4118-4124.	10.3	75
30	Regulating the electronic configuration of ruthenium nanoparticles via coupling cobalt phosphide for hydrogen evolution in alkaline media. Materials Today Physics, 2020, 12, 100182.	6.0	27
31	Black phosphorus quantum dots in inorganic perovskite thin films for efficient photovoltaic application. Science Advances, 2020, 6, eaay5661.	10.3	95
32	Nanostructured Ni ₂ SeS on Porous-Carbon Skeletons as Highly Efficient Electrocatalyst for Hydrogen Evolution in Acidic Medium. Inorganic Chemistry, 2020, 59, 6018-6025.	4.0	13
33	Advances in design engineering and merits of electron transporting layers in perovskite solar cells. Materials Horizons, 2020, 7, 2276-2291.	12.2	66
34	Novel donor-acceptor-donor structured small molecular hole transporting materials for planar perovskite solar cells. Journal of Energy Chemistry, 2019, 32, 85-92.	12.9	23
35	MoO3 nanobelts for high-performance asymmetric supercapacitor. Journal of Materials Science, 2019, 54, 13685-13693.	3.7	36
36	A highly selective tin-copper bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to formate. Applied Catalysis B: Environmental, 2019, 259, 118040.	20.2	59

#	Article	IF	Citations
37	Iron incorporation affecting the structure and boosting catalytic activity of Cox-Fey-P for efficient hydrogen evolution. Applied Surface Science, 2019, 478, 103-109.	6.1	4
38	Hybridizing NiCo ₂ O ₄ and Amorphous Ni _{<i>x</i>} Co _{<i>y</i>} Layered Double Hydroxides with Remarkably Improved Activity toward Efficient Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 4784-4791.	6.7	70
39	Will organic–inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications?. Nanoscale Advances, 2019, 1, 1276-1289.	4.6	130
40	Layered Ruddlesden–Popper Efficient Perovskite Solar Cells with Controlled Quantum and Dielectric Confinement Introduced via Doping. Advanced Functional Materials, 2019, 29, 1903293.	14.9	66
41	High-rate and stable iron phosphide nanorods anode for sodium-ion battery. Electrochimica Acta, 2019, 314, 142-150.	5.2	32
42	Surface modification of NiCo2Te4 nanoclusters: a highly efficient electrocatalyst for overall water-splitting in neutral solution. Applied Catalysis B: Environmental, 2019, 254, 424-431.	20.2	59
43	Artificial photosynthesis of ethanol using type-II g-C3N4/ZnTe heterojunction in photoelectrochemical CO2 reduction system. Nano Energy, 2019, 60, 827-835.	16.0	126
44	Atomic-Scale Tailoring of Organic Cation of Layered Ruddlesden–Popper Perovskite Compounds. Journal of Physical Chemistry Letters, 2019, 10, 1813-1819.	4.6	55
45	Low-Temperature Stable $\hat{l}\pm$ -Phase Inorganic Perovskite Compounds via Crystal Cross-Linking. Journal of Physical Chemistry Letters, 2019, 10, 200-205.	4.6	57
46	Promises and challenges of alloy-type and conversion-type anode materials for sodium–ion batteries. Materials Today Energy, 2019, 11, 46-60.	4.7	90
47	20% Efficient Perovskite Solar Cells with 2D Electron Transporting Layer. Advanced Functional Materials, 2019, 29, 1805168.	14.9	67
48	Highly Efficient Hydrogen Production Using a Reformed Electrolysis System Driven by a Single Perovskite Solar Cell. ChemSusChem, 2019, 12, 434-440.	6.8	12
49	Graphene oxide wrapped CH3NH3PbBr3 perovskite quantum dots hybrid for photoelectrochemical CO2 reduction in organic solvents. Applied Surface Science, 2019, 465, 607-613.	6.1	89
50	Hierarchical MnO ₂ Located on Carbon Nanotubes for Enhanced Electrochemical Performance. ChemElectroChem, 2018, 5, 1525-1531.	3.4	6
51	Efficient carbon dots/NiFe-layered double hydroxide/BiVO4 photoanodes for photoelectrochemical water splitting. Applied Surface Science, 2018, 439, 1065-1071.	6.1	62
52	Engineering NiS/Ni ₂ P Heterostructures for Efficient Electrocatalytic Water Splitting. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4689-4696.	8.0	312
53	Electronic modulation of transition metal phosphide <i>via</i> doping as efficient and pH-universal electrocatalysts for hydrogen evolution reaction. Chemical Science, 2018, 9, 1970-1975.	7.4	176
54	A catalyst based on copper-cadmium bimetal for electrochemical reduction of CO2 to CO with high faradaic efficiency. Electrochimica Acta, 2018, 271, 544-550.	5.2	49

#	Article	IF	Citations
55	Efficient Planar Perovskite Solar Cells with Improved Fill Factor via Interface Engineering with Graphene. Nano Letters, 2018, 18, 2442-2449.	9.1	195
56	Ultra-thin bacterial cellulose/poly(ethylenedioxythiophene) nanofibers paper electrodes for all-solid-state flexible supercapacitors. Electrochimica Acta, 2018, 271, 624-631.	5.2	41
57	Achieving ordered and stable binary metal perovskite via strain engineering. Nano Energy, 2018, 48, 117-127.	16.0	60
58	A New Method for Fitting Current–Voltage Curves of Planar Heterojunction Perovskite Solar Cells. Nano-Micro Letters, 2018, 10, 5.	27.0	102
59	Diketopyrrolopyrrole based D-ï€-A-ï€-D type small organic molecules as hole transporting materials for perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 1175-1182.	12.9	13
60	Three-dimensional TiO2 nanowire@NiMoO4 ultrathin nanosheet core-shell arrays for lithium ion batteries. Applied Surface Science, 2018, 435, 641-648.	6.1	30
61	RGO modified Ni doped FeOOH for enhanced electrochemical and photoelectrochemical water oxidation. Applied Surface Science, 2018, 436, 974-980.	6.1	42
62	Enhancing photoelectrochemical water oxidation efficiency via self-catalyzed oxygen evolution: A case study on TiO2. Nano Energy, 2018, 44, 411-418.	16.0	43
63	A special issue on Optoelectronics for Energy. Frontiers of Optoelectronics, 2018, 11, 315-316.	3.7	0
64	Highly Efficient Perovskite Solar Cells via Nickel Passivation. Advanced Functional Materials, 2018, 28, 1804286.	14.9	100
65	BiOI/WO3 photoanode with enhanced photoelectrochemical water splitting activity. Frontiers of Optoelectronics, 2018, 11, 367-374.	3.7	9
66	Highly Efficient Perovskite Solar Cells with Gradient Bilayer Electron Transport Materials. Nano Letters, 2018, 18, 3969-3977.	9.1	147
67	Coreâ€Shell Structured NiCo ₂ O ₄ @FeOOH Nanowire Arrays as Bifunctional Electrocatalysts for Efficient Overall Water Splitting. ChemCatChem, 2018, 10, 4119-4125.	3.7	34
68	Cation-Assisted Restraint of a Wide Quantum Well and Interfacial Charge Accumulation in Two-Dimensional Perovskites. ACS Energy Letters, 2018, 3, 1815-1823.	17.4	22
69	Direct formation of I3- ions in organic cation solution for efficient perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 185, 111-116.	6.2	32
70	Sea coral-like NiCo ₂ O ₄ @(Ni, Co)OOH heterojunctions for enhancing overall water-splitting. Catalysis Science and Technology, 2018, 8, 4151-4158.	4.1	16
71	Large Magneto-Current Effect in the Electrochemical Detection of Oxalate in Aqueous Solution. Journal of Physical Chemistry C, 2018, 122, 19880-19885.	3.1	13
72	Phosphorus-doped TiO2-B nanowire arrays boosting robust pseudocapacitive properties for lithium storage. Journal of Power Sources, 2018, 396, 327-334.	7.8	43

#	Article	lF	Citations
73	Full printable perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO (carbon nanotubes) architecture. Solar Energy, 2017, 144, 158-165.	6.1	63
74	Carbon Quantum Dots/TiO _{<i>x</i>} Electron Transport Layer Boosts Efficiency of Planar Heterojunction Perovskite Solar Cells to 19%. Nano Letters, 2017, 17, 2328-2335.	9.1	211
75	Li4Ti5O12-TiO2 nanowire arrays constructed with stacked nanocrystals for high-rate lithium and sodium ion batteries. Journal of Power Sources, 2017, 344, 223-232.	7.8	61
76	Hierarchical CuBi ₂ O ₄ microspheres as lithium-ion battery anodes with superior high-temperature electrochemical performance. RSC Advances, 2017, 7, 13250-13256.	3.6	29
77	A new strategy of preparing uniform graphitic carbon nitride films for photoelectrochemical application. Carbon, 2017, 117, 343-350.	10.3	68
78	Self-standing Bi ₂ O ₃ nanoparticles/carbon nanofiber hybrid films as a binder-free anode for flexible sodium-ion batteries. Materials Chemistry Frontiers, 2017, 1, 1615-1621.	5.9	73
79	Amino-functionalized conjugated polymer electron transport layers enhance the UV-photostability of planar heterojunction perovskite solar cells. Chemical Science, 2017, 8, 4587-4594.	7.4	57
80	Efficient planar perovskite solar cells using halide Sr-substituted Pb perovskite. Nano Energy, 2017, 36, 213-222.	16.0	100
81	Temperature Dependent Characteristics of Perovskite Solar Cells. ChemistrySelect, 2017, 2, 4469-4477.	1.5	24
82	TiO 2-B@VS 2 heterogeneous nanowire arrays as superior anodes for lithium-ion batteries. Journal of Power Sources, 2017, 350, 87-93.	7.8	47
83	Hierarchical WO 3 nanoflakes architecture with enhanced photoelectrochemical activity. Electrochimica Acta, 2017, 225, 473-481.	5.2	22
84	Bouquetâ€Like NiCo ₂ O ₄ @CoNi ₂ S ₄ Arrays for Highâ€Performance Pseudocapacitors. ChemElectroChem, 2017, 4, 607-612.	3.4	17
85	Nanostructured Nickel Cobaltite Antispinel as Bifunctional Electrocatalyst for Overall Water Splitting. Journal of Physical Chemistry C, 2017, 121, 25888-25897.	3.1	39
86	Enhancing Efficiency of Perovskite Solar Cells via Surface Passivation with Graphene Oxide Interlayer. ACS Applied Materials & Samp; Interfaces, 2017, 9, 38967-38976.	8.0	118
87	17% efficient printable mesoscopic PIN metal oxide framework perovskite solar cells using cesium-containing triple cation perovskite. Journal of Materials Chemistry A, 2017, 5, 22952-22958.	10.3	119
88	Ultrafast synthesis of Te nanorods as cathode materials for lithium-tellurium batteries. Journal of Power Sources, 2017, 371, 48-54.	7.8	16
89	Generating Huge Magnetocurrent by Using Spin-Dependent Dehydrogenation Based on Electrochemical System. Journal of Physical Chemistry C, 2017, 121, 28420-28424.	3.1	12
90	The Role of Synthesis Parameters on Crystallization and Grain Size in Hybrid Halide Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 17053-17061.	3.1	30

#	Article	IF	Citations
91	Phosphate modified N/Si co-doped rutile TiO 2 nanorods for photoelectrochemical water oxidation. Applied Surface Science, 2017, 391, 288-294.	6.1	14
92	Aminoâ€Functionalized Conjugated Polymer as an Efficient Electron Transport Layer for Highâ€Performance Planarâ€Heterojunction Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1501534.	19.5	278
93	Phosphor coated NiO-based planar inverted organometallic halide perovskite solar cells with enhanced efficiency and stability. Applied Physics Letters, 2016, 109, .	3.3	27
94	F4TCNQ-doped DEPT-SC as hole transporting material for stable perovskite solar cells. Organic Electronics, 2016, 35, 171-175.	2.6	14
95	New generation perovskite solar cells with solution-processed amino-substituted perylene diimide derivative as electron-transport layer. Journal of Materials Chemistry A, 2016, 4, 8724-8733.	10.3	109
96	Recent progress on stability issues of organic–inorganic hybrid lead perovskite-based solar cells. RSC Advances, 2016, 6, 89356-89366.	3.6	69
97	Ultrafine Pt nanoparticle decoration with CoP as highly active electrocatalyst for alcohol oxidation. RSC Advances, 2016, 6, 100437-100442.	3.6	9
98	MoS 2 nanosheet decorated with trace loads of Pt as highly active electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2016, 219, 187-193.	5.2	69
99	Surface Plasmon Resonance Effect in Inverted Perovskite Solar Cells. Advanced Science, 2016, 3, 1500312.	11.2	88
100	BiOl–TiO ₂ Nanocomposites for Photoelectrochemical Water Splitting. Advanced Materials Interfaces, 2016, 3, 1500273.	3.7	34
101	Hierarchical TiO ₂ spheres assisted with graphene for a high performance lithium–sulfur battery. Journal of Materials Chemistry A, 2016, 4, 16454-16461.	10.3	45
102	Effect of Hole Transport Layer in Planar Inverted Perovskite Solar Cells. Chemistry Letters, 2016, 45, 89-91.	1.3	12
103	Significant enhancement of the photoelectrochemical activity of WO3 nanoflakes by carbon quantum dots decoration. Carbon, 2016, 105, 387-393.	10.3	72
104	Spin-dependent deprotonation induced giant magnetocurrent in electrochemical cells. Physical Chemistry Chemical Physics, 2016, 18, 9897-9901.	2.8	6
105	MAPbl _{3â^'x} Br _x mixed halide perovskites for fully printable mesoscopic solar cells with enhanced efficiency and less hysteresis. Nanoscale, 2016, 8, 8839-8846.	5.6	57
106	Dopant-free 3,3′-bithiophene derivatives as hole transport materials for perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 3661-3666.	10.3	50
107	Graphene oxide modified hole transport layer for CH3NH3Pbl3 planar heterojunction solar cells. Solar Energy, 2016, 131, 176-182.	6.1	59
108	Photoelectrochemical Water Splitting Systemâ€"A Study of Interfacial Charge Transfer with Scanning Electrochemical Microscopy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1606-1614.	8.0	38

#	Article	IF	Citations
109	Graphene oxide-protected three dimensional Se as a binder-free cathode for Li-Se battery. Electrochimica Acta, 2016, 190, 258-263.	5.2	29
110	14.7% efficient mesoscopic perovskite solar cells using single walled carbon nanotubes/carbon composite counter electrodes. Nanoscale, 2016, 8, 6379-6385.	5.6	151
111	Subtle Balance Between Length Scale of Phase Separation and Domain Purification in Smallâ€Molecule Bulkâ€Heterojunction Blends under Solvent Vapor Treatment. Advanced Materials, 2015, 27, 6296-6302.	21.0	159
112	Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence. Scientific Reports, 2015, 5, 9105.	3.3	2
113	Graphene supported platinum nanoparticles as catalyst for oxygen reduction reaction. Chemical Research in Chinese Universities, 2015, 31, 1007-1011.	2.6	9
114	Investigation on regeneration kinetics at perovskite/oxide interface with scanning electrochemical microscopy. Journal of Materials Chemistry A, 2015, 3, 9216-9222.	10.3	19
115	A Power Pack Based on Organometallic Perovskite Solar Cell and Supercapacitor. ACS Nano, 2015, 9, 1782-1787.	14.6	201
116	Efficient mesoscopic perovskite solar cells based on the CH ₃ NH ₃ Pbl ₂ Br light absorber. Journal of Materials Chemistry A, 2015, 3, 9116-9122.	10.3	67
117	Alkyl-thiophene Functionalized D-Ï€-A Porphyrins for Mesoscopic Solar Cells. Electrochimica Acta, 2015, 179, 187-196.	5.2	13
118	Hybrid of Fe@Fe3O4 core-shell nanoparticle and iron-nitrogen-doped carbon material as an efficient electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2015, 174, 933-939.	5.2	34
119	Efficient dye-sensitized solar cells using mesoporous submicrometer TiO ₂ beads. RSC Advances, 2015, 5, 62630-62637.	3.6	8
120	Recent progress in efficient hybrid lead halide perovskite solar cells. Science and Technology of Advanced Materials, 2015, 16, 036004.	6.1	87
121	Visualized acid–base discoloration and optoelectronic investigations of azines and azomethines having double 4-[N,N-di(4-methoxyphenyl)amino]phenyl terminals. Journal of Materials Chemistry C, 2015, 3, 7748-7755.	5.5	14
122	Photovoltaic behaviour of lead methylammonium triiodide perovskite solar cells down to 80 K. Journal of Materials Chemistry A, 2015, 3, 11762-11767.	10.3	135
123	Spiro-thiophene derivatives as hole-transport materials for perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 12139-12144.	10.3	96
124	Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode. Nano Letters, 2015, 15, 2402-2408.	9.1	412
125	Porous Li ₄ Ti ₅ O ₁₂ â€"TiO ₂ nanosheet arrays for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 10107-10113.	10.3	72
126	N/Si co-doped oriented single crystalline rutile TiO ₂ nanorods for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2015, 3, 10020-10025.	10.3	55

#	Article	IF	CITATIONS
127	Changing the Sign of Exchange Interaction in Radical Pairs to Tune Magnetic Field Effect on Electrogenerated Chemiluminescence. Journal of Physical Chemistry C, 2015, 119, 8089-8094.	3.1	8
128	Co9S8 hollow spheres for enhanced electrochemical detection of hydrogen peroxide. Talanta, 2015, 141, 73-79.	5 . 5	26
129	Large active layer thickness toleration of high-efficiency small molecule solar cells. Journal of Materials Chemistry A, 2015, 3, 22274-22279.	10.3	19
130	ITO surface modification for inverted organic photovoltaics. Frontiers of Optoelectronics, 2015, 8, 269-273.	3.7	5
131	Rutile-TiO ₂ decorated Li ₄ Ti ₅ O ₁₂ nanosheet arrays with 3D interconnected architecture as anodes for high performance hybrid supercapacitors. Journal of Materials Chemistry A, 2015, 3, 23570-23576.	10.3	60
132	ZnO decorated TiO2 nanosheet composites for lithium ion battery. Electrochimica Acta, 2015, 182, 529-536.	5.2	42
133	Effect of temperature on the efficiency of organometallic perovskite solar cells. Journal of Energy Chemistry, 2015, 24, 729-735.	12.9	54
134	Carbon coated Cu2O nanowires for photo-electrochemical water splitting with enhanced activity. Applied Surface Science, 2015, 358, 404-411.	6.1	66
135	Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture. Nano Energy, 2015, 17, 171-179.	16.0	261
136	A perovskite solar cell-TiO ₂ @BiVO ₄ photoelectrochemical system for direct solar water splitting. Journal of Materials Chemistry A, 2015, 3, 21630-21636.	10.3	109
137	Hydrogen peroxide biosensor based on microperoxidase-11 immobilized on flexible MWCNTs-BC nanocomposite film. Talanta, 2015, 131, 243-248.	5.5	21
138	INVESTIGATION OF DYE-REGENERATION KINETICS AT DYE-SENSITIZED p-TYPE CuCrO2 FILM/ELECTROLYTES INTERFACE WITH SCANNING ELECTROCHEMICAL MICROSCOPY. Nano, 2014, 09, 1440008.	1.0	9
139	Electrodes: Flexible Supercapacitors Based on Bacterial Cellulose Paper Electrodes (Adv. Energy) Tj ETQq1 1 0.784	1314 rgBT 19.5	/Qverlock 1
140	Pt Catalyst Supported within TiO2 Mesoporous Films for Oxygen Reduction Reaction. Electrochimica Acta, 2014, 130, 97-103.	5.2	27
141	Investigation of Regeneration Kinetics in Quantum-Dots-Sensitized Solar Cells with Scanning Electrochemical Microscopy. ACS Applied Materials & Samp; Interfaces, 2014, 6, 20913-20918.	8.0	20
142	Highly efficient light harvesting ruthenium sensitizers for dye-sensitized solar cells featuring triphenylamine donor antennas. Journal of Materials Chemistry A, 2014, 2, 4945-4953.	10.3	54
143	Flexible Supercapacitors Based on Bacterial Cellulose Paper Electrodes. Advanced Energy Materials, 2014, 4, 1301655.	19.5	182
144	Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy, 2014, 9, 309-317.	16.0	167

#	Article	IF	Citations
145	Investigation of Dye Regeneration Kinetics in Sensitized Solar Cells by Scanning Electrochemical Microscopy. ChemPhysChem, 2014, 15, 1182-1189.	2.1	20
146	A cyclopenta[1,2-b:5,4-b′]dithiophene–porphyrin conjugate for mesoscopic solar cells: a D–π–D–A approach. Physical Chemistry Chemical Physics, 2014, 16, 24755-24762.	2.8	15
147	Mn ₃ O ₄ /Carbon Nanotube Nanocomposites as Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Solution. ChemElectroChem, 2014, 1, 1531-1536.	3.4	16
148	Lead Methylammonium Triiodide Perovskiteâ€Based Solar Cells: An Interfacial Chargeâ€Transfer Investigation. ChemSusChem, 2014, 7, 3088-3094.	6.8	51
149	Pyrene-conjugated porphyrins for efficient mesoscopic solar cells: the role of the spacer. Journal of Materials Chemistry A, 2014, 2, 17495-17501.	10.3	35
150	Investigation of the regeneration kinetics of organic dyes with pyridine ring anchoring groups by scanning electrochemical microscopy. RSC Advances, 2014, 4, 51374-51380.	3.6	11
151	Organic Sensitizers with Pyridine Ring Anchoring Group for p-Type Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16433-16440.	3.1	66
152	Active catalysts based on cobalt oxide@cobalt/N-C nanocomposites for oxygen reduction reaction in alkaline solutions. Nano Research, 2014, 7, 1054-1064.	10.4	72
153	TiO 2 nanotubes modified with electrochemically reduced graphene oxide for photoelectrochemical water splitting. Carbon, 2014, 80, 591-598.	10.3	47
154	Fabrication of Cobalt Porphyrin. Electrochemically Reduced Graphene Oxide Hybrid Films for Electrocatalytic Hydrogen Evolution in Aqueous Solution. Langmuir, 2014, 30, 6990-6998.	3.5	73
155	Dâ~π–A Porphyrin Sensitizers with Ï€-Extended Conjugation for Mesoscopic Solar Cells. Journal of Physical Chemistry C, 2014, 118, 14739-14748.	3.1	26
156	Near Field Enhanced Photocurrent Generation in P-type Dye-Sensitized Solar Cells. Scientific Reports, 2014, 4, 3961.	3.3	24
157	Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid with helical carbon nanotubes. Electrochimica Acta, 2013, 91, 261-266.	5.2	97
158	D–π–A structured porphyrins for efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 10008.	10.3	64
159	Efficient p-type dye-sensitized solar cells based on disulfide/thiolate electrolytes. Nanoscale, 2013, 5, 7963.	5.6	50
160	Electrochemically reduced graphene oxide multilayer films as metal-free electrocatalysts for oxygen reduction. Journal of Materials Chemistry A, 2013, 1, 1415-1420.	10.3	43
161	Electrochemically Deposited CoS Films as Counter Electrodes for Efficient Quantum Dot-Sensitized Solar Cells. Journal of the Electrochemical Society, 2013, 160, H624-H629.	2.9	22
162	Preparation of hybrid films containing gold nanoparticles and cobalt porphyrin with flexible electrochemical properties. Thin Solid Films, 2013, 545, 327-331.	1.8	14

#	Article	IF	CITATIONS
163	Zinc Porphyrins with a Pyridineâ€Ringâ€Anchoring Group for Dyeâ€Sensitized Solar Cells. Chemistry - an Asian Journal, 2013, 8, 956-962.	3.3	67
164	Effect of the molecular weight of poly(3-hexylthiophene) on the performance of solid-state dye-sensitized solar cells. RSC Advances, 2013, 3, 14037.	3.6	8
165	Potassiumâ€Doped Zinc Oxide as Photocathode Material in Dyeâ€Sensitized Solar Cells. ChemSusChem, 2013, 6, 622-629.	6.8	34
166	Disulfide/Thiolate Based Redox Shuttle for Dye-Sensitized Solar Cells: An Impedance Spectroscopy Study. Journal of Physical Chemistry C, 2012, 116, 25233-25241.	3.1	25
167	Carbazole oligomers revisited: new additions at the carbazole 1- and 8-positions. RSC Advances, 2012, 2, 10821.	3.6	40
168	Photoelectrochemical kinetics of Eosin Y-sensitized zinc oxide films investigated by scanning electrochemical microscopy under illumination with different LED. Electrochimica Acta, 2009, 55, 458-464.	5.2	38
169	Electrodeposited noble metal particles in polyelectrolyte multilayer matrix as electrocatalyst for oxygen reduction studied using SECM. Physical Chemistry Chemical Physics, 2008, 10, 3635.	2.8	32
170	Detection of Hydrogen Peroxide Produced during Electrochemical Oxygen Reduction Using Scanning Electrochemical Microscopy. Analytical Chemistry, 2008, 80, 750-759.	6.5	119
171	Scanning Electrochemical Microscopy for Direct Imaging of Reaction Rates. Angewandte Chemie - International Edition, 2007, 46, 1584-1617.	13.8	361
172	Copper hexacyanoferrate multilayer films on glassy carbon electrode modified with 4-aminobenzoic acid in aqueous solution. Talanta, 2006, 68, 741-747.	5.5	55
173	Photoelectrochemical Kinetics of Eosin Y-Sensitized Zinc Oxide Films Investigated by Scanning Electrochemical Microscopy. Chemistry - A European Journal, 2006, 12, 5832-5839.	3.3	63
174	Direct electrochemistry of microperoxidase 11 using carbon nanotube modified electrodes. Journal of Electroanalytical Chemistry, 2005, 578, 121-127.	3.8	74
175	Electrochemical behavior and assembly of tetranuclear Dawson-derived sandwich compound [Cd4(H2O)2(As2W15O56)2]16â^' on 4-aminobenzoic acid modified glassy carbon electrode. Analytica Chimica Acta, 2005, 534, 343-351.	5.4	20
176	Nanocomposite films containing Au nanoparticles formed by electrochemical reduction of metal ions in the multilayer films as electrocatalyst for dioxygen reduction. Analytica Chimica Acta, 2005, 535, 15-22.	5.4	40
177	Electrocatalytic Reduction of Oxygen at Multi-Walled Carbon Nanotubes and Cobalt Porphyrin Modified Glassy Carbon Electrode. Electroanalysis, 2004, 16, 1444-1450.	2.9	76
178	Preparation of a phosphopolyoxomolybdate P2Mo18O626â^' doped polypyrrole modified electrode and its catalytic properties. Journal of Electroanalytical Chemistry, 2004, 566, 63-71.	3.8	27
179	Preparation of hybrid thin film modified carbon nanotubes on glassy carbon electrode and its electrocatalysis for oxygen reduction. Chemical Communications, 2004, , 34-35.	4.1	68
180	Electrochemical Design of Ultrathin Platinum-Coated Gold Nanoparticle Monolayer Films as a Novel Nanostructured Electrocatalyst for Oxygen Reduction. Journal of Physical Chemistry B, 2004, 108, 8142-8147.	2.6	158

#	Article	IF	Citations
181	Electrochemical and electrogenerated chemiluminescence of clay nanoparticles/Ru(bpy)32+multilayer films on ITO electrodes. Analyst, The, 2004, 129, 657.	3.5	44
182	Nanocomposite Multilayer Film of Preyssler-Type Polyoxometalates with Fine Tunable Electrocatalytic Activities. Journal of Physical Chemistry B, 2004, 108, 9780-9786.	2.6	81
183	Electrochemistry and Electrogenerated Chemiluminescence of SiO2Nanoparticles/Tris(2,2â€⁻-bipyridyl)ruthenium(ΙΙ) Multilayer Films on Indium Tin Oxide Electrodes. Analytical Chemistry, 2004, 76, 184-191.	6.5	155
184	Synthesis, Characterization and Fabrication on a Glassy Carbon Electrode of a Tetra-Iron Substituted Sandwich-Type Pentadecatungstodiarsenate Heteropolyanion ChemInform, 2003, 34, no.	0.0	0
185	Multifunctional organic–inorganic multilayer films of tris(2,2′-bipyridine)ruthenium and decatungstate. Electrochemistry Communications, 2003, 5, 913-918.	4.7	33
186	Simple preparation method of Pd nanoparticles on an Au electrode and its catalysis for dioxygen reductionElectronic supplementary information (ESI) available: XRD pattern of an evaporated Au electrode and CVs for the reduction of O2 on a bare Au(111) electrode or a Pd-nanoparticle-film-modified electrode. See: http://www.rsc.org/suppdata/nj/b3/b300566f/. New	2.8	27
187	Journal of Chemistry, 2003, 27, 938. Fabrication of a Metalloporphyrinâ^Polyoxometalate Hybrid Film by a Layer-by-Layer Method and Its Catalysis for Hydrogen Evolution and Dioxygen Reduction. Journal of Physical Chemistry B, 2003, 107, 9744-9748.	2.6	103
188	Synthesis, characterization and fabrication on a glassy carbon electrode of a tetra-iron substituted sandwich-type pentadecatungstodiarsenate heteropolyanionElectronic supplementary information (ESI) available: model of layer formation, CV of 4-ABA on a GCE and of QPVP-Os/4-ABA/GCE in pH 4.7 buffer, plots of Ed vs. log (i/id – i) and XRD of the title compound. See http://www.rsc.org/suppdata/ni/b2/b205766m/. New Journal of Chemistry, 2003, 27, 756-764.	2.8	25
189	Preparation of Multilayer Films Containing Pt Nanoparticles on a Glassy Carbon Electrode and Application as an Electrocatalyst for Dioxygen Reduction. Langmuir, 2003, 19, 5397-5401.	3.5	40
190	SINGLE-CRYSTAL X-RAY STRUCTURE AND PROPERTIES OF K10[Ni4(H2O)2(AsW9O34)·4H2O. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2002, 32, 967-979.	1.8	2
191	Preparation of Pt Nanoparticles Assembled in Multilayer Films. Chemistry Letters, 2002, 31, 550-551.	1.3	5
192	Fabrication of Metalloporphyrin-Polyoxometalyte Hybrid Film by Layer-by-Layer Method and Its Catalysis for Dioxygen Reduction. Electroanalysis, 2002, 14, 1557-1563.	2.9	40