Songwang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/624323/publications.pdf

Version: 2024-02-01

257450 206112 2,324 57 24 48 citations g-index h-index papers 57 57 57 4306 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Controlled Synthesis and Self-Assembly of CeO2Nanocubes. Journal of the American Chemical Society, 2006, 128, 9330-9331.	13.7	402
2	Facile Synthesis and Shape Evolution of Singleâ€Crystal Cuprous Oxide. Advanced Materials, 2009, 21, 2068-2071.	21.0	219
3	Forest-like TiO2 hierarchical structures for efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 6824.	6.7	112
4	Template-Free Synthesis of Hierarchical TiO ₂ Structures and Their Application in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2011, 3, 2148-2153.	8.0	98
5	Achieving high-performance planar perovskite solar cells with co-sputtered Co-doping NiO _x hole transport layers by efficient extraction and enhanced mobility. Journal of Materials Chemistry C, 2016, 4, 10839-10846.	5.5	98
6	Ultrasmooth Perovskite Film via Mixed Anti-Solvent Strategy with Improved Efficiency. ACS Applied Materials & Samp; Interfaces, 2017, 9, 3667-3676.	8.0	98
7	New Method to Prepare Nitrogenâ€Doped Titanium Dioxide and Its Photocatalytic Activities Irradiated by Visible Light. Journal of the American Ceramic Society, 2004, 87, 1803-1805.	3.8	94
8	A general precipitation strategy for large-scale synthesis of molybdate nanostructures. Chemical Communications, 2008, , 5601.	4.1	77
9	Growth of Various TiO ₂ Nanostructures for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 1819-1823.	3.1	76
10	Characterization of Perovskite Obtained from Two-Step Deposition on Mesoporous Titania. ACS Applied Materials & Deposition on Mesoporous Titania.	8.0	58
11	Fast and Controllable Crystallization of Perovskite Films by Microwave Irradiation Process. ACS Applied Materials & Samp; Interfaces, 2016, 8, 7854-7861.	8.0	58
12	Preparation of Titanium Dioxide Nanocrystallite with High Photocatalytic Activities. Journal of the American Ceramic Society, 2005, 88, 968-970.	3.8	56
13	High Efficiency Semiconductorâ€Liquid Junction Solar Cells based on Cu/Cu ₂ 0. Advanced Functional Materials, 2012, 22, 3907-3913.	14.9	51
14	Pore Size Dependent Hysteresis Elimination in Perovskite Solar Cells Based on Highly Porous TiO ₂ Films with Widely Tunable Pores of 15–34 nm. Chemistry of Materials, 2016, 28, 7134-7144.	6.7	50
15	Achieving High Current Density of Perovskite Solar Cells by Modulating the Dominated Facets of Room-Temperature DC Magnetron Sputtered TiO ₂ Electron Extraction Layer. ACS Applied Materials & Diterraces, 2017, 9, 2016-2022.	8.0	47
16	CsPbI ₂ Br Perovskite Solar Cells Based on Carbon Black-Containing Counter Electrodes. ACS Applied Materials & Diterfaces, 2020, 12, 34882-34889.	8.0	47
17	An Effective TiO2 Blocking Layer for Perovskite Solar Cells with Enhanced Performance. Chemistry Letters, 2015, 44, 624-626.	1.3	37
18	A facile way to prepare nanoporous Pbl ₂ films and their application in fast conversion to CH ₃ NH ₃ Pbl ₃ . RSC Advances, 2016, 6, 1611-1617.	3.6	36

#	Article	IF	CITATIONS
19	Fabrication and shape-evolution of nanostructured TiO2 via a sol–solvothermal process based on benzene–water interfaces. Materials Chemistry and Physics, 2006, 99, 437-440.	4.0	32
20	Cyclic Utilization of Lead in Carbon-Based Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2018, 6, 7558-7564.	6.7	30
21	Facile and Surfactant-Free Route to Nanocrystalline Mesoporous Tin Oxide. Journal of the American Ceramic Society, 2006, 89, 1742-1744.	3.8	29
22	Minimizing the energy loss of perovskite solar cells with Cu+ doped NiOx processed at room temperature. Solar Energy Materials and Solar Cells, 2018, 182, 128-135.	6.2	28
23	Study on the correlations between the structure and photoelectric properties of CH3NH3Pbl3 perovskite light-harvesting material. Journal of Power Sources, 2015, 285, 349-353.	7.8	27
24	Nucleation mediated interfacial precipitation for architectural perovskite films with enhanced photovoltaic performance. Nanoscale, 2017, 9, 2569-2578.	5.6	27
25	Fabrication of well-defined water-soluble core/shell heteronanostructures through the SiO2 spacer. Chemical Communications, 2007, , 1272.	4.1	23
26	Fabrication and Characterization of Nanostructurally Flowerlike Aggregates of TiO2via a Surfactant-free Solution Route: Effect of Various Reaction Media. Chemistry Letters, 2005, 34, 1044-1045.	1.3	22
27	Low-temperature Synthesis of Crystalline TiO2Nanorods: Mass Production Assisted by Surfactant. Chemistry Letters, 2005, 34, 964-965.	1.3	22
28	Fast Fabrication of a Stable Perovskite Solar Cell with an Ultrathin Effective Novel Inorganic Hole Transport Layer. Langmuir, 2017, 33, 3624-3634.	3.5	22
29	Enhanced interfacial electron transfer of inverted perovskite solar cells by introduction of CoSe into the electron-transporting-layer. Journal of Power Sources, 2017, 353, 123-130.	7.8	22
30	Perovskite films with a sacrificial cation for solar cells with enhanced stability based on carbon electrodes. Journal of Alloys and Compounds, 2019, 797, 811-819.	5.5	21
31	Photocatalytic activity of nitrogen doped rutile TiO2 nanoparticles under visible light irradiation. Materials Research Bulletin, 2008, 43, 1872-1876.	5.2	18
32	Electrophoretic deposition of TiO2 nanorods for low-temperature dye-sensitized solar cells. RSC Advances, 2014, 4, 7805.	3.6	18
33	Efficient Bulk Heterojunction CH ₃ NH ₃ Pbl ₃ –TiO ₂ Solar Cells with TiO ₂ Nanoparticles at Grain Boundaries of Perovskite by Multi-Cycle-Coating Strategy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 16202-16214.	8.0	18
34	Controllable deposition of TiO 2 nanopillars at room temperature for high performance perovskite solar cells with suppressed hysteresis. Solar Energy Materials and Solar Cells, 2017, 168, 172-182.	6.2	18
35	Influence of TiO ₂ Blocking Layer Morphology on Planar Heterojunction Perovskite Solar Cells. Chemistry Letters, 2016, 45, 592-594.	1.3	17
36	Enhanced electrical property of Ni-doped CoO _x hole transport layer for inverted perovskite solar cells. Nanotechnology, 2017, 28, 20LT02.	2.6	17

3

#	Article	IF	Citations
37	Synthesis and magnetic properties of Co–Sn–O nanorings. Chemical Communications, 2007, , 4372.	4.1	16
38	One step spray-coated TiO ₂ electron-transport layers for decent perovskite solar cells on large and flexible substrates. Nanotechnology, 2017, 28, 01LT02.	2.6	16
39	Long-term stable perovskite solar cells with room temperature processed metal oxide carrier transporters. Journal of Materials Chemistry A, 2019, 7, 21085-21095.	10.3	16
40	Growth–regime–controlled synthesis of CdS–Bi2S3 and Bi2S3 nanocrystals during the dissolution–recrystallization processes. CrystEngComm, 2010, 12, 3413.	2.6	14
41	Room-temperature processible TiO2 electron selective layers with controllable crystallinity for high efficiency perovskite photovoltaics. Solar Energy Materials and Solar Cells, 2017, 163, 15-22.	6.2	14
42	Silicon Quantum Dot Luminescent Solar Concentrators and Downshifters with Antireflection Coatings for Enhancing Perovskite Solar Cell Performance. ACS Photonics, 2021, 8, 2392-2399.	6.6	14
43	Influence of hole transport material/metal contact interface on perovskite solar cells. Nanotechnology, 2018, 29, 255201.	2.6	13
44	Vacuum-Assisted Drying Process for Screen-Printable Carbon Electrodes of Perovskite Solar Cells with Enhanced Performance Based on Cuprous Thiocyanate as a Hole Transporting Layer. ACS Applied Materials & Distriction (2011), 13, 22684-22693.	8.0	13
45	Effect of Br content on phase stability and performance of H ₂ N=CHNH ₂ Pb(I _{1â^'<i>x</i>} Br <i>_x </i>) ₃ perovskite thin films. Nanotechnology, 2019, 30, 165402.	2.6	11
46	A UV-stable Perovskite Solar Cell Based on Mo-doped TiO ₂ Interlayer. Chemistry Letters, 2019, 48, 700-703.	1.3	10
47	A Facile and One-pot Synthesis of High Aspect Ratio Anatase Nanorods Based on Aqueous Solution. Chemistry Letters, 2005, 34, 972-973.	1.3	9
48	Novel Perovskite Solar Cell Architecture Featuring Efficient Light Capture and Ultrafast Carrier Extraction. ACS Applied Materials & Samp; Interfaces, 2017, 9, 23624-23634.	8.0	8
49	Morphology and Defect Control of Metal Halide Perovskite Films for High-Performance Optoelectronics. Chemistry of Materials, 2020, 32, 5958-5972.	6.7	8
50	Flexible Perovskite Solar Cells with Enhanced Performance Based on a Void-Free Imbedded Interface via a Thin Layer of Mesoporous TiO ₂ . ACS Applied Energy Materials, 2022, 5, 2242-2251.	5.1	8
51	Mesostructured perovskite solar cells based on highly ordered TiO ₂ network scaffold via anodization of Ti thin film. Nanotechnology, 2017, 28, 055403.	2.6	7
52	Mixed Chalcogenideâ€Halides for Stable, Leadâ€Free and Defectâ€Tolerant Photovoltaics: Computational Screening and Experimental Validation of CuBiSCl ₂ with Ideal Band Gap. Advanced Functional Materials, 2022, 32, .	14.9	7
53	CNTs/Ta3N5Nanocomposite with Enhanced Photocatalytic Activity Under Visible Light Irradiation. Journal of the American Ceramic Society, 2007, 90, 1309-1311.	3.8	6
54	Hierarchically structured nanocrystalline photoanode: Self-assembled bi-functional TiO2 towards enhanced photovoltaic performance. Nano Energy, 2014, 8, 247-254.	16.0	4

#	Article	IF	CITATIONS
55	Synthesis and Characterization of Porous Single-Crystalline Titanium Dioxide Nanorods. Journal of the American Ceramic Society, 2006, 89, 720-723.	3.8	3
56	Dense Core–Mesoporous Outer Layer Scattering Beads for Dye-sensitized Solar Cells. Chemistry Letters, 2014, 43, 1896-1898.	1.3	2
57	Novel Post-Treatment Process by La ³⁺ Modification to TiO ₂ Photoanode with Enhanced Performance for DSSCs. Advanced Materials Research, 0, 860-863, 219-222.	0.3	0