Jose C Reyes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6244089/publications.pdf

Version: 2024-02-01

LOSE C REVES

#	Article	IF	CITATIONS
1	Co-transcriptional splicing efficiency is a gene-specific feature that can be regulated by TGFβ. Communications Biology, 2022, 5, 277.	4.4	4
2	SENP7 overexpression protects cancer cells from oxygen and glucose deprivation and associates with poor prognosis in colon cancer. Genes and Diseases, 2022, 9, 1419-1422.	3.4	2
3	The metabesity factor HMG20A potentiates astrocyte survival and reactive astrogliosis preserving neuronal integrity. Theranostics, 2021, 11, 6983-7004.	10.0	16
4	Human prefoldin modulates co-transcriptional pre-mRNA splicing. Nucleic Acids Research, 2021, 49, 6267-6280.	14.5	5
5	Deciphering CHFR Role in Pancreatic Ductal Adenocarcinoma. Frontiers in Medicine, 2021, 8, 720128.	2.6	1
6	TGFβ promotes widespread enhancer chromatin opening and operates on genomic regulatory domains. Nature Communications, 2020, 11, 6196.	12.8	21
7	213-OR: Obesity-Induced Astrogliosis Is Regulated by the Diabesity Factor HMG20A. Diabetes, 2020, 69, .	0.6	0
8	The Cornelia de Lange Syndrome-associated factor NIPBL interacts with BRD4 ET domain for transcription control of a common set of genes. Cell Death and Disease, 2019, 10, 548.	6.3	35
9	TBL1 is required for the mesenchymal phenotype of transformed breast cancer cells. Cell Death and Disease, 2019, 10, 95.	6.3	6
10	Dissecting the Brain/Islet Axis in Metabesity. Genes, 2019, 10, 350.	2.4	11
11	The type 2 diabetes-associated HMG20A gene is mandatory for islet beta cell functional maturity. Cell Death and Disease, 2018, 9, 279.	6.3	36
12	High expression of SMARCA4 or SMARCA2 is frequently associated with an opposite prognosis in cancer. Scientific Reports, 2018, 8, 2043.	3.3	100
13	Expression of TDRD9 in a subset of lung carcinomas by CpG island hypomethylation protects from DNA damage. Oncotarget, 2018, 9, 9618-9631.	1.8	29
14	Histone availability as a strategy to control gene expression. RNA Biology, 2017, 14, 281-286.	3.1	27
15	Analysis of the relationship between coexpression domains and chromatin 3D organization. PLoS Computational Biology, 2017, 13, e1005708.	3.2	49
16	Chromatin structure and pre-mRNA processing work together. Transcription, 2016, 7, 63-68.	3.1	11
17	A positioned +1 nucleosome enhances promoter-proximal pausing. Nucleic Acids Research, 2015, 43, 3068-3078.	14.5	46
18	The Chromatin Remodeler CHD8 Is Required for Activation of Progesterone Receptor-Dependent Enhancers. PLoS Genetics, 2015, 11, e1005174.	3.5	44

Jose C Reyes

#	Article	IF	CITATIONS
19	Defective histone supply causes changes in RNA polymerase II elongation rate and cotranscriptional pre-mRNA splicing. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14840-14845.	7.1	68
20	The chromatin remodeller CHD8 is required for E2F-dependent transcription activation of S-phase genes. Nucleic Acids Research, 2014, 42, 2185-2196.	14.5	72
21	The Many Faces of Plant SWI/SNF Complex. Molecular Plant, 2014, 7, 454-458.	8.3	38
22	The CopRS Two-Component System Is Responsible for Resistance to Copper in the Cyanobacterium <i>Synechocystis</i> sp. PCC 6803 Â Â Â. Plant Physiology, 2012, 159, 1806-1818.	4.8	88
23	Control of neuronal differentiation by sumoylation of BRAF35, a subunit of the LSD1-CoREST histone demethylase complex. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8085-8090.	7.1	68
24	p21 as a Transcriptional Co-Repressor of S-Phase and Mitotic Control Genes. PLoS ONE, 2012, 7, e37759.	2.5	42
25	Brahma Is Required for Proper Expression of the Floral Repressor FLC in Arabidopsis. PLoS ONE, 2011, 6, e17997.	2.5	50
26	To cross or not to cross the nucleosome, that is the elongation Âquestion…. RNA Biology, 2011, 8, 389-393.	3.1	8
27	BRG1 helps RNA polymerase II to overcome a nucleosomal barrier during elongation, <i>in vivo</i> . EMBO Reports, 2010, 11, 751-757.	4.5	49
28	The Beauty of Being a Variant: H2A.Z and the SWR1 Complex in Plants. Molecular Plant, 2009, 2, 565-577.	8.3	130
29	CHD3 Proteins and Polycomb Group Proteins Antagonistically Determine Cell Identity in Arabidopsis. PLoS Genetics, 2009, 5, e1000605.	3.5	141
30	SUMO association with repressor complexes, emerging routes for transcriptional control. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 451-459.	1.9	134
31	Histone H2A.Z and homologues of components of the SWR1 complex are required to control immunity in Arabidopsis. Plant Journal, 2008, 53, 475-487.	5.7	209
32	The PHD Domain of Plant PIAS Proteins Mediates Sumoylation of Bromodomain GTE Proteins. Journal of Biological Chemistry, 2008, 283, 21469-21477.	3.4	63
33	The Arabidopsis BRAHMA Chromatin-Remodeling ATPase Is Involved in Repression of Seed Maturation Genes in Leaves Â. Plant Physiology, 2008, 147, 1143-1157.	4.8	97
34	SEF, a New Protein Required for Flowering Repression in Arabidopsis, Interacts with PIE1 and ARP6. Plant Physiology, 2007, 143, 893-901.	4.8	119
35	The ammonium-inactivated cyanobacterial glutamine synthetase I is reactivatedin vivoby a mechanism involving proteolytic removal of its inactivating factors. Molecular Microbiology, 2007, 65, 166-179.	2.5	23
36	The putative SWI/SNF complex subunit BRAHMA activates flower homeotic genes in Arabidopsis thaliana. Plant Molecular Biology, 2006, 62, 291-304.	3.9	121

IF # ARTICLE CITATIONS Chromatin modifiers that control plant development. Current Opinion in Plant Biology, 2006, 9, 21-27. Ammonium assimilation in cyanobacteria. Photosynthesis Research, 2005, 83, 135-150. 38 2.9 241 The Arabidopsis thaliana SNF2 homolog AtBRM controls shoot development and flowering. 2.5 Development (Cambridge), 2004, 131, 4965-4975. The GATA Family of Transcription Factors in Arabidopsis and Rice. Plant Physiology, 2004, 134, 1718-1732. 40 4.8 331 The inactivating factor of glutamine synthetase, IF7, is a "natively unfolded―protein. Protein Science, 2003, 12, 1443-1454. 39 Diverse functions of Polycomb group proteins during plant development. Seminars in Cell and Developmental Biology, 2003, 14, 77-84. 42 5.0 47 Arsenic Sensing and Resistance System in the Cyanobacterium Synechocystis sp. Strain PCC 6803. Journal of Bacteriology, 2003, 185, 5363-5371. 2.2 Chromatin-Remodeling and Memory Factors. New Regulators of Plant Development. Plant Physiology, 44 4.8 100 2002, 130, 1090-1101. A two-component signal transduction system involved in nickel sensing in the cyanobacterium 2.5 Synechocystis sp. PCC 6803. Molecular Microbiology, 2002, 43, 247-256. 46 Regulation of Ammonium Assimilation in Cyanobacteria., 2002, , 93-113. 1 PML and COP1 – two proteins with much in common. Trends in Biochemical Sciences, 2001, 26, 18-20. The Glucocorticoid Receptor Interacting Protein 1 (GRIP1) Localizes in Discrete Nuclear Foci That 48 Associate with ND10 Bodies and Are Enriched in Components of the 26S Proteasome. Molecular 3.7 90 Endocrinology, 2001, 15, 485-500. Cyanobacteria Perceive Nitrogen Status by Sensing Intracellular 2-Oxoglutarate Levels. Journal of 3.4 283 Biological Chemistry, 2001, 276, 38320-38328. The Glucocorticoid Receptor Interacting Protein 1 (GRIP1) Localizes in Discrete Nuclear Foci That Associate with ND10 Bodies and Are Enriched in Components of the 26S Proteasome. Molecular 50 3.7 20 Endocrinology, 2001, 15, 485-500. NtcA represses transcription of gifA and gifB, genes that encode inhibitors of glutamine synthetase 110 type I from Synechocystis sp. PCC 6803. Molecular Microbiology, 2000, 35, 1192-1201. A Gene Cluster Involved in Metal Homeostasis in the Cyanobacterium Synechocystis sp. Strain PCC 52 2.2 97 6803. Journal of Bacteriology, 2000, 182, 1507-1514. Tracking Components of the Transcription Apparatus in Living Cells. Methods, 1999, 19, 353-361. 3.8

JOSE C REYES

95

ras transformation is associated with decreased expression of the brm/SNF2alpha ATPase from the mammalian SWI-SNF complex. EMBO Journal, 1998, 17, 223-231.

JOSE C REYES

#	Article	IF	CITATIONS
55	Altered control of cellular proliferation in the absence of mammalian brahma (SNF2α). EMBO Journal, 1998, 17, 6979-6991.	7.8	400
56	Ammonium assimilation in cyanobacteria. The Regulation of the GS-GOGAT Pathway. , 1998, , 3607-3612.		2
57	Components of the Human SWI/SNF Complex Are Enriched in Active Chromatin and Are Associated with the Nuclear Matrix. Journal of Cell Biology, 1997, 137, 263-274.	5.2	216
58	Purification and Characterization of A New Type of Glutamine Synthetase from Cyanobacteria. FEBS Journal, 1997, 244, 258-264.	0.2	41