List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6244585/publications.pdf Version: 2024-02-01

	17440	22832
13,444	63	112
citations	h-index	g-index
139	139	14653
docs citations	times ranked	citing authors
	citations 139	13,444 63 citations h-index 139 139

IANNIE RODST

#	Article	IF	CITATIONS
1	Trial watch: Dendritic cell (DC)-based immunotherapy for cancer. Oncolmmunology, 2022, 11, .	4.6	54
2	Flagellin/TLR5 Stimulate Myeloid Progenitors to Enter Lung Tissue and to Locally Differentiate Into Macrophages. Frontiers in Immunology, 2021, 12, 621665.	4.8	5
3	Clinically applicable CD34+-derived blood dendritic cell subsets exhibit key subset-specific features and potently boost anti-tumor T and NK cell responses. Cancer Immunology, Immunotherapy, 2021, 70, 3167-3181.	4.2	13
4	Mechanism of action of PDâ€1 receptor/ligand targeted cancer immunotherapy. European Journal of Immunology, 2021, 51, 1911-1920.	2.9	31
5	Autotaxin impedes anti-tumor immunity by suppressing chemotaxis and tumor infiltration of CD8+ TÂcells. Cell Reports, 2021, 37, 110013.	6.4	38
6	Bone marrow–derived myeloid progenitors as driver mutation carriers in high- and low-risk Langerhans cell histiocytosis. Blood, 2020, 136, 2188-2199.	1.4	18
7	The histone methyltransferase DOT1L prevents antigen-independent differentiation and safeguards epigenetic identity of CD8 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20706-20716.	7.1	32
8	Helpless Priming Sends CD8+ T Cells on the Road to Exhaustion. Frontiers in Immunology, 2020, 11, 592569.	4.8	25
9	Stable human regulatory T cells switch to glycolysis following TNF receptor 2 costimulation. Nature Metabolism, 2020, 2, 1046-1061.	11.9	38
10	GPA33: A Marker to Identify Stable Human Regulatory T Cells. Journal of Immunology, 2020, 204, 3139-3148.	0.8	26
11	Lymph Node Stromal Cells Generate Antigen-Specific Regulatory T Cells and Control Autoreactive T and B Cell Responses. Cell Reports, 2020, 30, 4110-4123.e4.	6.4	46
12	Changes in Bcl-2 members after ibrutinib or venetoclax uncover functional hierarchy in determining resistance to venetoclax in CLL. Blood, 2020, 136, 2918-2926.	1.4	67
13	IFN-Stimulated Gene 15 Is an Alarmin that Boosts the CTL Response via an Innate, NK Cell–Dependent Route. Journal of Immunology, 2020, 204, 2110-2121.	0.8	26
14	Opportunities for Small Molecules in Cancer Immunotherapy. Trends in Immunology, 2020, 41, 493-511.	6.8	82
15	Radiotherapy and Cisplatin Increase Immunotherapy Efficacy by Enabling Local and Systemic Intratumoral T-cell Activity. Cancer Immunology Research, 2019, 7, 670-682.	3.4	53
16	CD4+ T cell help creates memory CD8+ T cells with innate and help-independent recall capacities. Nature Communications, 2019, 10, 5531.	12.8	106
17	The opposing roles of <scp>CD</scp> 4 ⁺ T cells in antiâ€ŧumour immunity. Immunology, 2018, 154, 582-592.	4.4	92
18	Functional Heterogeneity of CD4+ Tumor-Infiltrating Lymphocytes With a Resident Memory Phenotype in NSCLC. Frontiers in Immunology, 2018, 9, 2654.	4.8	85

#	Article	IF	CITATIONS
19	Subcellular Localization of Antigen in Keratinocytes Dictates Delivery of CD4+ T-cell Help for the CTL Response upon Therapeutic DNA Vaccination into the Skin. Cancer Immunology Research, 2018, 6, 835-847.	3.4	10
20	CD4+ T cell help in cancer immunology and immunotherapy. Nature Reviews Immunology, 2018, 18, 635-647.	22.7	1,030
21	Proteomic Analyses of Human Regulatory T Cells Reveal Adaptations in Signaling Pathways that Protect Cellular Identity. Immunity, 2018, 48, 1046-1059.e6.	14.3	108
22	Proteasome Activation by Small Molecules. Cell Chemical Biology, 2017, 24, 725-736.e7.	5.2	113
23	CD27 co-stimulation increases the abundance of regulatory T cells and reduces atherosclerosis in hyperlipidaemic mice. European Heart Journal, 2017, 38, 3590-3599.	2.2	35
24	Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature, 2017, 549, 106-110.	27.8	501
25	CD4+ T Cell Help Confers a Cytotoxic T Cell Effector Program Including Coinhibitory Receptor Downregulation and Increased Tissue Invasiveness. Immunity, 2017, 47, 848-861.e5.	14.3	292
26	CD70 limits atherosclerosis and promotes macrophage function. Thrombosis and Haemostasis, 2017, 117, 164-175.	3.4	21
27	Macrophages and osteoclasts stem from a bipotent progenitor downstream of a macrophage/osteoclast/dendritic cell progenitor. Blood Advances, 2017, 1, 1993-2006.	5.2	36
28	CD27 Agonism Plus PD-1 Blockade Recapitulates CD4+ T-cell Help in Therapeutic Anticancer Vaccination. Cancer Research, 2016, 76, 2921-2931.	0.9	113
29	Concomitant targeting of programmed death-1 (PD-1) and CD137 improves the efficacy of radiotherapy in a mouse model of human BRAFV600-mutant melanoma. Cancer Immunology, Immunotherapy, 2016, 65, 753-763.	4.2	32
30	Identification of the Common Origins of Osteoclasts, Macrophages, and Dendritic Cells in Human Hematopoiesis. Stem Cell Reports, 2015, 4, 984-994.	4.8	42
31	Targeting the T-cell co-stimulatory CD27/CD70 pathway in cancer immunotherapy: rationale and potential. Immunotherapy, 2015, 7, 655-667.	2.0	135
32	The importance of coâ€stimulation in the orchestration of T helper cell differentiation. Immunology and Cell Biology, 2015, 93, 780-788.	2.3	29
33	Thymusâ€derived regulatory T cells restrain proâ€inflammatory Th1 responses by downregulating <scp>CD</scp> 70 on dendritic cells. EMBO Journal, 2015, 34, 1336-1348.	7.8	33
34	A Common Progenitor for Macrophages, Osteoclasts and Dendritic Cells Newly Discovered in Human Bone Marrow and Cord Blood Yields Dendritic Cells with T-Cell Priming Ability. Blood, 2015, 126, 645-645.	1.4	0
35	Antiapoptotic potency of Bcl-2 proteins primarily relies on their stability, not binding selectivity. Blood, 2014, 123, 2806-2815.	1.4	81
36	The Curative Outcome of Radioimmunotherapy in a Mouse Breast Cancer Model Relies on mTOR Signaling. Radiation Research, 2014, 182, 219.	1.5	29

JANNIE BORST

#	Article	IF	CITATIONS
37	The CD27 and CD70 Costimulatory Pathway Inhibits Effector Function of T Helper 17 Cells and Attenuates Associated Autoimmunity. Immunity, 2013, 38, 53-65.	14.3	93
38	CD8+ T Cells Produce the Chemokine CXCL10 in Response to CD27/CD70 Costimulation To Promote Generation of the CD8+ Effector T Cell Pool. Journal of Immunology, 2013, 191, 3025-3036.	0.8	55
39	Epithelial and dendritic cells in the thymic medulla promote CD4+Foxp3+ regulatory T cell development via the CD27–CD70 pathway. Journal of Experimental Medicine, 2013, 210, 715-728.	8.5	122
40	CD27-CD70 Costimulation Controls T Cell Immunity during Acute and Persistent Cytomegalovirus Infection. Journal of Virology, 2013, 87, 6851-6865.	3.4	66
41	Osteoclast precursors in murine bone marrow express CD27 and are impeded in osteoclast development by CD70 on activated immune cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12385-12390.	7.1	29
42	Ubiquitination by the Membrane-associated RING-CH-8 (MARCH-8) Ligase Controls Steady-state Cell Surface Expression of Tumor Necrosis Factor-related Apoptosis Inducing Ligand (TRAIL) Receptor 1*. Journal of Biological Chemistry, 2013, 288, 6617-6628.	3.4	72
43	The CD4+ T-cell help signal is transmitted from APC to CD8+ T-cells via CD27–CD70 interactions. Nature Communications, 2012, 3, 948.	12.8	97
44	The TNFR family members OX40 and CD27 link viral virulence to protective T cell vaccines in mice. Journal of Clinical Investigation, 2011, 121, 296-307.	8.2	65
45	Dexamethasone treatment during the expansion phase maintains stemness of bone marrow mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 374-386.	2.7	54
46	The invariant chain transports TNF family member CD70 to MHC class II compartments in dendritic cells. Journal of Cell Science, 2010, 123, 3817-3827.	2.0	23
47	The Pim Kinase Pathway Contributes to Survival Signaling in Primed CD8+ T Cells upon CD27 Costimulation. Journal of Immunology, 2010, 185, 6670-6678.	0.8	65
48	CD27 sustains survival of CTLs in virus-infected nonlymphoid tissue in mice by inducing autocrine IL-2 production. Journal of Clinical Investigation, 2010, 120, 168-178.	8.2	98
49	Blocking CD27-CD70 Costimulatory Pathway Suppresses Experimental Colitis. Journal of Immunology, 2009, 183, 270-276.	0.8	45
50	Combining Radiotherapy with APO010 in Cancer Treatment. Clinical Cancer Research, 2009, 15, 2031-2038.	7.0	29
51	CD27 is a thymic determinant of the balance between interferon-γ- and interleukin 17–producing γδT cell subsets. Nature Immunology, 2009, 10, 427-436.	14.5	548
52	Costimulatory ligand CD70 allows induction of CD8+ T-cell immunity by immature dendritic cells in a vaccination setting. Blood, 2009, 113, 5167-5175.	1.4	59
53	Mice deficient for CD137 ligand are predisposed to develop germinal center–derived B-cell lymphoma. Blood, 2009, 114, 2280-2289.	1.4	35
54	Expression of Costimulatory Ligand CD70 on Steady-State Dendritic Cells Breaks CD8+ T Cell Tolerance and Permits Effective Immunity. Immunity, 2008, 29, 934-946.	14.3	135

#	Article	IF	CITATIONS
55	CD27 Instructs CD4+ T Cells to Provide Help for the Memory CD8+ T Cell Response after Protein Immunization. Journal of Immunology, 2008, 181, 1071-1082.	0.8	73
56	OX40 Costimulatory Signals Potentiate the Memory Commitment of Effector CD8+ T Cells. Journal of Immunology, 2008, 181, 5990-6001.	0.8	68
57	Apoptosis induction by Bid requires unconventional ubiquitination and degradation of its N-terminal fragment. Journal of Cell Biology, 2007, 179, 1453-1466.	5.2	104
58	Costimulatory ligand CD70 is delivered to the immunological synapse by shared intracellular trafficking with MHC class II molecules. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5989-5994.	7.1	55
59	Profiling Proteasome Activity in Tissue with Fluorescent Probes. Molecular Pharmaceutics, 2007, 4, 739-748.	4.6	78
60	Shaping immunity in healthy and diseased tissues. European Journal of Immunology, 2007, 37, 2055-2058.	2.9	0
61	TRAIL enhances efficacy of radiotherapy in a p53 mutant, Bcl-2 overexpressing lymphoid malignancy. Radiotherapy and Oncology, 2006, 80, 214-222.	0.6	34
62	Control of Peripheral T Cell Survival: A Delicate Division of Labor between Cytokines and Costimulatory Molecules. Human Immunology, 2006, 67, 469-477.	2.4	7
63	Immune stimulatory effects of CD70 override CD70-mediated immune cell apoptosis in rodent glioma models and confer long-lasting antiglioma immunityin vivo. International Journal of Cancer, 2006, 118, 1728-1735.	5.1	36
64	CD27 contributes to the early systemic immune response to Mycobacterium tuberculosis infection but does not affect outcome. International Immunology, 2006, 18, 1531-1539.	4.0	5
65	CD27 and CD70 in T cell and B cell activation. Current Opinion in Immunology, 2005, 17, 275-281.	5.5	335
66	Virus-induced polyclonal B cell activation improves protective CTL memoryvia retained CD27 expression on memory CTL. European Journal of Immunology, 2005, 35, 3229-3239.	2.9	42
67	During Viral Infection of the Respiratory Tract, CD27, 4-1BB, and OX40 Collectively Determine Formation of CD8+ Memory T Cells and Their Capacity for Secondary Expansion. Journal of Immunology, 2005, 175, 1665-1676.	0.8	186
68	Requirement for Aspartate-cleaved Bid in Apoptosis Signaling by DNA-damaging Anti-cancer Regimens. Journal of Biological Chemistry, 2004, 279, 28771-28780.	3.4	37
69	Ubiquitin Ligase Activity of c-Cbl Guides the Epidermal Growth Factor Receptor into Clathrin-coated Pits by Two Distinct Modes of Eps15 Recruitment. Journal of Biological Chemistry, 2004, 279, 55465-55473.	3.4	55
70	CD27 Is Acquired by Primed B Cells at the Centroblast Stage and Promotes Germinal Center Formation. Journal of Immunology, 2004, 172, 7432-7441.	0.8	126
71	c-Cbl directs EGF receptors into an endocytic pathway that involves the ubiquitin-interacting motif of Eps15. Journal of Cell Science, 2004, 117, 5001-5012.	2.0	46
72	Lethal T cell immunodeficiency induced by chronic costimulation via CD27-CD70 interactions. Nature Immunology, 2003, 4, 49-54.	14.5	214

#	Article	IF	CITATIONS
73	Ceramide: second messenger or modulator of membrane structure and dynamics?. Biochemical Journal, 2003, 369, 199-211.	3.7	399
74	CD27 Promotes Survival of Activated T Cells and Complements CD28 in Generation and Establishment of the Effector T Cell Pool. Journal of Experimental Medicine, 2003, 198, 1369-1380.	8.5	317
75	Expression of the Murine CD27 Ligand CD70 In Vitro and In Vivo. Journal of Immunology, 2003, 170, 33-40.	0.8	172
76	TRAIL Receptor and CD95 Signal to Mitochondria via FADD, Caspase-8/10, Bid, and Bax but Differentially Regulate Events Downstream from Truncated Bid. Journal of Biological Chemistry, 2002, 277, 40760-40767.	3.4	55
77	Bcl-2 Family Member Bfl-1/A1 Sequesters Truncated Bid to Inhibit Its Collaboration with Pro-apoptotic Bak or Bax. Journal of Biological Chemistry, 2002, 277, 22781-22788.	3.4	141
78	c-Cbl Is Involved in Met Signaling in B Cells and Mediates Hepatocyte Growth Factor-Induced Receptor Ubiquitination. Journal of Immunology, 2002, 169, 3793-3800.	0.8	57
79	Effect of Overexpression of a Neutral Sphingomyelinase on CD95-Induced Ceramide Production and Apoptosis. Biochemical and Biophysical Research Communications, 2001, 280, 634-639.	2.1	29
80	Constitutive CD27/CD70 Interaction Induces Expansion of Effector-Type T Cells and Results in IFNÎ ³ -Mediated B Cell Depletion. Immunity, 2001, 15, 801-812.	14.3	224
81	A Redundant Role of the CD3γ-Immunoreceptor Tyrosine-Based Activation Motif in Mature T Cell Function. Journal of Immunology, 2001, 166, 2576-2588.	0.8	35
82	c-Cbl ubiquitinates the EGF receptor at the plasma membrane and remains receptor associated throughout the endocytic route. Journal of Cell Science, 2001, 114, 2167-2178.	2.0	175
83	CD27 is required for generation and long-term maintenance of T cell immunity. Nature Immunology, 2000, 1, 433-440.	14.5	662
84	Glucosylceramide Synthase Does Not Attenuate the Ceramide Pool Accumulating during Apoptosis Induced by CD95 or Anti-cancer Regimens. Journal of Biological Chemistry, 2000, 275, 34810-34817.	3.4	54
85	Sphingomyelin Hydrolysis to Ceramide during the Execution Phase of Apoptosis Results from Phospholipid Scrambling and Alters Cell-Surface Morphology. Journal of Cell Biology, 2000, 150, 155-164.	5.2	193
86	Common Regulation of Apoptosis Signaling Induced by CD95 and the DNA-damaging Stimuli Etoposide and Î ³ -Radiation Downstream from Caspase-8 Activation. Journal of Biological Chemistry, 1999, 274, 14255-14261.	3.4	97
87	T cell signaling:. Human Immunology, 1999, 60, 403-411.	2.4	20
88	Ordering of ceramide formation, caspase activation, and mitochondrial changes during CD95- and DNA damage–induced apoptosis. Journal of Clinical Investigation, 1999, 103, 971-978.	8.2	157
89	The TNF receptor family member CD27 signals to Jun N-terminal kinase via Traf-2. European Journal of Immunology, 1998, 28, 2208-2216.	2.9	80
90	A pro-B-cell stage characterized by germline Ig transcription without surrogate light chain expression. Immunogenetics, 1998, 48, 305-311.	2.4	7

#	Article	IF	CITATIONS
91	Tumor necrosis factor receptor family members in the immune system. Seminars in Immunology, 1998, 10, 423-434.	5.6	149
92	The CD3γ chain is essential for development of both the TCRαβ and TCRγδ lineages. EMBO Journal, 1998, 17, 1871-1882.	7.8	162
93	CD95 (Fas/APO-1) Induces Ceramide Formation and Apoptosis in the Absence of a Functional Acid Sphingomyelinase. Journal of Biological Chemistry, 1998, 273, 7560-7565.	3.4	98
94	CD95/Fas-induced Ceramide Formation Proceeds with Slow Kinetics and Is Not Blocked by Caspase-3/CPP32 Inhibition. Journal of Biological Chemistry, 1997, 272, 24308-24312.	3.4	104
95	The Cbl Family of Signal Transduction Molecules. Critical Reviews in Oncogenesis, 1997, 8, 359-380.	0.4	65
96	Composition and function of T-cell receptor and B-cell receptor complexes on precursor lymphocytes. Current Opinion in Immunology, 1996, 8, 181-190.	5.5	71
97	Sos, Vav, and C3G Participate in B Cell Receptor-induced Signaling Pathways and Differentially Associate with Shc-Grb2, Crk, and Crk-L Adaptors. Journal of Biological Chemistry, 1996, 271, 8564-8569.	3.4	97
98	Assembled Pre-B Cell Receptor Complexes Are Retained in the Endoplasmic Reticulum by a Mechanism That Is Not Selective for the Pseudo-light Chain. Journal of Biological Chemistry, 1996, 271, 19272-19278.	3.4	40
99	Signaling through CD44 Is Mediated by Tyrosine Kinases. Journal of Biological Chemistry, 1996, 271, 2863-2867.	3.4	173
100	Assembly and intracellular transport of the human B cell antigen receptor complex. International Immunology, 1995, 7, 359-368.	4.0	42
101	Novel mAbs reveal potent co-stimulatory activity of murine CD27. International Immunology, 1995, 7, 551-557.	4.0	81
102	CD3 components at the surface of pro-T cells can mediate pre-T cell developmentin vivo. European Journal of Immunology, 1994, 24, 934-939.	2.9	149
103	γδT Lymphocytes in Mice and Man: A Review. , 1994, , 1-16.		0
104	The structure of the μ/pseudo light chain complex on human pre-B cells is consistent with a function in signal transduction. European Journal of Immunology, 1993, 23, 1088-1097.	2.9	51
105	Antigen Receptors on T and B Lymphocytes: Parallels in Organization and Function. Immunological Reviews, 1993, 132, 49-84.	6.0	48
106	Production and characterization of monoclonal antibodies raised against recombinant human granzymes A and B and showing cross reactions with the natural proteins. Journal of Immunological Methods, 1993, 163, 77-83.	1.4	82
107	The CD27 membrane receptor, a lymphocyte-specific member of the nerve growth factor receptor family, gives rise to a soluble form by protein processing that does not involve receptor endocytosis. European Journal of Immunology, 1992, 22, 447-455.	2.9	90
108	Both LFA-1-positive and -deficient T cell clones require the CD2/LFA-3 interaction for specific cytolytic activation. European Journal of Immunology, 1992, 22, 1467-1475.	2.9	18

#	Article	lF	CITATIONS
109	The T Cell Activation Molecule CD27 Is a Member of the Nerve Growth Factor Receptor Gene Family. , 1991, , 131-145.		4
110	T-Cell Receptor γδ Bearing Cells in Normal Human Skin. Journal of Investigative Dermatology, 1990, 94, 37-42.	0.7	120
111	Identification of two distinct phosphoproteins as components of the human B cell antigen receptor complex. European Journal of Immunology, 1990, 20, 2789-2793.	2.9	61
112	A new model for lethal hit delivery by cytotoxic T lymphocytes. Trends in Immunology, 1990, 11, 28-32.	7.5	87
113	Interaction of chondroitin sulfate with perforin and granzymes of cytolytic T-cells is dependent on pH. Biochemistry, 1990, 29, 11229-11235.	2.5	88
114	BMA031, a monoclonal antibody suited to identify the T-cell receptor αβ/CD3 complex on viable human T lymphocytes in normal and disease states. Human Immunology, 1990, 29, 175-188.	2.4	37
115	Alternative molecular form of human T cell-specific antigen CD27 expressed upon T cell activation. European Journal of Immunology, 1989, 19, 357-364.	2.9	34
116	Molecules relevant for T cell-target cell interaction are present in cytolytic granules of human T lymphocytes. European Journal of Immunology, 1989, 19, 1469-1475.	2.9	248
117	Non-random expression of T cell receptor γ and δ variable gene segments in functional T lymphocyte clones from human peripheral blood. European Journal of Immunology, 1989, 19, 1559-1568.	2.9	91
118	Epithelial homing of Î ³ δT cells?. Nature, 1989, 341, 114-114.	27.8	7
119	T cell depletion in transgenic mice carrying a mutant gene for TCR-β. Nature, 1989, 341, 742-746.	27.8	77
120	Structural and serological heterogeneity of γĴδT cell antigen receptor expression in thymus and peripherar blood. European Journal of Immunology, 1988, 18, 1985-1992.	2.9	82
121	Two types of gamma T cell receptors expressed by T cell acute lymphoblastic leukemias. European Journal of Immunology, 1987, 17, 1719-1728.	2.9	39
122	Distribution and functional analysis of a 120- to 130-kDa T-cell surface antigen. Cellular Immunology, 1987, 105, 161-173.	3.0	13
123	A T-cell receptor Î ³ /CD3 complex found on cloned functional lymphocytes. Nature, 1987, 325, 683-688.	27.8	450
124	A family of T-cell receptor molecules expressed on T-cell clones with different specificities for allomajor histocompatibility antigens. Human Immunology, 1986, 17, 426-442.	2.4	19
125	Biochemical and functional characteristics of the human leukocyte membrane antigen family LFA-1, Mo-1 and p!50,95. European Journal of Immunology, 1985, 15, 1142-1148.	2.9	161
126	Isolation of cDNA clones encoding the 20K T3 glycoprotein of human T-cell receptor complex. Nature, 1984, 312, 413-418.	27.8	238

#	Article	IF	CITATIONS
127	The Î- and Îμ-chains of the human T3/T-cell receptor complex are distinct polypeptides. Nature, 1984, 312, 455-458.	27.8	108
128	HLA-DC antigens can serve as recognition elements for human cytotoxic T lymphocytes. European Journal of Immunology, 1984, 14, 299-304.	2.9	147
129	The T3 complex on human thymus-derived lymphocytes contains two different subunits of 20 kDa. European Journal of Immunology, 1983, 13, 576-580.	2.9	106
130	Characterization of Monoclonal Antibodies Against Cell Surface Molecules Associated with Cytotoxic Activity of Natural and Activated Killer Cells and Cloned CTL Lines. Hybridoma, 1983, 2, 423-437.	0.6	143
131	TNFR2 Costimulation Differentially Impacts Regulatory and Conventional CD4+ T-Cell Metabolism. Frontiers in Immunology, 0, 13, .	4.8	7