Margus Lopp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6243496/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enantioselective Henry Reaction Catalyzed by Cu ^{II} Salt and Bipiperidine. Journal of Organic Chemistry, 2010, 75, 1313-1316.	3.2	121
2	Structural deviations in poly(amidoamine) dendrimers: a MALDI-TOF MS analysis. European Polymer Journal, 2003, 39, 33-42.	5.4	120
3	Simple access to β-trifluoromethyl-substituted ketones via copper-catalyzed ring-opening trifluoromethylation of substituted cyclopropanols. Chemical Communications, 2015, 51, 8349-8352.	4.1	91
4	Asymmetric Baeyer-Villiger oxidation of cyclobutanones. Tetrahedron Letters, 1996, 37, 7583-7586.	1.4	80
5	Organocatalytic Asymmetric Synthesis of 3-Chlorooxindoles Bearing Adjacent Quaternary–Tertiary Centers. Organic Letters, 2012, 14, 4922-4925.	4.6	80
6	Enantioselective Organocatalytic Aza-Ene-Type Domino Reaction Leading to 1,4-Dihydropyridines. Journal of Organic Chemistry, 2011, 76, 1538-1545.	3.2	74
7	3â€Chlorooxindoles: Versatile Starting Materials for Asymmetric Organocatalytic Synthesis of Spirooxindoles. Advanced Synthesis and Catalysis, 2013, 355, 829-835.	4.3	73
8	Bimorpholine-Mediated Enantioselective Intramolecular and Intermolecular Aldol Condensation. Journal of Organic Chemistry, 2007, 72, 5168-5173.	3.2	61
9	Enantioselective Organocatalytic Michael Addition of Aldehydes to Î ² -Nitrostyrenes. Journal of Organic Chemistry, 2009, 74, 3772-3775.	3.2	57
10	A Novel Diastereoselective Multicomponent Cascade Reaction. Organic Letters, 2010, 12, 2230-2233.	4.6	47
11	Asymmetric Synthesis of Congested Spiro-cyclopentaneoxindoles via an Organocatalytic Cascade Reaction. Journal of Organic Chemistry, 2013, 78, 8117-8122.	3.2	47
12	Synthesis of Î ³ -keto sulfones by copper-catalyzed oxidative sulfonylation of tertiary cyclopropanols. Organic and Biomolecular Chemistry, 2017, 15, 8334-8340.	2.8	45
13	Application of capillary zone electrophoresis to the separation and characterization of poly(amidoamine) dendrimers with an ethylenediamine core. Journal of Chromatography A, 2002, 949, 351-358.	3.7	41
14	Design and Validation of Novel Chikungunya Virus Protease Inhibitors. Antimicrobial Agents and Chemotherapy, 2016, 60, 7382-7395.	3.2	40
15	Remote Activation of the Nucleophilicity of Isatin. Organic Letters, 2014, 16, 1740-1743.	4.6	36
16	Determination of the absolute configuration of chiral secondary alcohols; new advances using 13C- and 2D-NMR spectroscopy. Tetrahedron: Asymmetry, 1993, 4, 1527-1532.	1.8	35
17	Asymmetric oxidation of cyclobutanones: modification of the Sharpless catalyst. Tetrahedron: Asymmetry, 1998, 9, 4475-4482.	1.8	34
18	Two-step conversion of carboxylic esters into distally fluorinated ketones via ring cleavage of cyclopropanol intermediates: application of sulfinate salts as fluoroalkylating reagents. Organic and Biomolecular Chemistry, 2017, 15, 4635-4643.	2.8	34

#	Article	IF	CITATIONS
19	Asymmetric Diastereoselective Synthesis of Spirocyclopropane Derivatives of Oxindole. European Journal of Organic Chemistry, 2014, 2014, 3599-3606.	2.4	30
20	Fragmentation of poly(amidoamine) dendrimers in matrix-assisted laser desorption. European Polymer Journal, 2005, 41, 2552-2558.	5.4	28
21	Enantioselective One-Pot Synthesis of α,β-Epoxy Ketones via Aerobic Oxidation of Cyclopropanols. Organic Letters, 2017, 19, 3544-3547.	4.6	24
22	Structural constraints for C2-symmetric heterocyclic organocatalysts in asymmetric aldol reactions. Tetrahedron: Asymmetry, 2008, 19, 641-645.	1.8	23
23	A short enantioselective synthesis of homocitric acid-Î ³ -lactone and 4-hydroxy-homocitric acid-Î ³ -lactones. Tetrahedron, 2004, 60, 9081-9084.	1.9	21
24	Insight into the Mechanism and Stereochemistry of the Transformations of Alkyltitanium Ate-Complexes. An Enhanced Enantioselectivity in the Cyclopropanation of the Carboxylic Esters with Titanacyclopropane Reagents. Advanced Synthesis and Catalysis, 2014, 356, 3615-3626.	4.3	21
25	Direct asymmetric \hat{I}_{\pm} -hydroxylation of \hat{I}^2 -hydroxyketones. Tetrahedron Letters, 1997, 38, 5051-5054.	1.4	20
26	Synthesis of 4′-aryl-2′,3′-dideoxynucleoside analogues. Tetrahedron, 2009, 65, 2959-2965.	1.9	20
27	Direct asymmetric α-hydroxylation of 2-hydroxymethyl ketones. Tetrahedron, 2002, 58, 7321-7326.	1.9	19
28	Asymmetric oxidation of 3-alkyl-1,2-cyclopentanediones. Part 2: Oxidative ring cleavage of 3-alkyl-1,2-cyclopentanediones: synthesis of 2-alkyl-Î ³ -lactone acids. Tetrahedron: Asymmetry, 2003, 14, 1565-1573.	1.8	19
29	Properties of humic substances from the baltic sea and lake ermistu mud. Journal of Soils and Sediments, 2004, 4, 24-29.	3.0	19
30	Asymmetric transfer hydrogenation of aromatic ketones by Rh(I)/bimorpholine complexes. Tetrahedron: Asymmetry, 2004, 15, 2687-2691.	1.8	19
31	pKa calculation for monoprotonated bipiperidine, bimorpholine and their derivatives in H2O and MeCN. Chemical Physics Letters, 2010, 485, 83-86.	2.6	19
32	Synthesis of a novel four-carbon chiron - (R)-1-t-butyldimethylsilyl-3, 4-epoxy-but- 1-yne. Tetrahedron: Asymmetry, 1991, 2, 943-944.	1.8	18
33	Asymmetric oxidation of 1,2-cyclopentanediones. Tetrahedron Letters, 2000, 41, 6883-6887.	1.4	17
34	Asymmetric synthesis of 4′-C-benzyl-2′,3′-dideoxynucleoside analogues from 3-benzyl-2-hydroxy-2-cyclopenten-1-one. Tetrahedron: Asymmetry, 2008, 19, 628-634.	1.8	17
35	Synthesis of chiral epoxyalkynes. Tetrahedron: Asymmetry, 1998, 9, 2499-2508.	1.8	16
36	Divergent Access to Histone Deacetylase Inhibitory Cyclopeptides via a Late-Stage Cyclopropane Ring Cleavage Strategy. Short Synthesis of Chlamydocin. Organic Letters, 2019, 21, 8473-8478.	4.6	16

#	Article	IF	CITATIONS
37	Asymmetric synthesis of 2-alkyl-substituted 2-hydroxyglutaric acid Î ³ -lactones. Tetrahedron Letters, 2006, 47, 4491-4493.	1.4	15
38	Asymmetric synthesis of novel C2-symmetric bimorpholines. Tetrahedron: Asymmetry, 2002, 13, 857-865.	1.8	14
39	Diastereoselective Multicomponent Cascade Reaction Leading to [3.2.0]-Heterobicyclic Compounds. Journal of Organic Chemistry, 2012, 77, 10680-10687.	3.2	14
40	Synthesis of (2S,2′S)-bimorpholine N,N′-quaternary salts as chiral phase transfer catalysts. Tetrahedron: Asymmetry, 2007, 18, 137-141.	1.8	13
41	3-Alkyl-1,2-cyclopentanediones by Negishi cross-coupling of a 3-bromo-1,2-cyclopentanedione silyl enol ether with alkylzinc reagents: an approach to 2-substituted carboxylic acid γ-lactones, homocitric and lycoperdic acids. Tetrahedron, 2015, 71, 9313-9320.	1.9	13
42	An optimized capillary electrophoresis method for the simultaneous analysis of biomass degradation products in ionic liquid containing samples. Journal of Chromatography A, 2016, 1447, 141-147.	3.7	13
43	Asymmetric oxidation of 3-alkyl-1,2-cyclopentanediones. Part 1: 3-Hydroxylation of 3-alkyl-1,2-cyclopentanediones. Tetrahedron: Asymmetry, 2002, 13, 2439-2448.	1.8	12
44	Electrophoretic aggregation of humic acid. Journal of Chromatography A, 2004, 1045, 253-258.	3.7	12
45	Organocatalytic asymmetric addition of malonates to unsaturated 1,4-diketones. Beilstein Journal of Organic Chemistry, 2012, 8, 1452-1457.	2.2	12
46	C2-Symmetric bimorpholines as chiral ligands in the asymmetric hydrogenation of ketones. Tetrahedron: Asymmetry, 2003, 14, 2271-2275.	1.8	11
47	Cyclic amino acid salts as catalysts for the asymmetric Michael reaction. Tetrahedron: Asymmetry, 2010, 21, 562-565.	1.8	11
48	Electrochemical Hydroxylation of Electronâ€Rich Arenes in Continuous Flow. European Journal of Organic Chemistry, 2022, 2022, .	2.4	11
49	Organocatalytic asymmetric synthesis of trisubstituted pyrrolidines via a cascade reaction. Tetrahedron: Asymmetry, 2012, 23, 188-198.	1.8	10
50	Unexpected Reactivity of Ethyl 2-(Diethylphosphono)Propionate Toward 2,2-Disubstituted-1,3-cyclopentanediones. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 1739-1748.	1.6	9
51	Asymmetric Synthesis of Tertiary 2-Substituted 5-Oxotetrahydrofuran-2-carboxylic Acids. Heterocycles, 2014, 88, 981.	0.7	9
52	Metal-Catalyzed Degradation of Cellulose in Ionic Liquid Media. Inorganics, 2018, 6, 78.	2.7	9
53	Aerobic Oxidations in Asymmetric Synthesis: Catalytic Strategies and Recent Developments. Frontiers in Chemistry, 2021, 9, 614944.	3.6	9
54	Synthesis of chiral hydroxylated cyclopentanones and cyclopentanes. Tetrahedron: Asymmetry, 2006, 17, 2678-2683.	1.8	8

#	Article	IF	CITATIONS
55	Synthesis of Novel Acyclic Nucleoside Analogues with Anti-Retroviral Activity. Nucleosides, Nucleotides and Nucleic Acids, 2010, 29, 707-720.	1.1	8
56	Sonogashira cross-coupling of 3-bromo-1,2-diones: an access toÂ3-alkynyl-1,2-diones. Tetrahedron, 2014, 70, 5843-5848.	1.9	8
57	Novel Analogues of the Chikungunya Virus Protease Inhibitor: Molecular Design, Synthesis, and Biological Evaluation. ACS Omega, 2021, 6, 10884-10896.	3.5	8
58	A Highly Stereoselective Synthesis of a New Propargylic Epoxide: (3R,4S)-1-tert-Butyldimethylsilyl-3,4-epoxy-1-pentyne. Synthesis, 1993, 1993, 91-93.	2.3	7
59	Interactions of Pb2+ with fulvic acid by electrophoretically mediated on-capillary microanalysis. Journal of Chromatography A, 2004, 1057, 253-256.	3.7	7
60	Cyclopentane-1,2-dione bis(tert-butyldimethylsilyl) enol ether in asymmetric organocatalytic Mukaiyama–Michael reactions. Tetrahedron Letters, 2012, 53, 1476-1478.	1.4	7
61	A general approach to the synthesis of 5-S-functionalized pyrimidine nucleosides and their analogues. Organic and Biomolecular Chemistry, 2014, 12, 5634-5644.	2.8	7
62	Enantioselective Organocatalytic Michael Addition–Cyclization Cascade of Cyclopentane-1,2-dione with Substituted (E)-2-oxobut-3-enoates. Synthesis, 2015, 47, 3805-3812.	2.3	7
63	Aqueous mineral carbonation of oil shale mine waste (limestone): A feasibility study to develop a CO2 capture sorbent. Energy, 2021, 221, 119895.	8.8	7
64	Asymmetric oxidation of 3-alkyl-1,2-cyclopentanediones. Part 3: Oxidative ring cleavage of 3-hydroxyethyl-1,2-cyclopentanediones: synthesis of α-hydroxy-γ-lactone acids and spiro-γ-dilactones. Tetrahedron: Asymmetry, 2003, 14, 2393-2399.	1.8	6
65	A Comparative Study of theSynthesis of C2-Symmetric Chiral 2,2′-Biaziridinyls. Synlett, 2003, 2003, 1055-1057.	1.8	6
66	Synthesis and Biological Activity of Bimorpholine and its Carbanucleoside. Nucleosides, Nucleotides and Nucleic Acids, 2011, 30, 897-907.	1.1	6
67	Oxidation of cyclopentane-1,2-dione: a study with 18O labeled reagents. Tetrahedron, 2011, 67, 5942-5948.	1.9	6
68	Indole-like Trk receptor antagonists. European Journal of Medicinal Chemistry, 2016, 121, 541-552.	5.5	6
69	Solvent selectivity in the resolution of some regioisomeric and diastereomeric prostaglandin intermediates on silica. Journal of Chromatography A, 1988, 449, 77-94.	3.7	5
70	Synthesis and anti-aggregative activity of novel ω-achiral carba-analogues of prostacyclin. European Journal of Medicinal Chemistry, 1992, 27, 155-159.	5.5	5
71	Pharmacological properties of MM-706, a new prostacyclin derivative. General Pharmacology, 1995, 26, 703-709.	0.7	5
72	Synthesis of 5,5′-Disubstituted Bimorpholines. Synthetic Communications, 2009, 40, 266-281.	2.1	5

#	Article	IF	CITATIONS
73	Theoretical prediction and assignment of vicinal ¹ H– ¹ H coupling constants of diastereomeric 3â€alkoxyâ€6,7â€epoxyâ€2â€oxabicyclo[3.3.0]octanes. Magnetic Resonance in Chemistry, 20 49, 76-82.	11,9	5
74	Enantioselective Organocatalytic Michael Addition of Cyclopentane-1,2-diones to Nitroolefins. Synthesis, 2014, 46, 2595-2600.	2.3	5
75	Preparative liquid chromatographic separation of isomers of prostacyclin carba-analogues and their intermediates. Journal of Chromatography A, 1988, 450, 105-109.	3.7	4
76	Synthesis of a Novel, Optically Active 15-Nonstereogenic Carbaprostacyclin. Synthesis, 1992, 1992, 925-927.	2.3	4
77	Anchimeric Assistance in the Case of Vicinal Dimesylate: Formation of Enantiomeric or meso-Bimorpholine. Synthesis, 2006, 2006, 1853-1857.	2.3	4
78	Aerobic Oxidation of Cyclopentane-1,2-diols to Cyclopentane-1,2-diones on Pt/C Catalyst. Synlett, 2008, 2008, 347-350.	1.8	4
79	Influence of protonation upon the conformations of bipiperidine, bimorpholine, and their derivatives. Chemical Physics Letters, 2009, 471, 92-96.	2.6	4
80	Asymmetric Aminocatalytic Michael Addition of Cyclopropane-Containing Aldehydes to Nitroalkenes. Synthesis, 2013, 45, 2679-2683.	2.3	4
81	Asymmetric Organocatalytic Michael Addition–Cyclization Cascade of Cyclopentane-1,2-dione with Substituted α,l²-Unsaturated Aldehydes. Synthesis, 2017, 49, 3118-3125.	2.3	4
82	Designed whole-cell-catalysis-assisted synthesis of 9,11-secosterols. Beilstein Journal of Organic Chemistry, 2021, 17, 581-588.	2.2	4
83	Enantioselective Synthesis of Wieland-Miescher Ketone through Bimorpholine-Catalyzed Organocatalytic Aldol Condensation. Synlett, 2006, 2006, 1699-1702.	1.8	3
84	Stereoselective synthesis of 1-methyl-1,2-and 1,3-cyclopentanediols via Î ³ -lactones. Chemistry of Heterocyclic Compounds, 2013, 48, 1751-1760.	1.2	3
85	Heterogeneous platinum catalytic aerobic oxidation of cyclopentane-1,2-diols to cyclopentane-1,2-diones. Tetrahedron, 2014, 70, 3608-3613.	1.9	3
86	Asymmetric synthesis of the 2,2,3-trisubstituted cyclopentanone, D-ring fragment of 9,11-secosterols. Tetrahedron, 2014, 70, 6723-6727.	1.9	3
87	Kinetic resolution of epoxy alcohols with the Sharpless Ti-isopropoxide/tartaric ester complex. Tetrahedron: Asymmetry, 2016, 27, 608-613.	1.8	3
88	Aerobic cascade oxidation of substituted cyclopentane-1,2-diones using metalloporphyrin catalysts. Tetrahedron, 2018, 74, 661-664.	1.9	3
89	Towards ortho-selective electrophilic substitution/addition to phenolates in anhydrous solvents. Tetrahedron, 2021, 83, 131935.	1.9	3
90	Analogues of thromboxane A2. Tetrahedron, 1995, 51, 10561-10570.	1.9	2

#	Article	IF	CITATIONS
91	Synthesis of the AB-Ring of 9,11-Secosterols. Synlett, 2000, 2000, 529-531.	1.8	2
92	Humic substances as a background electrolyte in capillary electrophoresis. Chemistry and Ecology, 2010, 26, 157-165.	1.6	2
93	Amination of quinolones with morpholine derivatives. Tetrahedron, 2012, 68, 9550-9555.	1.9	2
94	Synthesis of Cyclic 3-Aryl-Substituted 1,2-Dicarbonyl Compounds via Suzuki Cross-Coupling Reactions. Synthesis, 2018, 50, 1883-1890.	2.3	2
95	Reactivity of Aliphatic Dicarboxylic Acids in Wet Air Oxidation Conditions. Industrial & Engineering Chemistry Research, 2019, 58, 10855-10863.	3.7	2
96	Wet Air Oxidation of Oil Shales: Kerogen Dissolution and Dicarboxylic Acid Formation. ACS Omega, 2020, 5, 22021-22030.	3.5	2
97	Asymmetric Synthesis of 2-Aryl-5-oxotetrahydrofuran-2-carboxylic Acids. Synthesis, 2006, 2006, 3031-3036.	2.3	1
98	Suppression of solute–wall interactions in humic acid capillary electrophoretic analysis by its diluted solution as background electrolyte. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302, 634-637.	4.7	1
99	Selective C-alkylation of substituted naphthols under non-aqueous conditions. Tetrahedron, 2021, 95, 132278.	1.9	1
100	Generation of Mixed Anhydrides via Oxidative Fragmentation of Tertiary Cyclopropanols with Phenyliodine(III) Dicarboxylates. Molecules, 2021, 26, 140.	3.8	1
101	Synthesis and antiproliferative activity of 15-oxoprostaglandins: Contribution of the ω-chain enone group to cytotoxicity. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 1739-1744.	2.2	0
102	Comparison of the Antiâ€Aggregatory Activity of Enantiomers of a 15â€Non‣tereogenic Carbacyclin Analogue MM706. Basic and Clinical Pharmacology and Toxicology, 1995, 76, 297-298.	0.0	0
103	A Comparative Study of the Synthesis of C2-Symmetric Chiral 2,2′-Biaziridinyls ChemInform, 2003, 34, no.	0.0	0
104	C2-Symmetric Bimorpholines as Chiral Ligands in the Asymmetric Hydrogenation of Ketones ChemInform, 2003, 34, no.	0.0	0
105	Asymmetric Transfer Hydrogenation of Aromatic Ketones by Rh(I)/Bimorpholine Complexes ChemInform, 2005, 36, no.	0.0	0
106	(1S,2S,6S,9S)-6-Methyl-5-oxobicyclo[4.4.0]decane-2,9-diyl diacetate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o2584-o2584.	0.2	0
107	Isomers and conformers of complexes of Ti(O <i>i</i> Pr) ₄ with cyclopentane $\hat{a} \in 1,2\hat{a} \in d$ ione: NMR study and DFT calculations. International Journal of Quantum Chemistry, 2014, 114, 1012-1018.	2.0	0
108	Synthesis of chiral tetrahydrofuran derivatives. Arkivoc, 2010, 2009, 39-52.	0.5	0