Shu-juan Ni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6238167/publications.pdf

Version: 2024-02-01

		394286	477173
29	1,660	19	29
papers	citations	h-index	g-index
2.1	2.1	2.1	2011
31	31	31	3011
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Calcipotriol abrogates cancer-associated fibroblast-derived IL-8-mediated oxaliplatin resistance in gastric cancer cells via blocking PI3K/Akt signaling. Acta Pharmacologica Sinica, 2023, 44, 178-188.	2.8	15
2	Molecular signatures of tumor progression in pancreatic adenocarcinoma identified by energy metabolism characteristics. BMC Cancer, 2022, 22, 404.	1.1	2
3	Human Epidermal Growth Factor Receptor 2 Overexpression and Amplification in Patients With Colorectal Cancer: A Large-Scale Retrospective Study in Chinese Population. Frontiers in Oncology, 2022, 12, 842787.	1.3	3
4	KRAS Mutation Predicted More Mirometastases and Closer Resection Margins in Patients with Colorectal Cancer Liver Metastases. Annals of Surgical Oncology, 2020, 27, 1164-1173.	0.7	21
5	Adult pancreatoblastoma: clinical features and Imaging findings. Scientific Reports, 2020, 10, 11285.	1.6	5
6	<p>GCNT4 is Associated with Prognosis and Suppress Cell Proliferation in Gastric Cancer</p> . OncoTargets and Therapy, 2020, Volume 13, 8601-8613.	1.0	8
7	Development and validation of a DNA repair gene signature for prognosis prediction in Colon Cancer. Journal of Cancer, 2020, 11, 5918-5928.	1.2	9
8	<p>Clinicopathological features and prognosis of AFP-producing colorectal cancer: a single-center analysis of 20 cases</p> . Cancer Management and Research, 2019, Volume 11, 4557-4567.	0.9	26
9	<p>Pathological risk factors for lymph node metastasis in patients with submucosal invasive colorectal carcinoma</p> . Cancer Management and Research, 2019, Volume 11, 1107-1114.	0.9	15
10	Amphicrine carcinoma of the stomach and intestine: a clinicopathologic and pan-cancer transcriptome analysis of a distinct entity. Cancer Cell International, 2019, 19, 310.	1.8	20
11	Programmed deathâ€ligand 1 expression in gastric cancer: correlation with mismatch repair deficiency and <scp>HER</scp> 2â€negative status. Cancer Medicine, 2018, 7, 2612-2620.	1.3	49
12	MET amplification, expression, and exon 14 mutations in colorectal adenocarcinoma. Human Pathology, 2018, 77, 108-115.	1.1	18
13	CTHRC1 overexpression predicts poor survival and enhances epithelialâ€mesenchymal transition in colorectal cancer. Cancer Medicine, 2018, 7, 5643-5654.	1.3	42
14	The lncRNA NEAT1 activates Wnt/ \hat{l}^2 -catenin signaling and promotes colorectal cancer progression via interacting with DDX5. Journal of Hematology and Oncology, 2018, 11, 113.	6.9	247
15	miR-106b-5p inhibits the invasion and metastasis of colorectal cancer by targeting CTSA. OncoTargets and Therapy, 2018, Volume 11, 3835-3845.	1.0	46
16	E2F1 induces LSINCT5 transcriptional activity and promotes gastric cancer progression by affecting the epithelial-mesenchymal transition. Cancer Management and Research, 2018, Volume 10, 2563-2571.	0.9	28
17	PTTG3P promotes gastric tumour cell proliferation and invasion and is an indicator of poor prognosis. Journal of Cellular and Molecular Medicine, 2017, 21, 3360-3371.	1.6	42
18	A Positive Feedback Loop of IncRNA- <i>PVT1</i> and FOXM1 Facilitates Gastric Cancer Growth and Invasion. Clinical Cancer Research, 2017, 23, 2071-2080.	3.2	210

#	Article	IF	CITATIONS
19	DIXDC1 activates the Wnt signaling pathway and promotes gastric cancer cell invasion and metastasis. Molecular Carcinogenesis, 2016, 55, 397-408.	1.3	30
20	Circulating Long RNAs in Serum Extracellular Vesicles: Their Characterization and Potential Application as Biomarkers for Diagnosis of Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 1158-1166.	1.1	175
21	Pituitary tumor-transforming gene-1 serves as an independent prognostic biomarker for gastric cancer. Gastric Cancer, 2016, 19, 107-115.	2.7	28
22	Programmed death-ligand 1 is upregulated in intrahepatic lymphoepithelioma-like cholangiocarcinoma. Oncotarget, 2016, 7, 69749-69759.	0.8	20
23	Circulating $\langle scp \rangle CUDR \langle scp \rangle$, $\langle scp \rangle LSINCT \langle scp \rangle \hat{a} \in S$ and $\langle scp \rangle PTENP \langle scp \rangle 1$ long noncoding $\langle scp \rangle RNA \langle scp \rangle s$ in sera distinguish patients with gastric cancer from healthy controls. International Journal of Cancer, 2015, 137, 1128-1135.	2.3	143
24	Identification and validation of a two-gene expression index for subtype classification and prognosis in Diffuse Large B-Cell Lymphoma. Scientific Reports, 2015, 5, 10006.	1.6	15
25	Reciprocal repression between TUSC7 and miR-23b in gastric cancer. International Journal of Cancer, 2015, 137, 1269-1278.	2.3	82
26	Down-regulation of ncRAN, a long non-coding RNA, contributes to colorectal cancer cell migration and invasion and predicts poor overall survival for colorectal cancer patients. Molecular Carcinogenesis, 2015, 54, 742-750.	1.3	61
27	miR-204-5p Inhibits Proliferation and Invasion and Enhances Chemotherapeutic Sensitivity of Colorectal Cancer Cells by Downregulating RAB22A. Clinical Cancer Research, 2014, 20, 6187-6199.	3.2	184
28	MicroRNA-638 inhibits cell proliferation, invasion and regulates cell cycle by targeting tetraspanin 1 in human colorectal carcinoma. Oncotarget, 2014, 5, 12083-12096.	0.8	72
29	c-kit gene mutation and CD117 expression in human anorectal melanomas. Human Pathology, 2012, 43, 801-807.	1.1	43