Roberto Molinaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6238195/publications.pdf

Version: 2024-02-01

45 3,182 papers citations

3,182 26 45
citations h-index g-index

47 47 all docs citations

47 times ranked 5173 citing authors

#	Article	IF	CITATIONS
1	The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine, 2016, 11, 81-100.	3.3	499
2	Biomimetic proteolipid vesicles for targeting inflamed tissues. Nature Materials, 2016, 15, 1037-1046.	27.5	327
3	Personalized protein corona on nanoparticles and its clinical implications. Biomaterials Science, 2017, 5, 378-387.	5.4	227
4	Roles of PAD4 and NETosis in Experimental Atherosclerosis and Arterial Injury. Circulation Research, 2018, 123, 33-42.	4. 5	205
5	Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials, 2017, 147, 155-168.	11.4	199
6	Unveiling the <i>in Vivo</i> Protein Corona of Circulating Leukocyte-like Carriers. ACS Nano, 2017, 11, 3262-3273.	14.6	124
7	Rapamycin-Loaded Biomimetic Nanoparticles Reverse Vascular Inflammation. Circulation Research, 2020, 126, 25-37.	4.5	106
8	Design and Development of Biomimetic Nanovesicles Using a Microfluidic Approach. Advanced Materials, 2018, 30, e1702749.	21.0	100
9	Biomimetic carriers mimicking leukocyte plasma membrane to increase tumor vasculature permeability. Scientific Reports, 2016, 6, 34422.	3.3	92
10	Long noncoding RNA <i>SNHG12</i> integrates a DNA-PK–mediated DNA damage response and vascular senescence. Science Translational Medicine, 2020, 12, .	12.4	91
11	Biomaterials and nanomedicine for bone regeneration: Progress and future prospects. Exploration, 2021, 1, 20210011.	11.0	90
12	Biomimetic nanoparticles with enhanced affinity towards activated endothelium as versatile tools for theranostic drug delivery. Theranostics, 2018, 8, 1131-1145.	10.0	89
13	Evaluation of anticancer activity of celastrol liposomes in prostate cancer cells. Journal of Microencapsulation, 2014, 31, 501-507.	2.8	80
14	Enabling cytoplasmic delivery and organelle targeting by surface modification of nanocarriers. Nanomedicine, 2015, 10, 1923-1940.	3.3	70
15	<div>Effects of the protein corona on liposome–liposome and liposome–cell interactions</div> . International Journal of Nanomedicine, 2016, Volume 11, 3049-3063.	6.7	67
16	Polyethylenimine and chitosan carriers for the delivery of RNA interference effectors. Expert Opinion on Drug Delivery, 2013, 10, 1653-1668.	5.0	65
17	Leukocyte-mimicking nanovesicles for effective doxorubicin delivery to treat breast cancer and melanoma. Biomaterials Science, 2020, 8, 333-341.	5.4	59
18	Engineered biomimetic nanovesicles show intrinsic anti-inflammatory properties for the treatment of inflammatory bowel diseases. Nanoscale, 2017, 9, 14581-14591.	5.6	57

#	Article	IF	CITATIONS
19	Mild Hyperthermia Enhances Transport of Liposomal Gemcitabine and Improves In Vivo Therapeutic Response. Advanced Healthcare Materials, 2015, 4, 1092-1103.	7.6	56
20	Macrophage-derived nanovesicles exert intrinsic anti-inflammatory properties and prolong survival in sepsis through a direct interaction with macrophages. Nanoscale, 2019, 11, 13576-13586.	5.6	51
21	Supramolecular devices to improve the treatment of brain diseases. Drug Discovery Today, 2011, 16, 311-324.	6.4	49
22	Physicochemical features and transfection properties of chitosan/poloxamer 188/poly(D,L-lactide-co-glycolide) nanoplexes. International Journal of Nanomedicine, 2014, 9, 2359.	6.7	41
23	Lysyl oxidase engineered lipid nanovesicles for the treatment of triple negative breast cancer. Scientific Reports, 2021, 11, 5107.	3.3	37
24	Proteomic Profiling of a Biomimetic Drug Delivery Platform. Current Drug Targets, 2015, 16, 1540-1547.	2.1	37
25	Biomimetic Nanoparticles Potentiate the Anti-Inflammatory Properties of Dexamethasone and Reduce the Cytokine Storm Syndrome: An Additional Weapon against COVID-19?. Nanomaterials, 2020, 10, 2301.	4.1	33
26	Post-insertion parameters of PEG-derivatives in phosphocholine-liposomes. International Journal of Pharmaceutics, 2018, 552, 414-421.	5.2	29
27	Vascular Inflammation: A Novel Access Route for Nanomedicine. Methodist DeBakey Cardiovascular Journal, 2021, 12, 169.	1.0	25
28	Improvement of the therapeutic treatment of inflammatory bowel diseases following rectal administration of mesalazine-loaded chitosan microparticles vs Asamax®. Carbohydrate Polymers, 2019, 212, 430-438.	10.2	25
29	Phosphoprotein-based biomarkers as predictors for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18401-18411.	7.1	25
30	Targeted delivery of protein arginine deiminase-4 inhibitors to limit arterial intimal NETosis and preserve endothelial integrity. Cardiovascular Research, 2021, 117, 2652-2663.	3.8	24
31	Inflammation and Cancer: In Medio Stat Nano. Current Medicinal Chemistry, 2018, 25, 4208-4223.	2.4	22
32	Biohybrid Nanoparticles to Negotiate with Biological Barriers. Small, 2019, 15, e1902333.	10.0	22
33	Preclinical threeâ€dimensional colorectal cancer model: The next generation of in vitro drug efficacy evaluation. Journal of Cellular Physiology, 2019, 234, 181-191.	4.1	22
34	Nanoparticles targeting extra domain B of fibronectin-specific to the atherosclerotic lesion types III, IV, and V-enhance plaque detection and cargo delivery. Theranostics, 2018, 8, 6008-6024.	10.0	19
35	Analysis of the Human Plasma Proteome Using Multiâ€Nanoparticle Protein Corona for Detection of Alzheimer's Disease. Advanced Healthcare Materials, 2021, 10, e2000948.	7.6	19
36	Recent Advances of Taxol-Loaded Biocompatible Nanocarriers Embedded in Natural Polymer-Based Hydrogels. Gels, 2021, 7, 33.	4.5	18

3

#	Article	lF	Citations
37	Development and In Vivo Evaluation of Multidrug Ultradeformable Vesicles for the Treatment of Skin Inflammation. Pharmaceutics, 2019, 11, 644.	4.5	17
38	Prunus spinosa Extract Loaded in Biomimetic Nanoparticles Evokes In Vitro Anti-Inflammatory and Wound Healing Activities. Nanomaterials, 2021, 11, 36.	4.1	17
39	Microfluidic Assembly of Liposomes with Tunable Size and Coloading Capabilities. Methods in Molecular Biology, 2018, 1792, 205-214.	0.9	10
40	<i>Jak</i> -ing Up the Plaque's Lipid Core… and Even More. Circulation Research, 2018, 123, 1180-1182.	4. 5	9
41	\hat{l} ±-Acylamino- \hat{l} 2-lactone N-Acylethanolamine-hydrolyzing Acid Amidase Inhibitors Encapsulated in PLGA Nanoparticles: Improvement of the Physical Stability and Protection of Human Cells from Hydrogen Peroxide-Induced Oxidative Stress. Antioxidants, 2022, 11, 686.	5.1	7
42	LDL-Based Lipid Nanoparticle Derived for Blood Plasma Accumulates Preferentially in Atherosclerotic Plaque. Frontiers in Bioengineering and Biotechnology, 2021, 9, 794676.	4.1	3
43	Roles of PAD4 and netosis in experimental atherosclerosis and arterial injury: Implications for superficial erosion. Atherosclerosis, 2018, 275, e11.	0.8	2
44	Abstract 4586: The Leukosome: A biomimetic liposome for the targeting of inflamed tumor vasculature. Cancer Research, 2014, 74, 4586-4586.	0.9	1
45	Abstract 3910: Biomimetic proteo-lipid vesicles for the treatment of melanoma. , 2016, , .		0