Monica Marilena Miazzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6242144/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polyphenol Oxidases in Crops: Biochemical, Physiological and Genetic Aspects. International Journal of Molecular Sciences, 2017, 18, 377.	4.1	270
2	GBS-derived SNP catalogue unveiled wide genetic variability and geographical relationships of Italian olive cultivars. Scientific Reports, 2018, 8, 15877.	3.3	84
3	Genetic flow among olive populations within the Mediterranean basin. PeerJ, 2018, 6, e5260.	2.0	49
4	Molecular Approaches to Agri-Food Traceability and Authentication: An Updated Review. Foods, 2021, 10, 1644.	4.3	47
5	The coexistence of oleaster and traditional varieties affects genetic diversity and population structure in Algerian olive (Olea europaea) germplasm. Genetic Resources and Crop Evolution, 2017, 64, 379-390.	1.6	46
6	Traceability of PDO Olive Oil "Terra di Bari―Using High Resolution Melting. Journal of Chemistry, 2015, 2015, 1-7.	1.9	40
7	Genetic variation of a global germplasm collection of chickpea (Cicer arietinum L.) including Italian accessions at risk of genetic erosion. Physiology and Molecular Biology of Plants, 2017, 23, 197-205.	3.1	40
8	An enhanced analytical procedure to discover table grape DNA adulteration in industrial musts. Food Control, 2016, 60, 124-130.	5.5	33
9	Genetic Characterization of Apulian Olive Germplasm as Potential Source in New Breeding Programs. Plants, 2019, 8, 268.	3.5	33
10	Diversity Assessment of Algerian Wild and Cultivated Olives (<i>Olea europeae</i> L.) by Molecular, Morphological, and Chemical Traits. European Journal of Lipid Science and Technology, 2019, 121, 1800302.	1.5	29
11	Re.Ger.O.P.: An Integrated Project for the Recovery of Ancient and Rare Olive Germplasm. Frontiers in Plant Science, 2020, 11, 73.	3.6	29
12	High resolution melting analysis of DNA microsatellites in olive pastes and virgin olive oils obtained by talc addition. European Journal of Lipid Science and Technology, 2015, 117, 2044-2048.	1.5	26
13	Variation in <i>Podosphaera xanthii</i> on Cucurbits in Southern Italy. Journal of Phytopathology, 2011, 159, 538-545.	1.0	24
14	The preservation and characterization of Apulian olive germplasm biodiversity. Acta Horticulturae, 2018, , 1-6.	0.2	22
15	A reliable analytical procedure to discover table grape DNA adulteration in industrial wines and musts. Acta Horticulturae, 2017, , 365-370.	0.2	14
16	Single nucleotide polymorphism (SNP) diversity in an olive germplasm collection. Acta Horticulturae, 2018, , 27-32.	0.2	14
17	Recovery, Assessment, and Molecular Characterization of Minor Olive Genotypes in Tunisia. Plants, 2020, 9, 382.	3.5	14
18	Marginal Grapevine Germplasm from Apulia (Southern Italy) Represents an Unexplored Source of Genetic Diversity. Agronomy, 2020, 10, 563.	3.0	11

#	Article	IF	CITATIONS
19	How to Choose a Good Marker to Analyze the Olive Germplasm (Olea europaea L.) and Derived Products. Genes, 2021, 12, 1474.	2.4	11

20 Current Status of Biodiversity Assessment and Conservation of Wild Olive (Olea europaea L. subsp.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

21	Applications of Microsatellite Markers for the Characterization of Olive Genetic Resources of Tunisia. Genes, 2021, 12, 286.	2.4	10
22	Intra- and Inter-Population Genetic Diversity of "Russello―and "Timilia―Landraces from Sicily: A Proxy towards the Identification of Favorable Alleles in Durum Wheat. Agronomy, 2022, 12, 1326.	3.0	9
23	A Hot Spot of Olive Biodiversity in the Tunisian Oasis of Degache. Diversity, 2020, 12, 358.	1.7	8
24	Polyphenol oxidase genes as integral part of the evolutionary history of domesticated tetraploid wheat. Genomics, 2021, 113, 2989-3001.	2.9	8
25	Quantitatively Unraveling Hierarchy of Factors Impacting Virgin Olive Oil Phenolic Profile and Oxidative Stability. Antioxidants, 2022, 11, 594.	5.1	8
26	A Rapid Assay to Detect Toxigenic Penicillium spp. Contamination in Wine and Musts. Toxins, 2016, 8, 235.	3.4	7
27	Serendipitous In Situ Conservation of Faba Bean Landraces in Tunisia: A Case Study. Genes, 2020, 11, 236.	2.4	7
28	The Status of Genetic Resources and Olive Breeding in Tunisia. Plants, 2022, 11, 1759.	3.5	7
29	Comparative Genetic Analysis of Durum Wheat Landraces and Cultivars Widespread in Tunisia. Frontiers in Plant Science, 0, 13, .	3.6	7
30	Molecular diversity and ecogeographic distribution of Algerian wild olives (Olea europaea subsp.) Tj ETQq0 0 0 rg	BT /Overlo	ock 10 Tf 50
31	Genotyping-by-sequencing-derived single-nucleotide polymorphism catalog from a grapevine (Vitis) Tj ETQq1 1 0 cultivars. Acta Horticulturae, 2019, , 69-76.	.784314 r 0.2	gBT /Overlo 4
32	New Insight into the Identity of Italian Grapevine Varieties: The Case Study of Calabrian Germplasm. Agronomy, 2021, 11, 1538.	3.0	4
33	Morphological and Eco-Geographic Variation in Algerian Wild Olives. Plants, 2022, 11, 1803.	3.5	4
34	An in vitro method to evaluate grapevine cultivars for Erysiphe necator susceptibility. In Vitro Cellular and Developmental Biology - Plant, 2010, 46, 363-367.	2.1	3
35	Molecular characterization of wine grape cultivars from Calabria. Acta Horticulturae, 2019, , 281-286.	0.2	3
36	ECOPHYSIOLOGICAL RESPONSE TO WATER STRESS AND REGULATION OF GENE EXPRESSION FOR A	0.2	2

#	Article	IF	CITATIONS
37	A DNA METHYLATION SURVEY OF NCED GENES IN VITIS VINIFERA L. UNDER STRESS CONDITIONS. Acta Horticulturae, 2015, , 277-283.	0.2	2