
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6245155/publications.pdf Version: 2024-02-01

PAIENINDA DDASAN

#	Article	IF	CITATIONS
1	Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Current Genetics, 1995, 27, 320-329.	1.7	475
2	Yeast ATP-Binding Cassette Transporters Conferring Multidrug Resistance. Annual Review of Microbiology, 2012, 66, 39-63.	7.3	185
3	Drug Susceptibilities of Yeast Cells Are Affected by Membrane Lipid Composition. Antimicrobial Agents and Chemotherapy, 2002, 46, 3695-3705.	3.2	178
4	Multidrug Resistance in Yeast Candida. International Review of Cytology, 2004, 242, 215-248.	6.2	158
5	Quorum sensing: A less known mode of communication among fungi. Microbiological Research, 2018, 210, 51-58.	5.3	149
6	Membrane Sphingolipid-Ergosterol Interactions Are Important Determinants of Multidrug Resistance in Candida albicans. Antimicrobial Agents and Chemotherapy, 2004, 48, 1778-1787.	3.2	144
7	Pathogenicity and drug resistance in Candida albicans and other yeast species. Acta Microbiologica Et Immunologica Hungarica, 2007, 54, 201-235.	0.8	140
8	Functional Characterization of Candida albicans ABC Transporter Cdr1p. Eukaryotic Cell, 2003, 2, 1361-1375.	3.4	136
9	In Vitro Low-Level Resistance to Azoles in Candida albicans Is Associated with Changes in Membrane Lipid Fluidity and Asymmetry. Antimicrobial Agents and Chemotherapy, 2002, 46, 1046-1052.	3.2	133
10	Antifungals: Mechanism of Action and Drug Resistance. Advances in Experimental Medicine and Biology, 2016, 892, 327-349.	1.6	121
11	Unexpected Link between Iron and Drug Resistance of Candida spp.: Iron Depletion Enhances Membrane Fluidity and Drug Diffusion, Leading to Drug-SusceptibleCells. Antimicrobial Agents and Chemotherapy, 2006, 50, 3597-3606.	3.2	120
12	Efflux pump proteins in antifungal resistance. Frontiers in Pharmacology, 2014, 5, 202.	3.5	115
13	Multidrug Transporters CaCdr1p and CaMdr1p of Candida albicans Display Different Lipid Specificities: both Ergosterol and Sphingolipids Are Essential for Targeting of CaCdr1p to Membrane Rafts. Antimicrobial Agents and Chemotherapy, 2008, 52, 694-704.	3.2	114
14	Relationship between ethanol tolerance and fatty acyl composition of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1989, 30, 294.	3.6	109
15	The Quorum-Sensing Molecule Farnesol Is a Modulator of Drug Efflux Mediated by ABC Multidrug Transporters and Synergizes with Drugs in Candida albicans. Antimicrobial Agents and Chemotherapy, 2011, 55, 4834-4843.	3.2	105
16	Curcumin Modulates Efflux Mediated by Yeast ABC Multidrug Transporters and Is Synergistic with Antifungals. Antimicrobial Agents and Chemotherapy, 2009, 53, 3256-3265.	3.2	96
17	MFS transportome of the human pathogenic yeast Candida albicans. BMC Genomics, 2008, 9, 579.	2.8	91
18	The ABCs of Candida albicans Multidrug Transporter Cdr1. Eukaryotic Cell, 2015, 14, 1154-1164.	3.4	91

#	Article	lF	CITATIONS
19	Structure and Function Analysis of CaMdr1p, a Major Facilitator Superfamily Antifungal Efflux Transporter Protein of Candida albicans: Identification of Amino Acid Residues Critical for Drug/H+ Transport. Eukaryotic Cell, 2007, 6, 443-453.	3.4	90
20	Expression ofCDR1, a multidrug resistance gene ofCandida albicans: transcriptional activation by heat shock, drugs and human steroid hormones. FEMS Microbiology Letters, 1998, 160, 191-197.	1.8	87
21	Complete Inventory of ABC Proteins in Human Pathogenic Yeast, <i>Candida albicans</i> . Journal of Molecular Microbiology and Biotechnology, 2005, 9, 3-15.	1.0	81
22	Molecular Mechanisms of Action of Herbal Antifungal Alkaloid Berberine, in Candida albicans. PLoS ONE, 2014, 9, e104554.	2.5	73
23	Functional Analysis of Ca IPT1 , a Sphingolipid Biosynthetic Gene Involved in Multidrug Resistance and Morphogenesis of Candida albicans. Antimicrobial Agents and Chemotherapy, 2005, 49, 3442-3452.	3.2	71
24	Calcineurin Signaling and Membrane Lipid Homeostasis Regulates Iron Mediated MultiDrug Resistance Mechanisms in Candida albicans. PLoS ONE, 2011, 6, e18684.	2.5	62
25	Novel role of a family of major facilitator transporters in biofilm development and virulence of <i>Candida albicans</i> . Biochemical Journal, 2014, 460, 223-235.	3.7	62
26	ABC Transporter Genes Show Upregulated Expression in Drug-Resistant Clinical Isolates of Candida auris: A Genome-Wide Characterization of ATP-Binding Cassette (ABC) Transporter Genes. Frontiers in Microbiology, 2019, 10, 1445.	3.5	55
27	Drug resistance in yeasts — an emerging scenario. Advances in Microbial Physiology, 2002, 46, 155-201.	2.4	54
28	Disulfiram is a potent modulator of multidrug transporter Cdr1p of Candida albicans. Biochemical and Biophysical Research Communications, 2004, 322, 520-525.	2.1	53
29	The yeast ABC transporter Pdr18 (ORF <i>YNR070w</i>) controls plasma membrane sterol composition, playing a role in multidrug resistance. Biochemical Journal, 2011, 440, 195-202.	3.7	53
30	SRE1 and SRE2 are two specific steroid-responsive modules ofCandida drug resistance gene 1(CDR1) promoter. Yeast, 2004, 21, 219-239.	1.7	52
31	Comparative Lipidomics in Clinical Isolates of Candida albicans Reveal Crosstalk between Mitochondria, Cell Wall Integrity and Azole Resistance. PLoS ONE, 2012, 7, e39812.	2.5	52
32	Membrane fluidity affects functions of Cdr1p, a multidrug ABC transporter ofCandida albicans. FEMS Microbiology Letters, 1999, 173, 475-481.	1.8	50
33	Purification and Characterization of the N-Terminal Nucleotide Binding Domain of an ABC Drug Transporter ofCandida albicans: Uncommon Cysteine 193 of Walker A Is Critical for ATP Hydrolysisâ€. Biochemistry, 2003, 42, 10822-10832.	2.5	50
34	Alanine scanning of transmembrane helix 11 of Cdr1p ABC antifungal efflux pump of Candida albicans: identification of amino acid residues critical for drug efflux. Journal of Antimicrobial Chemotherapy, 2005, 56, 77-86.	3.0	48
35	MFS transporters of <i>Candida</i> species and their role in clinical drug resistance. FEMS Yeast Research, 2016, 16, fow043.	2.3	48
36	Dosage-dependent functions of fatty acid desaturase Ole1p in growth and morphogenesis of Candida albicans. Microbiology (United Kingdom), 2004, 150, 1991-2003.	1.8	47

#	Article	IF	CITATIONS
37	Squalene epoxidase encoded by ERG1 affects morphogenesis and drug susceptibilities of Candida albicans. Journal of Antimicrobial Chemotherapy, 2005, 55, 905-913.	3.0	47
38	Phospholipidome of <i>Candida</i> : Each Species of <i>Candida</i> Has Distinctive Phospholipid Molecular Species. OMICS A Journal of Integrative Biology, 2010, 14, 665-677.	2.0	46
39	Involvement of lipids in solute transport in yeasts. Yeast, 1986, 2, 205-220.	1.7	43
40	Transcriptional Activation and Increased mRNA Stability Contribute to Overexpression of <i>CDR1</i> in Azole-Resistant <i>Candida albicans</i> . Antimicrobial Agents and Chemotherapy, 2008, 52, 1481-1492.	3.2	43
41	CDR1, a multidrug resistance gene fromCandida albicans, contains multiple regulatory domains in its promoter and the distal AP-1 element mediates its induction by miconazole. FEMS Microbiology Letters, 1999, 180, 213-219.	1.8	42
42	Insight into Pleiotropic Drug Resistance ATP-binding Cassette Pump Drug Transport through Mutagenesis of Cdr1p Transmembrane Domains*. Journal of Biological Chemistry, 2013, 288, 24480-24493.	3.4	42
43	Azole resistance in a Candida albicans mutant lacking the ABC transporter CDR6/ROA1 depends on TOR signaling. Journal of Biological Chemistry, 2018, 293, 412-432.	3.4	42
44	Comparative Lipidomics of Azole Sensitive and Resistant Clinical Isolates of Candida albicans Reveals Unexpected Diversity in Molecular Lipid Imprints. PLoS ONE, 2011, 6, e19266.	2.5	40
45	Evaluation of Jatrophane Esters from <i>Euphorbia</i> spp. as Modulators of <i>Candida albicans</i> Multidrug Transporters. Journal of Natural Products, 2017, 80, 479-487.	3.0	39
46	Responses of Pathogenic and Nonpathogenic Yeast Species to Steroids Reveal the Functioning and Evolution of Multidrug Resistance Transcriptional Networks. Eukaryotic Cell, 2008, 7, 68-77.	3.4	37
47	Multidrug transporters of Candida species in clinical azole resistance. Fungal Genetics and Biology, 2019, 132, 103252.	2.1	37
48	<i>In Vitro</i> Effect of Malachite Green on Candida albicans Involves Multiple Pathways and Transcriptional Regulators <i>UPC2</i> and <i>STP2</i> . Antimicrobial Agents and Chemotherapy, 2012, 56, 495-506.	3.2	35
49	ABC multidrug transporter Cdr1p of has divergent nucleotide-binding domains which display functional asymmetry. FEMS Yeast Research, 2004, 5, 63-72.	2.3	34
50	Specificity of drug transport mediated byCaMDR1: A major facilitator ofCandida albicans. Journal of Biosciences, 2001, 26, 333-339.	1.1	33
51	Nutrient transport inCandida albicans, a pathogenic yeast. Yeast, 1987, 3, 209-221.	1.7	32
52	Multiple roles of ABC transporters in yeast. Fungal Genetics and Biology, 2021, 150, 103550.	2.1	32
53	Analysis of physico-chemical properties of substrates of ABC and MFS multidrug transporters of pathogenic Candida albicans. European Journal of Medicinal Chemistry, 2010, 45, 4813-4826.	5.5	31
54	Rationally Designed Transmembrane Peptide Mimics of the Multidrug Transporter Protein Cdr1 Act as Antagonists to Selectively Block Drug Efflux and Chemosensitize Azole-resistant Clinical Isolates of Candida albicans. Journal of Biological Chemistry, 2013, 288, 16775-16787.	3.4	31

#	Article	IF	CITATIONS
55	Lipids of Candida albicans and their role in multidrug resistance. Current Genetics, 2013, 59, 243-250.	1.7	30
56	Jatrophanes from <i>Euphorbia squamosa</i> as Potent Inhibitors of <i>Candida albicans</i> Multidrug Transporters. Journal of Natural Products, 2014, 77, 2700-2706.	3.0	30
57	Hydroxychavicol: A phytochemical targeting cutaneous fungal infections. Scientific Reports, 2016, 6, 37867.	3.3	30
58	Yeast ABC transporters in lipid trafficking. Fungal Genetics and Biology, 2016, 93, 25-34.	2.1	30
59	Resistance to antifungal therapies. Essays in Biochemistry, 2017, 61, 157-166.	4.7	30
60	Mutational Analysis of Intracellular Loops Identify Cross Talk with Nucleotide Binding Domains of Yeast ABC Transporter Cdr1p. Scientific Reports, 2015, 5, 11211.	3.3	30
61	Conserved Asp327 of Walker B Motif in the N-Terminal Nucleotide Binding Domain (NBD-1) of Cdr1p ofCandida albicansHas Acquired a New Role in ATP Hydrolysisâ€. Biochemistry, 2006, 45, 14726-14739.	2.5	29
62	A key structural domain of the <i>Candida albicans</i> Mdr1 protein. Biochemical Journal, 2012, 445, 313-322.	3.7	29
63	Pleiotropic effects of the vacuolar ABC transporter MLT1 of Candida albicans on cell function and virulence. Biochemical Journal, 2016, 473, 1537-1552.	3.7	28
64	All about CDR transporters: Past, present, and future. Yeast, 2019, 36, 223-233.	1.7	28
65	Lipids in the Structure and Function of Yeast Membrane. Advances in Lipid Research, 1985, 21, 187-242.	1.8	27
66	Candida Drug Resistance Protein 1, a Major Multidrug ATP Binding Cassette Transporter of Candida albicans, Translocates Fluorescent Phospholipids in a Reconstituted System. Biochemistry, 2007, 46, 12081-12090.	2.5	27
67	Lipidomics and <i>in Vitro</i> Azole Resistance in <i>Candida albicans</i> . OMICS A Journal of Integrative Biology, 2013, 17, 84-93.	2.0	27
68	PAP1 [poly(A) polymerase 1] homozygosity and hyperadenylation are major determinants of increased mRNA stability of CDR1 in azole-resistant clinical isolates of Candida albicans. Microbiology (United) Tj ETQq0	0 0 r g.8 T /C)verback 10 Tf
69	ABC transportome inventory of human pathogenic yeast Candida glabrata: Phylogenetic and expression analysis. PLoS ONE, 2018, 13, e0202993.	2.5	25
70	Rational Mutational Analysis of a Multidrug MFS Transporter CaMdr1p of Candida albicans by Employing a Membrane Environment Based Computational Approach. PLoS Computational Biology, 2009, 5, e1000624.	3.2	24
71	Candida Efflux ATPases and Antiporters in Clinical Drug Resistance. Advances in Experimental Medicine and Biology, 2016, 892, 351-376.	1.6	24
72	PDR-like ABC systems in pathogenic fungi. Research in Microbiology, 2019, 170, 417-425.	2.1	24

#	Article	IF	CITATIONS
73	Emerging Mechanisms of Drug Resistance in Candida albicans. Progress in Molecular and Subcellular Biology, 2019, 58, 135-153.	1.6	24
74	Functional Characterization of N-Terminal Nucleotide Binding Domain (NBD-1) of a Major ABC Drug Transporter Cdr1p ofCandida albicans:Â Uncommon but Conserved Trp326 of Walker B Is Important for ATP Bindingâ€. Biochemistry, 2005, 44, 6650-6661.	2.5	23
75	Functionally Relevant Residues of Cdr1p: A Multidrug ABC Transporter of Human Pathogenic <i>Candida albicans</i> . Journal of Amino Acids, 2011, 2011, 1-12.	5.8	23
76	Vacuolar Sequestration of Azoles, a Novel Strategy of Azole Antifungal Resistance Conserved across Pathogenic and Nonpathogenic Yeast. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	23
77	Chimeras of the ABC drug transporter Cdr1p reveal functional indispensability of transmembrane domains and nucleotide-binding domains, but transmembrane segment 12 is replaceable with the corresponding homologous region of the non-drug transporter Cdr3p. Microbiology (United) Tj ETQq1 1 0.78	4314 ^{1.8} BT	/Overlock 10 Ti
78	CaALK8, an alkane assimilating cytochrome P450, confers multidrug resistance when expressed in a hypersensitive strain ofCandida albicans. Yeast, 2001, 18, 1117-1129.	1.7	22
79	An Assessment of Growth Media Enrichment on Lipid Metabolome and the Concurrent Phenotypic Properties of Candida albicans. PLoS ONE, 2014, 9, e113664.	2.5	22
80	Phosphatidylserine decarboxylase governs plasma membrane fluidity and impacts drug susceptibilities of Candida albicans cells. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2308-2319.	2.6	21
81	The amino acid residues of transmembrane helix 5 of multidrug resistance protein CaCdr1p of Candida albicans are involved in substrate specificity and drug transport. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1752-1761.	2.6	20
82	Molecular Basis of Substrate Polyspecificity of the Candida albicans Mdr1p Multidrug/H+ Antiporter. Journal of Molecular Biology, 2018, 430, 682-694.	4.2	20
83	Functional reconstitution of a purified proline permease from Candida albicans: interaction with the antifungal cispentacin. Microbiology (United Kingdom), 1997, 143, 397-404.	1.8	19
84	Structural heterogeneity in RNA recognition motif 2 (RRM2) of TAR DNA-binding protein 43 (TDP-43): clue to amyotrophic lateral sclerosis. Journal of Biomolecular Structure and Dynamics, 2021, 39, 357-367.	3.5	19
85	Differential dynamics of membrane proteins in yeast. Biochemical and Biophysical Research Communications, 2009, 387, 661-665.	2.1	18
86	Employing Information Theoretic Measures and Mutagenesis to Identify Residues Critical for Drug-Proton Antiport Function in Mdr1p of Candida albicans. PLoS ONE, 2010, 5, e11041.	2.5	18
87	Lipidome analysis reveals antifungal polyphenol curcumin affects membrane lipid homeostasis. Frontiers in Bioscience - Elite, 2012, E4, 1195-1209.	1.8	18
88	Overcoming Multidrug Resistance in Candida albicans: Macrocyclic Diterpenes from Euphorbia Species as Potent Inhibitors of Drug Efflux Pumps. Planta Medica, 2016, 82, 1180-1185.	1.3	18
89	Unusual Susceptibility of a Multidrug-Resistant Yeast Strain to Peptidic Antifungals. Antimicrobial Agents and Chemotherapy, 2001, 45, 223-228.	3.2	17
90	Ncb2 Is Involved in Activated Transcription of <i>CDR1</i> in Azole-Resistant Clinical Isolates of Candida albicans. Eukaryotic Cell, 2011, 10, 1357-1366.	3.4	17

#	Article	IF	CITATIONS
91	Atomic modelling and systematic mutagenesis identify residues in multiple drug binding sites that are essential for drug resistance in the major Candida transporter Cdr1. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2858-2870.	2.6	17
92	W1038 near D-loop of NBD2 is a focal point for inter-domain communication in multidrug transporter Cdr1 of Candida albicans. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 965-972.	2.6	16
93	Divergent signature motifs of nucleotide binding domains of ABC multidrug transporter, CaCdr1p of pathogenic Candida albicans, are functionally asymmetric and noninterchangeable. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1757-1766.	2.6	15
94	Chemosensitization of multidrug resistant Candida albicans by the oxathiolone fused chalcone derivatives. Frontiers in Microbiology, 2015, 6, 783.	3.5	15
95	Alum adjuvanted rabies DNA vaccine confers 80% protection against lethal 50 LD50 rabies challenge virus standard strain. Molecular Immunology, 2017, 85, 166-173.	2.2	15
96	Non-heat shock responsive roles of HSF1 in Candida albicans are essential under iron deprivation and drug defense. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 345-354.	4.1	15
97	In vitro characterization, ADME analysis, and histological and toxicological evaluation of BM1, a macrocyclic amidinourea active against azole-resistant Candida strains. International Journal of Antimicrobial Agents, 2020, 55, 105865.	2.5	15
98	Response of pathogenic and non-pathogenic yeasts to steroids. Journal of Steroid Biochemistry and Molecular Biology, 2012, 129, 61-69.	2.5	13
99	FK520 interacts with the discrete intrahelical amino acids of multidrug transporter Cdr1 protein and acts as antagonist to selectively chemosensitize azole-resistant clinical isolates of <i>Candida albicans</i> . FEMS Yeast Research, 2014, 14, 624-632.	2.3	13
100	Lathyrol and epoxylathyrol derivatives: Modulation of Cdr1p and Mdr1p drug-efflux transporters of Candida albicans in Saccharomyces cerevisiae model. Bioorganic and Medicinal Chemistry, 2017, 25, 3278-3284.	3.0	12
101	Cdr1p highlights the role of the non-hydrolytic ATP-binding site in driving drug translocation in asymmetric ABC pumps. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183131.	2.6	12
102	ABCG: a new fold of ABC exporters and a whole new bag of riddles!. Advances in Protein Chemistry and Structural Biology, 2021, 123, 163-191.	2.3	12
103	Sphingolipidomics of drug resistant Candida auris clinical isolates reveal distinct sphingolipid species signatures. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158815.	2.4	12
104	A novel catalytic mechanism for ATP hydrolysis employed by the N-terminal nucleotide-binding domain of Cdr1p, a multidrug ABC transporter of Candida albicans. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2143-2153.	2.6	11
105	Lipidome analysis reveals antifungal polyphenol curcumin affects membrane lipid homeostasis. Frontiers in Bioscience - Elite, 2012, E4, 1195.	1.8	11
106	Assessment of antifungal resistance and associated molecular mechanism in Candida albicans isolates from different cohorts of patients in North Indian state of Haryana. Folia Microbiologica, 2020, 65, 747-754.	2.3	11
107	Directed Mutational Strategies Reveal Drug Binding and Transport by the MDR Transporters of Candida albicans. Journal of Fungi (Basel, Switzerland), 2021, 7, 68.	3.5	11
108	Functional and Comparative Analysis of Centromeres Reveals Clade-Specific Genome Rearrangements in <i>Candida auris</i> and a Chromosome Number Change in Related Species. MBio, 2021, 12, .	4.1	11

#	Article	IF	CITATIONS
109	Modulators of the Efflux Pump Cdr1p of Candida albicans: Mechanisms of Action and Chemical Features. Current Medicinal Chemistry, 2017, 24, 3242-3253.	2.4	11
110	Fluconazole resistant Candida auris clinical isolates have increased levels of cell wall chitin and increased susceptibility to a glucosamine-6-phosphate synthase inhibitor. Cell Surface, 2022, 8, 100076.	3.0	11
111	Membrane degradation, accumulation of Phosphatidic acid, stimulation of catalase activity and nuclear DNA fragmentation during 2,4-d-induced leaf senescence in mustard. Journal of Plant Biology, 2005, 48, 394-403.	2.1	10
112	Phylogenetic and conservation analyses of MFS transporters. 3 Biotech, 2018, 8, 462.	2.2	10
113	Adjuvant Potential of Poly-α- <scp>l</scp> -Glutamine from the Cell Wall of Mycobacterium tuberculosis. Infection and Immunity, 2018, 86, .	2.2	10
114	Mechanisms of Drug Resistance in Fungi and Their Significance in Biofilms. Springer Series on Biofilms, 2014, , 45-65.	0.1	9
115	pHluorin enables insights into the transport mechanism of antiporter Mdr1: R215 is critical for drug/H+ antiport. Biochemical Journal, 2016, 473, 3127-3145.	3.7	9
116	Multidrug ABC transporter Cdr1 of Candida albicans harbors specific and overlapping binding sites for human steroid hormones transport. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1778-1789.	2.6	9
117	A detailed lipidomic study of human pathogenic fungi <i>Candida auris</i> . FEMS Yeast Research, 2020, 20, .	2.3	8
118	A homologous overexpression system to study roles of drug transporters in <i>Candida glabrata</i> . FEMS Yeast Research, 2020, 20, .	2.3	8
119	ABC transporter Cdr1p harbors charged residues in the intracellular loop and nucleotide-binding domain critical for protein trafficking and drug resistance. FEMS Yeast Research, 2015, 15, fov036.	2.3	7
120	The global regulator Ncb2 escapes from the core promoter and impacts transcription in response to drug stress in Candida albicans. Scientific Reports, 2017, 7, 46084.	3.3	7
121	Inventory of ABC proteins and their putative role in salt and drug tolerance in Debaryomyces hansenii. Gene, 2018, 676, 227-242.	2.2	7
122	Identification of Genomewide Alternative Splicing Events in Sequential, Isogenic Clinical Isolates of Candida albicans Reveals a Novel Mechanism of Drug Resistance and Tolerance to Cellular Stresses. MSphere, 2020, 5, .	2.9	6
123	Newly identified motifs in Candida albicans Cdr1 protein nucleotide binding domains are pleiotropic drug resistance subfamily-specific and functionally asymmetric. Scientific Reports, 2016, 6, 27132.	3.3	6
124	How fungal multidrug transporters mediate hyper resistance through <scp>DNA</scp> amplification and mutation. Molecular Microbiology, 2022, 118, 3-15.	2.5	6
125	Coupling between phosphatidylinositol metabolism and cdc 28 gene product of Saccharomyces cerevisiae. FEBS Letters, 1984, 167, 151-154.	2.8	5
126	Alanine scanning of all cysteines and construction of a functional cysteine-less Cdr1p, a multidrug ABC transporter of Candida albicans. Biochemical and Biophysical Research Communications, 2012, 417, 508-513.	2.1	5

#	Article	IF	CITATIONS
127	Identification of genome-wide binding sites of heat shock factor 1, Hsf1, under basal conditions in the human pathogenic yeast, Candida albicans. AMB Express, 2018, 8, 116.	3.0	5
128	Make azoles active again: chalcones as potent reversal agents of transporters-mediated resistance in <i>Candida albicans</i> . Future Medicinal Chemistry, 2018, 10, 2177-2186.	2.3	5
129	Tools and Techniques to Study Multidrug Transporters of Yeasts. , 2017, , 183-207.		3
130	Molecular studies of NAD- and NADP- glutamate dehydrogenases decipher the conundrum of yeast-hypha dimorphism in zygomycete Benjaminiella poitrasii. FEMS Yeast Research, 2019, 19, .	2.3	3
131	ABC-finder: A containerized web server for the identification and topology prediction of ABC proteins. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183640.	2.6	3
132	Unmasking of CgYor1-Dependent Azole Resistance Mediated by Target of Rapamycin (TOR) and Calcineurin Signaling in Candida glabrata. MBio, 2022, 13, e0354521.	4.1	3
133	Computational Insights of Unfolding of N-Terminal Domain of TDP-43 Reveal the Conformational Heterogeneity in the Unfolding Pathway. Frontiers in Molecular Neuroscience, 2022, 15, 822863.	2.9	3
134	Genome-wide analysis of PTR transporters in Candida species and their functional characterization in Candida auris. Applied Microbiology and Biotechnology, 2022, 106, 4223-4235.	3.6	3
135	Bioinformatic Identification of ABC Transporters in Candida auris. Methods in Molecular Biology, 2022, , 229-240.	0.9	3
136	Inositol Phosphoryl Transferase, Ipt1, Is a Critical Determinant of Azole Resistance and Virulence Phenotypes in Candida glabrata. Journal of Fungi (Basel, Switzerland), 2022, 8, 651.	3.5	3
137	Purified arginine permease ofCandida albicans is functionally active in a reconstituted system. , 1998, 14, 335-345.		2
138	Information theoretic measures and mutagenesis identify a novel linchpin residue involved in substrate selection within the nucleotide-binding domain of an ABCG family exporter Cdr1p. Archives of Biochemistry and Biophysics, 2019, 663, 143-150.	3.0	2
139	The E-helix is a central core in a conserved helical bundle involved in nucleotide binding and transmembrane domain intercalation in the ABC transporter superfamily. International Journal of Biological Macromolecules, 2019, 127, 95-106.	7.5	2
140	Expression of CDR1, a multidrug resistance gene of Candida albicans: transcriptional activation by heat shock, drugs and human steroid hormones. FEMS Microbiology Letters, 1998, 160, 191-197.	1.8	2
141	CDR1, a multidrug resistance gene from Candida albicans, contains multiple regulatory domains in its promoter and the distal AP-1 element mediates its induction by miconazole. FEMS Microbiology Letters, 1999, 180, 213-219.	1.8	2
142	Lipidomics Approaches: Applied to the Study of Pathogenesis in Candida Species. Progress in Molecular and Subcellular Biology, 2019, 58, 195-215.	1.6	1
143	Membrane fluidity affects functions of Cdr1p, a multidrug ABC transporter of Candida albicans. FEMS Microbiology Letters, 1999, 173, 475-481.	1.8	1
144	A hypothesis for the possible involvement of microtubules and protein kinase in the mechanism of action of cdc 28 gene product of Saccharomyces cerevisiae. FEBS Letters, 1984, 172, 139-141.	2.8	0

#	Article	IF	CITATIONS
145	Insights into Candida Lipids. , 2017, , 417-428.		0
146	Background of Membrane Lipids. Springer Protocols, 2020, , 1-11.	0.3	0
147	A Chemogenomic Toolkit to Evaluate the "Ins and Outs―of Yeast Plasma Membrane Transporters. MBio, 2022, , e0095522.	4.1	0
148	Spontaneous Suppressors against Debilitating Transmembrane Mutants of CaMdr1 Disclose Novel Interdomain Communication via Signature Motifs of the Major Facilitator Superfamily. Journal of Fungi (Basel, Switzerland), 2022, 8, 538.	3.5	0