
William L Blalock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6245519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combined Treatment with PI3K Inhibitors BYL-719 and CAL-101 Is a Promising Antiproliferative Strategy in Human Rhabdomyosarcoma Cells. Molecules, 2022, 27, 2742.	3.8	3
2	Innate Immunity: A Balance between Disease and Adaption to Stress. Biomolecules, 2022, 12, 737.	4.0	6
3	Ectopic Expression of Ankrd2 Affects Proliferation, Motility and Clonogenic Potential of Human Osteosarcoma Cells. Cancers, 2021, 13, 174.	3.7	6
4	Opposing forces fight over the same ground to regulate interferon signaling. Biochemical Journal, 2021, 478, 1853-1859.	3.7	4
5	Revisiting the Role of GSK3, A Modulator of Innate Immunity, in Idiopathic Inclusion Body Myositis. Cells, 2021, 10, 3255.	4.1	6
6	Expression of the doubleâ€stranded RNAâ€dependent kinase PKR influences osteosarcoma attachment independent growth, migration, and invasion. Journal of Cellular Physiology, 2020, 235, 1103-1119.	4.1	4
7	Cancer therapy and treatments during COVID-19 era. Advances in Biological Regulation, 2020, 77, 100739.	2.3	30
8	Glycogen synthase kinase (GSK)-3 and the double-strand RNA-dependent kinase, PKR: When two kinases for the common good turn bad. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118769.	4.1	10
9	Signal Transduction in Ribosome Biogenesis: A Recipe to Avoid Disaster. International Journal of Molecular Sciences, 2019, 20, 2718.	4.1	69
10	AKTâ€dependent phosphorylation of the adenosine deaminases ADARâ€1 and â€2 inhibits deaminase activity. FASEB Journal, 2019, 33, 9044-9061.	0.5	20
11	Therapeutic potential of nvpâ€bkm120 in human osteosarcomas cells. Journal of Cellular Physiology, 2019, 234, 10907-10917.	4.1	16
12	MiRNA-210: A Current Overview. Anticancer Research, 2017, 37, 6511-6521.	1.1	159
13	Cell Cycle Arrest and Apoptosis Induced by Kinamycin F in Human Osteosarcoma Cells. Anticancer Research, 2017, 37, 4103-4109.	1.1	5
14	BMPâ€2 Induced Expression of PLCβ1 That is a Positive Regulator of Osteoblast Differentiation. Journal of Cellular Physiology, 2016, 231, 623-629.	4.1	26
15	Intolerant contact lens wearers exhibit ocular surface impairment despite 3 months wear discontinuation. Graefe's Archive for Clinical and Experimental Ophthalmology, 2016, 254, 1825-1831.	1.9	15
16	Plâ€PLCβ1b affects Akt activation, cyclin E expression, and caspase cleavage, promoting cell survival in proâ€B″ymphoblastic cells exposed to oxidative stress. FASEB Journal, 2015, 29, 1383-1394.	0.5	10
17	Prohibitin 2: At a communications crossroads. IUBMB Life, 2015, 67, 239-254.	3.4	136
18	PLCβ1a and PLCβ1b Selective Regulation and Cyclin D3 Modulation Reduced by Kinamycin F During K562 Cell Differentiation. Journal of Cellular Physiology, 2015, 230, 587-594.	4.1	11

WILLIAM L BLALOCK

#	Article	IF	CITATIONS
19	Prohibitin 2 represents a novel nuclear AKT substrate during all― <i>trans</i> retinoic acid–induced differentiation of acute promyelocytic leukemia cells. FASEB Journal, 2014, 28, 2009-2019.	O.5	28
20	ldentification of the PKR Nuclear Interactome Reveals Roles in Ribosome Biogenesis, mRNA Processing and Cell Division. Journal of Cellular Physiology, 2014, 229, 1047-1060.	4.1	23
21	Nuclear PI-PLCÎ ² 1: An appraisal on targets and pathology. Advances in Biological Regulation, 2014, 54, 2-11.	2.3	32
22	PLC-beta 1 regulates the expression of miR-210 during mithramycin-mediated erythroid differentiation in K562 cells. Oncotarget, 2014, 5, 4222-4231.	1.8	19
23	Phosphoinositide-specific Phospholipase C β 1b (PI-PLCβ1b) Interactome: Affinity Purification-Mass Spectrometry Analysis of PI-PLCβ1b with Nuclear Protein. Molecular and Cellular Proteomics, 2013, 12, 2220-2235.	3.8	21
24	A role for PLCÎ ² 1 in myotonic dystrophies type 1 and 2. FASEB Journal, 2012, 26, 3042-3048.	0.5	24
25	A rapid standardized quantitative microfluidic system approach for evaluating human tear proteins. Molecular Vision, 2012, 18, 2526-37.	1.1	15
26	Multiple forms of PKR present in the nuclei of acute leukemia cells represent an active kinase that is responsive to stress. Leukemia, 2011, 25, 236-245.	7.2	40
27	A role for PKR in hematologic malignancies. Journal of Cellular Physiology, 2010, 223, 572-591.	4.1	21
28	Tear proteomics in evaporative dry eye disease. Eye, 2010, 24, 1396-1402.	2.1	130
29	eEF1A Phosphorylation in the Nucleus of Insulin-stimulated C2C12 Myoblasts. Molecular and Cellular Proteomics, 2010, 9, 2719-2728.	3.8	26
30	A novel human fibronectin cryptic sequence unmasked by the insertion of the angiogenesisâ€associated extra type III domain B. International Journal of Cancer, 2009, 125, 751-758.	5.1	27
31	PKR activity is required for acute leukemic cell maintenance and growth: A role for PKRâ€mediated phosphatase activity to regulate GSKâ€3 phosphorylation. Journal of Cellular Physiology, 2009, 221, 232-241.	4.1	29
32	Use of Uteroglobin for the Engineering of Polyvalent, Polyspecific Fusion Proteins. Journal of Biological Chemistry, 2009, 284, 26646-26654.	3.4	6
33	PKR is activated in MDS patients and its subcellular localization depends on disease severity. Leukemia, 2008, 22, 2267-2269.	7.2	22
34	PI-PLCβ-1 and activated Akt levels are linked to azacitidine responsiveness in high-risk myelodysplastic syndromes. Leukemia, 2008, 22, 198-200.	7.2	39
35	RAX is required for fly neuronal development and mouse embryogenesis. Mechanisms of Development, 2008, 125, 777-785.	1.7	24
36	Proapoptotic Activity and Chemosensitizing Effect of the Novel Akt Inhibitor (2S)-1-(1H-Indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan2-amine (A443654) in T-Cell Acute Lymphoblastic Leukemia. Molecular Pharmacology, 2008, 74, 884-895.	2.3	33

WILLIAM L BLALOCK

#	Article	IF	CITATIONS
37	Targeting the Phosphatidylinositol 3-Kinase/Akt/Mammalian Target of Rapamycin Module for Acute Myelogenous Leukemia Therapy: From Bench to Bedside. Current Medicinal Chemistry, 2007, 14, 2009-2023.	2.4	116
38	The AKT Inhibitor, A443654, Induces Cell Cycle Arrest, Apoptosis and Synergizes with Chemotherapeutic Drugs in Multi-Drug Resistant T-Cell Acute Lymphoblastic Leukemia - A Novel Agent for Therapy of Drug Resistant ALL Blood, 2007, 110, 3344-3344.	1.4	1
39	RAX, the PKR activator, sensitizes cells to inflammatory cytokines, serum withdrawal, chemotherapy, and viral infection. Blood, 2006, 108, 821-829.	1.4	74
40	Serine 18 Phosphorylation of RAX, the PKR Activator, Is Required for PKR Activation and Consequent Translation Inhibition. Journal of Biological Chemistry, 2004, 279, 42687-42693.	3.4	53
41	Ability of the Activated PI3K/Akt Oncoproteins to Synergize with MEK1 and Induce Cell Cycle Progression and Abrogate the Cytokine-Dependence of Hematopoietic Cells. Cell Cycle, 2004, 3, 501-510.	2.6	17
42	Ability of the activated PI3K/Akt oncoproteins to synergize with MEK1 and induce cell cycle progression and abrogate the cytokine-dependence of hematopoietic cells. Cell Cycle, 2004, 3, 503-12.	2.6	21
43	Elucidation of Signal Transduction Pathways by Retroviral Infection of Cells with Modified Oncogenes. , 2003, 218, 221-252.		0
44	Fibroblastic, Hematopoietic, and Hormone Responsive Epithelial Cell Lines and Culture Conditions for Elucidation of Signal Transduction and Drug Resistance Pathways by Gene Transfer. , 2003, 218, 185-202.		0
45	Elucidation of Signal Transduction Pathways by Transfection of Cells with Modified Oncogenes. , 2003, 218, 203-220.		0
46	Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia, 2003, 17, 590-603.	7.2	1,055
47	Requirement for the PI3K/Akt pathway in MEK1-mediated growth and prevention of apoptosis: identification of an Achilles heel in leukemia. Leukemia, 2003, 17, 1058-1067.	7.2	59
48	Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia, 2003, 17, 1263-1293.	7.2	632
49	Differential effects of kinase cascade inhibitors on neoplastic and cytokine-mediated cell proliferation. Leukemia, 2003, 17, 1765-1782.	7.2	55
50	Effects of the RAF/MEK/ERK and PI3K/AKT signal transduction pathways on the abrogation of cytokine-dependence and prevention of apoptosis in hematopoietic cells. Oncogene, 2003, 22, 2478-2492.	5.9	95
51	Enhanced ability of the progenipoietin-1 to suppress apoptosis in human hematopoietic cells. International Journal of Molecular Medicine, 2002, 10, 385.	4.0	2
52	Enhanced ability of the progenipoietin-1 to suppress apoptosis in human hematopoietic cells. International Journal of Molecular Medicine, 2002, 10, 385-94.	4.0	1
53	Synergistic effects of pi3k/akt on abrogation of cytokine-dependency induced by oncogenic raf. Advances in Enzyme Regulation, 2001, 41, 289-323.	2.6	22
54	Effects of inducible MEK1 activation on the cytokine dependency of lymphoid cells. Leukemia, 2001, 15, 794-807.	7.2	41

WILLIAM L BLALOCK

#	Article	IF	CITATIONS
55	Enhanced ability of daniplestim and myelopoietin-1 to suppress apoptosis in human hematopoietic cells. Leukemia, 2001, 15, 1203-1216.	7.2	15
56	Ceramide Regulates Protein Synthesis by a Novel Mechanism Involving the Cellular PKR Activator RAX. Journal of Biological Chemistry, 2001, 276, 11754-11758.	3.4	74
57	Differential abilities of the Raf family of protein kinases to abrogate cytokine dependency and prevent apoptosis in murine hematopoietic cells by a MEK1-dependent mechanism. Leukemia, 2000, 14, 642-656.	7.2	98
58	Synergy between Raf and BCL2 in abrogating the cytokine dependency of hematopoietic cells. Leukemia, 2000, 14, 1060-1079.	7.2	47
59	Combined effects of aberrant MEK1 activity and BCL2 overexpression on relieving the cytokine dependency of human and murine hematopoietic cells. Leukemia, 2000, 14, 1080-1096.	7.2	48
60	Effects of deregulated Raf activation on integrin, cytokine-receptor expression and the induction of apoptosis in hematopoietic cells. Leukemia, 2000, 14, 1921-1938.	7.2	27
61	A conditionally-active form of MEK1 results in autocrine transformation of human and mouse hematopoietic cells. Oncogene, 2000, 19, 526-536.	5.9	76
62	Synergistic effects of akt on abrogation of cytokine-dependency induced by raf and mek. Experimental Hematology, 2000, 28, 38.	0.4	0
63	Enhanced ability of myelopoietins, dual receptor agonists for human IL-3 and g-csf receptors and the IL-3 receptor agonist, daniplestim, to suppress apoptosis and stimulate cytokine-inducible gene expression. Experimental Hematology, 2000, 28, 39.	0.4	0
64	The Raf signal transduction cascade as a target for chemotherapeutic intervention in growth factor-responsive tumors. , 2000, 88, 229-279.		86
65	Effects of deregulated RAF and MEK1 expression on the cytokine-dependency of hematopoietic cells. Advances in Enzyme Regulation, 2000, 40, 305-337.	2.6	24
66	Signal transduction, cell cycle regulatory, and anti-apoptotic pathways regulated by IL-3 in hematopoietic cells: possible sites for intervention with anti-neoplastic drugs. Leukemia, 1999, 13, 1109-1166.	7.2	161
67	Differential abilities of activated Raf oncoproteins to abrogate cytokine dependency, prevent apoptosis and induce autocrine growth factor synthesis in human hematopoietic cells. Leukemia, 1998, 12, 1903-1929.	7.2	109