Christian Reimer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6242319/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Telecom-compatible, on-chip generation and processing of complex photon states in time and frequency. , 2022, , .		0
2	Thin-film lithium-niobate electro-optic platform for spectrally tailored dual-comb spectroscopy. Communications Physics, 2022, 5, .	5.3	37
3	User-friendly, reconfigurable all-optical signal processing with integrated photonics. , 2022, , .		0
4	Multipartite d-level photon cluster states and practical entanglement detection through witness operators. , 2021, , .		0
5	Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica, 2021, 8, 357.	9.3	166
6	Arbitrary Phase Access for Stable Fiber Interferometers. Laser and Photonics Reviews, 2021, 15, 2000524.	8.7	9
7	Integrated photonics on thin-film lithium niobate. Advances in Optics and Photonics, 2021, 13, 242.	25.5	503
8	Breaking voltage-bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes: erratum. Optica, 2021, 8, 1218.	9.3	5
9	On-chip time and frequency modes for the generation and processing of complex photon states. , 2021, , .		0
10	Scalable and effective multi-level entangled photon states: a promising tool to boost quantum technologies. Nanophotonics, 2021, 10, 4447-4465.	6.0	13
11	Supporting the Quantum Photonics Supply Chain with Scalable, Fiber-Compatible Instruments. , 2021, , .		0
12	Two-photon multi-partite d-level cluster states and witness operators for their practical entanglement detection. , 2021, , .		0
13	On-Chip Kerr Broadening of an Electro-Optic Pulse Source on thin-film lithium niobate. , 2021, , .		1
14	Induced Photon Correlations Through the Overlap of Two Fourâ€Wave Mixing Processes in Integrated Cavities. Laser and Photonics Reviews, 2020, 14, 2000128.	8.7	18
15	Designing Time and Frequency Entanglement for Generation of High-Dimensional Photon Cluster States. , 2020, , .		0
16	Low-repetition-rate Integrated Electro-optic Frequency Comb Sources. , 2020, , .		1
17	Wafer-scale low-loss lithium niobate photonic integrated circuits. Optics Express, 2020, 28, 24452.	3.4	98
18	Realization of high-dimensional frequency crystals in electro-optic microcombs. Optica, 2020, 7, 1189.	9.3	54

#	Article	IF	CITATIONS
19	Multipartite d-Level Two-Photon Cluster States and Their Entanglement Detection Via Feasible Witness Operators. , 2020, , .		0
20	Unambiguous Phase Retrieval in Fiber-based Interferometers. , 2020, , .		0
21	Distinct Laser Dynamics from a Single Figure-Eight Laser with an Integrated Nonlinear Waveguide. , 2020, , .		0
22	Photon correlation control in integrated quantum frequency combs. , 2020, , .		0
23	Generation and coherent manipulation of complex entangled photon states based on integrated quantum frequency combs. , 2020, , .		0
24	Induced Photon Correlations by the Superposition of Two Four-Wave Mixing Processes on a Photonic Chip. , 2020, , .		0
25	Customizing Supercontinuum Generation Via Adaptive On-Chip Pulse Splitting. , 2019, , .		0
26	Generation and Processing of Complex Photon States With Quantum Frequency Combs. IEEE Photonics Technology Letters, 2019, 31, 1862-1865.	2.5	16
27	An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator. IEEE Photonics Technology Letters, 2019, 31, 889-892.	2.5	76
28	Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 2019, 568, 373-377.	27.8	527
29	Quantum optical microcombs. Nature Photonics, 2019, 13, 170-179.	31.4	295
30	Complex Quantum State Generation and Coherent Control Based on Integrated Frequency Combs. Journal of Lightwave Technology, 2019, 37, 338-344.	4.6	20
31	High-dimensional one-way quantum processing implemented on d-level cluster states. Nature Physics, 2019, 15, 148-153.	16.7	204
32	Highly reconfigurable hybrid laser based on an integrated nonlinear waveguide. Optics Express, 2019, 27, 25251.	3.4	8
33	Customizing supercontinuum generation via on-chip adaptive temporal pulse-splitting. Nature Communications, 2018, 9, 4884.	12.8	59
34	Passively mode-locked laser with an ultra-narrow spectral width. Nature Photonics, 2017, 11, 159-162.	31.4	111
35	On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 2017, 546, 622-626.	27.8	574
36	Practical system for the generation of pulsed quantum frequency combs. Optics Express, 2017, 25, 18940.	3.4	69

CHRISTIAN REIMER

#	Article	IF	CITATIONS
37	Multichannel phase-sensitive amplification in a low-loss CMOS-compatible spiral waveguide. Optics Letters, 2017, 42, 4391.	3.3	4
38	Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated Quantum Frequency Combs. Nanophotonics, 2016, 5, 351-362.	6.0	70
39	Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science, 2016, 351, 1176-1180.	12.6	371
40	Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip. Nature Communications, 2015, 6, 8236.	12.8	110
41	Integrated frequency comb source of heralded single photons. Optics Express, 2014, 22, 6535.	3.4	187