
Branko Kerkez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6243626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	OpenWSN: a standardsâ€based lowâ€power wireless development environment. Transactions on Emerging Telecommunications Technologies, 2012, 23, 480-493.	3.9	228
2	Smarter Stormwater Systems. Environmental Science & amp; Technology, 2016, 50, 7267-7273.	10.0	159
3	Field and Laboratory Evaluations of the Low-Cost Plantower Particulate Matter Sensor. Environmental Science & Technology, 2019, 53, 838-849.	10.0	143
4	Real-time environmental sensor data: An application to water quality using web services. Environmental Modelling and Software, 2016, 84, 505-517.	4.5	88
5	Design and performance of a wireless sensor network for catchmentâ€scale snow and soil moisture measurements. Water Resources Research, 2012, 48, .	4.2	67
6	Deep reinforcement learning for the real time control of stormwater systems. Advances in Water Resources, 2020, 140, 103600.	3.8	61
7	Open storm: a complete framework for sensing and control of urban watersheds. Environmental Science: Water Research and Technology, 2018, 4, 346-358.	2.4	57
8	Realâ€Time Control of Urban Headwater Catchments Through Linear Feedback: Performance, Analysis, and Site Selection. Water Resources Research, 2018, 54, 7309-7330.	4.2	48
9	Emerging investigators series: building a theory for smart stormwater systems. Environmental Science: Water Research and Technology, 2017, 3, 66-77.	2.4	44
10	Pipedream: An interactive digital twin model for natural and urban drainage systems. Environmental Modelling and Software, 2021, 144, 105120.	4.5	41
11	Real time control schemes for improving water quality from bioretention cells. Blue-Green Systems, 2019, 1, 55-71.	2.0	28
12	Sensing and Cyberinfrastructure for Smarter Water Management: The Promise and Challenge of Ubiquity. Journal of Water Resources Planning and Management - ASCE, 2014, 140, .	2.6	25
13	Shaping Streamflow Using a Real-Time Stormwater Control Network. Sensors, 2018, 18, 2259.	3.8	25
14	An automated toolchain for the data-driven and dynamical modeling of combined sewer systems. Water Research, 2017, 126, 88-100.	11.3	21
15	Windshield wipers on connected vehicles produce high-accuracy rainfall maps. Scientific Reports, 2019, 9, 170.	3.3	20
16	Adaptive measurements of urban runoff quality. Water Resources Research, 2016, 52, 8986-9000.	4.2	19
17	Sensor placement strategies for snow water equivalent (SWE) estimation in the American River basin. Water Resources Research, 2013, 49, 891-903.	4.2	18
18	Are all data useful? Inferring causality to predict flows across sewer and drainage systems using directed information and boosted regression trees. Water Research, 2018, 145, 697-706.	11.3	17

BRANKO KERKEZ

#	Article	IF	CITATIONS
19	Stationary and portable multipollutant monitors for high-spatiotemporal-resolution air quality studies including online calibration. Atmospheric Measurement Techniques, 2021, 14, 995-1013.	3.1	16
20	Awa: Using water distribution systems to transmit data. Transactions on Emerging Telecommunications Technologies, 2018, 29, e3219.	3.9	14
21	Balancing water quality and flows in combined sewer systems using real-time control. Environmental Science: Water Research and Technology, 2020, 6, 1357-1369.	2.4	14
22	Cloud Hosted Realâ€ŧime Data Services for the Geosciences (CHORDS). Geoscience Data Journal, 2016, 3, 4-8.	4.4	12
23	Detroit River phosphorus loads: Anatomy of a binational watershed. Journal of Great Lakes Research, 2019, 45, 1150-1161.	1.9	12
24	Urban total phosphorus loads to the St. Clair-Detroit River System. Journal of Great Lakes Research, 2019, 45, 1142-1149.	1.9	12
25	High-resolution hydrologic forecasting for very large urban areas. Journal of Hydroinformatics, 2019, 21, 441-454.	2.4	11
26	Hydrograph peak-shaving using a graph-theoretic algorithm for placement of hydraulic control structures. Advances in Water Resources, 2019, 127, 167-179.	3.8	11
27	Wireless Sensors for Measuring Drinking Water Quality in Building Plumbing: Deployments and Insights from Continuous and Intermittent Water Supply Systems. ACS ES&T Engineering, 2022, 2, 423-433.	7.6	11
28	TDMA-Based Dual-Mode Communication for Mobile Wireless Sensor Networks. Sensors, 2012, 12, 16194-16210.	3.8	7
29	Observabilityâ€Based Sensor Placement Improves Contaminant Tracing in River Networks. Water Resources Research, 2021, 57, e2020WR029551.	4.2	7
30	Distance-Penalized Active Learning Using Quantile Search. IEEE Transactions on Signal Processing, 2017, 65, 5453-5465.	5.3	6
31	Extracting useful signals from flawed sensor data: Developing hybrid data-driven approaches with physical factors. Water Research, 2020, 185, 116282.	11.3	6
32	StormReactor: An open-source Python package for the integrated modeling of urban water quality and water balance. Environmental Modelling and Software, 2021, 145, 105175.	4.5	6
33	Big S hip D ata: Using vessel measurements to improve estimates of temperature and wind speed on the G reat L akes. Water Resources Research, 2017, 53, 3662-3679.	4.2	4
34	Using Sensor Data to Dynamically Map Large cale Models to Site cale Forecasts: A Case Study Using the National Water Model. Water Resources Research, 2018, 54, 5636-5653.	4.2	4
35	An Automated Toolchain for Camera-Enabled Sensing of Drinking Water Chlorine Residual. ACS ES&T Engineering, 2022, 2, 1697-1708.	7.6	4
36	Quantile search: A distance-penalized active learning algorithm for spatial sampling. , 2015, , .		3