
\tilde{A} -zg \tilde{A} ær \tilde{A} **ž** h \ddot{A} °n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6239916/publications.pdf Version: 2024-02-01

<u>Ã-7¢Ãœρ Åǯλμä°</u>Ν

#	Article	IF	CITATIONS
1	HSP90 inhibitors induce GPNMB cell-surface expression by modulating lysosomal positioning and sensitize breast cancer cells to glembatumumab vedotin. Oncogene, 2022, 41, 1701-1717.	5.9	8
2	Targeting HIF1-alpha/miR-326/ITGA5 axis potentiates chemotherapy response in triple-negative breast cancer. Breast Cancer Research and Treatment, 2022, 193, 331-348.	2.5	18
3	Thymidylate synthase drives the phenotypes of epithelial-to-mesenchymal transition in non-small cell lung cancer. British Journal of Cancer, 2021, 124, 281-289.	6.4	22
4	Targeting Adenosine with Adenosine Deaminase 2 to Inhibit Growth of Solid Tumors. Cancer Research, 2021, 81, 3319-3332.	0.9	18
5	Best Practices for Spatial Profiling for Breast Cancer Research with the GeoMx® Digital Spatial Profiler. Cancers, 2021, 13, 4456.	3.7	50
6	TLR ligand loaded exosome mediated immunotherapy of established mammary Tumor in mice. Immunology Letters, 2021, 239, 32-41.	2.5	13
7	Endocrine resistance in breast cancer: from molecular mechanisms to therapeutic strategies. Journal of Molecular Medicine, 2021, 99, 1691-1710.	3.9	40
8	EGF-SNX3-EGFR axis drives tumor progression and metastasis in triple-negative breast cancers. Oncogene, 2021, , .	5.9	3
9	Coordinated regulation of WNT/β-catenin, c-Met, and integrin signalling pathways by miR-193b controls triple negative breast cancer metastatic traits. BMC Cancer, 2021, 21, 1296.	2.6	4
10	Targeting lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast cancer. Nature Communications, 2020, 11, 2416.	12.8	179
11	A Highly Potent TACC3 Inhibitor as a Novel Anticancer Drug Candidate. Molecular Cancer Therapeutics, 2020, 19, 1243-1254.	4.1	19
12	A Stemness and EMT Based Gene Expression Signature Identifies Phenotypic Plasticity and is A Predictive but Not Prognostic Biomarker for Breast Cancer. Journal of Cancer, 2020, 11, 949-961.	2.5	13
13	CXXC5 as an unmethylated CpG dinucleotide binding protein contributes to estrogen-mediated cellular proliferation. Scientific Reports, 2020, 10, 5971.	3.3	15
14	Universality of dissipative self-assembly from quantum dots to human cells. Nature Physics, 2020, 16, 795-801.	16.7	39
15	Systems-level Analysis Reveals Multiple Modulators of Epithelial-mesenchymal Transition and Identifies DNAJB4 and CD81 as Novel Metastasis Inducers in Breast Cancer. Molecular and Cellular Proteomics, 2019, 18, 1756-1771.	3.8	29
16	Increased expression of the <scp>HDAC</scp> 9 gene is associated with antiestrogen resistance of breast cancers. Molecular Oncology, 2019, 13, 1534-1547.	4.6	36
17	Thymidylate synthase maintains the de-differentiated state of triple negative breast cancers. Cell Death and Differentiation, 2019, 26, 2223-2236.	11.2	39
18	Oncogenic Kinase–Induced PKM2 Tyrosine 105 Phosphorylation Converts Nononcogenic PKM2 to a Tumor Promoter and Induces Cancer Stem–like Cells. Cancer Research, 2018, 78, 2248-2261.	0.9	66

ÖzgÜr Åžahİn

#	Article	IF	CITATIONS
19	Reactivation of cAMP Pathway by PDE4D Inhibition Represents a Novel Druggable Axis for Overcoming Tamoxifen Resistance in ER-positive Breast Cancer. Clinical Cancer Research, 2018, 24, 1987-2001.	7.0	37
20	Targeting PLK1 overcomes T-DM1 resistance via CDK1-dependent phosphorylation and inactivation of Bcl-2/xL in HER2-positive breast cancer. Oncogene, 2018, 37, 2251-2269.	5.9	49
21	Polyol Pathway Links Glucose Metabolism to the Aggressiveness of Cancer Cells. Cancer Research, 2018, 78, 1604-1618.	0.9	83
22	Autonomous Synthesis of Fluorescent Silica Biodots Using Engineered Fusion Proteins. ACS Omega, 2018, 3, 585-594.	3.5	15
23	SIK2 attenuates proliferation and survival of breast cancer cells with simultaneous perturbation of MAPK and PI3K/Akt pathways. Oncotarget, 2018, 9, 21876-21892.	1.8	24
24	Modules of Correlated Genes in a Gene Expression Regulatory Network of CDDP-Resistant Cancer Cells. , 2018, , .		0
25	Discovering IncRNA mediated sponge interactions in breast cancer molecular subtypes. BMC Genomics, 2018, 19, 650.	2.8	41
26	Upregulation of lactate dehydrogenase a by 14-3-3ζ leads to increased glycolysis critical for breast cancer initiation and progression. Oncotarget, 2016, 7, 35270-35283.	1.8	27
27	miR-564 acts as a dual inhibitor of PI3K and MAPK signaling networks and inhibits proliferation and invasion in breast cancer. Scientific Reports, 2016, 6, 32541.	3.3	53
28	miR-200c: a versatile watchdog in cancer progression, EMT, and drug resistance. Journal of Molecular Medicine, 2016, 94, 629-644.	3.9	112
29	Abstract LB-313: Upregulation of lactate dehydrogenase A by 14-3-3ζ leads to increased glycolysis critical for breast cancer initiation and progression. , 2016, , .		1
30	The miR-644a/CTBP1/p53 axis suppresses drug resistance by simultaneous inhibition of cell survival and epithelial-mesenchymal transition in breast cancer. Oncotarget, 2016, 7, 49859-49877.	1.8	48
31	Abstract 1912: Combinatorial targeting of PI3K and MAPK signaling pathways using microRNAs to inhibit tumor growth and metastasis in breast cancer. Cancer Research, 2016, 76, 1912-1912.	0.9	1
32	14-3-3ζ Turns TGF-β's Function from Tumor Suppressor to Metastasis Promoter in Breast Cancer by Contextual Changes of Smad Partners from p53 to Gli2. Cancer Cell, 2015, 27, 177-192.	16.8	158
33	Combined DNA methylation and gene expression profiling in gastrointestinal stromal tumors reveals hypomethylation of <i>SPP1</i> as an independent prognostic factor. International Journal of Cancer, 2015, 136, 1013-1023.	5.1	22
34	Abstract LB-202: 14-3-3ζ turns TGF-β's function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2. , 2015, , .		1
35	Abstract 241: A novel tumor suppressor miRNA co-regulating EMT and p53-independent cell survival in breast cancer. , 2015, , .		0
36	Biomarker-guided sequential targeted therapies to overcome therapy resistance in rapidly evolving highly aggressive mammary tumors. Cell Research, 2014, 24, 542-559.	12.0	23

ÖzgÜr Åžahİn

#	Article	IF	CITATIONS
37	14-3-3ζ Orchestrates Mammary Tumor Onset and Progression via miR-221–Mediated Cell Proliferation. Cancer Research, 2014, 74, 363-373.	0.9	28
38	MicroRNAs: master regulators of drug resistance, stemness, and metastasis. Journal of Molecular Medicine, 2014, 92, 321-336.	3.9	63
39	<scp>MicroRNA</scp> â€519a is a novel oncomir conferring tamoxifen resistance by targeting a network of tumourâ€suppressor genes in <scp>ER</scp> + breast cancer. Journal of Pathology, 2014, 233, 368-379.	4.5	103
40	Combinatorial targeting of FGF and ErbB receptors blocks growth and metastatic spread of breast cancer models. Breast Cancer Research, 2013, 15, R8.	5.0	61
41	Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene, 2013, 32, 1173-1182.	5.9	252
42	Protein phosphatase 1, regulatory subunit 15B is a survival factor for ERαâ€positive breast cancer. International Journal of Cancer, 2013, 132, 2714-2719.	5.1	7
43	A Network-Based Method to Assess the Statistical Significance of Mild Co-Regulation Effects. PLoS ONE, 2013, 8, e73413.	2.5	19
44	Abstract LB-215: Concomitant targeting of tumor cells and induction of T cell response synergizes to effectively inhibit trastuzumab-resistant breast cancer , 2013, , .		0
45	Concomitant Targeting of Tumor Cells and Induction of T-cell Response Synergizes to Effectively Inhibit Trastuzumab-Resistant Breast Cancer. Cancer Research, 2012, 72, 4417-4428.	0.9	42
46	MicroRNA-200c Represses Migration and Invasion of Breast Cancer Cells by Targeting Actin-Regulatory Proteins FHOD1 and PPM1F. Molecular and Cellular Biology, 2012, 32, 633-651.	2.3	206
47	Global microRNA level regulation of EGFRâ€driven cell ycle protein network in breast cancer. Molecular Systems Biology, 2012, 8, 570.	7.2	184
48	Diagnostic values of GHSR DNA methylation pattern in breast cancer. Breast Cancer Research and Treatment, 2012, 135, 705-713.	2.5	16
49	MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways. Oncogene, 2012, 31, 4150-4163.	5.9	265
50	Abstract 5005: Large-scale DNA methylation profiling in gastrointestinal stromal tumors (GIST) reveals epigenetic regulation of SPP1 as an independent prognostic factor. , 2012, , .		0
51	Abstract A14: Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Clinical Cancer Research, 2012, 18, A14-A14.	7.0	2
52	Utilization of RNAi to Validate Antibodies for Reverse Phase Protein Arrays. Methods in Molecular Biology, 2011, 785, 45-54.	0.9	3
53	Time-Resolved Human Kinome RNAi Screen Identifies a Network Regulating Mitotic-Events as Early Regulators of Cell Proliferation. PLoS ONE, 2011, 6, e22176.	2.5	9
54	Localization―and mutationâ€dependent microRNA (miRNA) expression signatures in gastrointestinal stromal tumours (GISTs), with a cluster of coâ€expressed miRNAs located at 14q32.31. Journal of Pathology, 2010, 220, 71-86.	4.5	103

ÖzgÜr Åžahİn

#	Article	IF	CITATIONS
55	miR-200bc/429 cluster targets PLCγ1 and differentially regulates proliferation and EGF-driven invasion than miR-200a/141 in breast cancer. Oncogene, 2010, 29, 4297-4306.	5.9	192
56	Epigenetically Deregulated microRNA-375 Is Involved in a Positive Feedback Loop with Estrogen Receptor α in Breast Cancer Cells. Cancer Research, 2010, 70, 9175-9184.	0.9	260
57	RNAi-based validation of antibodies for reverse phase protein arrays. Proteome Science, 2010, 8, 69.	1.7	18
58	Deterministic Effects Propagation Networks for reconstructing protein signaling networks from multiple interventions. BMC Bioinformatics, 2009, 10, 322.	2.6	24
59	Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance. BMC Systems Biology, 2009, 3, 1.	3.0	242
60	Functional genomics and proteomics approaches to study the ERBB network in cancer. FEBS Letters, 2009, 583, 1766-1771.	2.8	4
61	Reverseâ€phase protein arrays for applicationâ€orientated cancer research. Proteomics - Clinical Applications, 2009, 3, 1140-1150.	1.6	6
62	Contact spotting of protein microarrays coupled with spike-in of normalizer protein permits time-resolved analysis of ERBB receptor signaling. Proteomics, 2008, 8, 1586-1594.	2.2	13
63	Reduced expression of vacuole membrane protein 1 affects the invasion capacity of tumor cells. Oncogene, 2008, 27, 1320-1326.	5.9	48
64	Combinatorial RNAi for quantitative protein network analysis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6579-6584.	7.1	55