Kevin A Janes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6237508/publications.pdf

Version: 2024-02-01

61	5,829	29 h-index	56
papers	citations		g-index
71	71	71	8145
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. Journal of Controlled Release, 2001, 70, 399-421.	9.9	1,140
2	Chitosan nanoparticles as delivery systems for doxorubicin. Journal of Controlled Release, 2001, 73, 255-267.	9.9	639
3	A Systems Model of Signaling Identifies a Molecular Basis Set for Cytokine-Induced Apoptosis. Science, 2005, 310, 1646-1653.	12.6	506
4	Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 57, 123-131.	4.3	408
5	Data-driven modelling of signal-transduction networks. Nature Reviews Molecular Cell Biology, 2006, 7, 820-828.	37.0	347
6	A multiplexed homogeneous fluorescence-based assay for protein kinase activity in cell lysates. Nature Methods, 2005, 2, 277-284.	19.0	202
7	The Response of Human Epithelial Cells to TNF Involves an Inducible Autocrine Cascade. Cell, 2006, 124, 1225-1239.	28.9	188
8	Common effector processing mediates cell-specific responses to stimuli. Nature, 2007, 448, 604-608.	27.8	183
9	An analysis of critical factors for quantitative immunoblotting. Science Signaling, 2015, 8, rs2.	3.6	167
10	A Compendium of Signals and Responses Triggered by Prodeath and Prosurvival Cytokines. Molecular and Cellular Proteomics, 2005, 4, 1569-1590.	3.8	134
11	Applying computational modeling to drug discovery and development. Drug Discovery Today, 2006, 11, 806-811.	6.4	115
12	Identifying single-cell molecular programs by stochastic profiling. Nature Methods, 2010, 7, 311-317.	19.0	112
13	A biological approach to computational models of proteomic networks. Current Opinion in Chemical Biology, 2006, 10, 73-80.	6.1	111
14	Intersection of FOXO- and RUNX1-mediated gene expression programs in single breast epithelial cells during morphogenesis and tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E803-12.	7.1	108
15	Cue-Signal-Response Analysis of TNF-Induced Apoptosis by Partial Least Squares Regression of Dynamic Multivariate Data. Journal of Computational Biology, 2004, 11, 544-561.	1.6	106
16	Astrocytic trans-Differentiation Completes a Multicellular Paracrine Feedback Loop Required for Medulloblastoma Tumor Growth. Cell, 2020, 180, 502-520.e19.	28.9	99
17	Cytokine-Induced Signaling Networks Prioritize Dynamic Range over Signal Strength. Cell, 2008, 135, 343-354.	28.9	96
18	Automated brightfield morphometry of 3D organoid populations by OrganoSeg. Scientific Reports, 2018, 8, 5319.	3.3	92

#	Article	IF	Citations
19	A High-throughput Quantitative Multiplex Kinase Assay for Monitoring Information Flow in Signaling Networks. Molecular and Cellular Proteomics, 2003, 2, 463-473.	3.8	89
20	Small Molecule Inhibitor of CBF \hat{l}^2 -RUNX Binding for RUNX Transcription Factor Driven Cancers. EBioMedicine, 2016, 8, 117-131.	6.1	84
21	Models of signalling networks – what cell biologists can gain from them and give to them. Journal of Cell Science, 2013, 126, 1913-1921.	2.0	78
22	A time- and matrix-dependent TGFBR3–JUND–KRT5 regulatory circuit in single breast epithelial cells and basal-like premalignancies. Nature Cell Biology, 2014, 16, 345-356.	10.3	70
23	RUNX1 and its understudied role in breast cancer. Cell Cycle, 2011, 10, 3461-3465.	2.6	62
24	Tumor-Suppressor Inactivation of GDF11 Occurs by Precursor Sequestration in Triple-Negative Breast Cancer. Developmental Cell, 2017, 43, 418-435.e13.	7.0	62
25	Pairwise network mechanisms in the host signaling response to coxsackievirus B3 infection. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17053-17058.	7.1	42
26	Normal morphogenesis of epithelial tissues and progression of epithelial tumors. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4, 51-78.	6.6	42
27	An ERK-p38 Subnetwork Coordinates Host Cell Apoptosis and Necrosis during Coxsackievirus B3 Infection. Cell Host and Microbe, 2013, 13, 67-76.	11.0	39
28	Parameterizing cell-to-cell regulatory heterogeneities via stochastic transcriptional profiles. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E626-35.	7.1	37
29	Computational Models of Reactive Oxygen Species as Metabolic Byproducts and Signal-Transduction Modulators. Frontiers in Pharmacology, 2016, 7, 457.	3.5	34
30	Stochastic profiling of transcriptional regulatory heterogeneities in tissues, tumors and cultured cells. Nature Protocols, 2013, 8, 282-301.	12.0	32
31	Simultaneous Profiling of 194 Distinct Receptor Transcripts in Human Cells. Science Signaling, 2013, 6, rs13.	3.6	30
32	TNF-insulin crosstalk at the transcription factor GATA6 is revealed by a model that links signaling and transcriptomic data tensors. Science Signaling, 2016, 9, ra59.	3.6	25
33	Sporadic activation of an oxidative stress–dependent NRF2-p53 signaling network in breast epithelial spheroids and premalignancies. Science Signaling, 2020, 13, .	3.6	25
34	The receptor tyrosine kinase Ror is required for dendrite regeneration in Drosophila neurons. PLoS Biology, 2020, 18, e3000657.	5.6	24
35	Single-cell states versus single-cell atlases â€" two classes of heterogeneity that differ in meaning and method. Current Opinion in Biotechnology, 2016, 39, 120-125.	6.6	23
36	In situ 10-cell RNA sequencing in tissue and tumor biopsy samples. Scientific Reports, 2019, 9, 4836.	3.3	23

#	Article	IF	CITATIONS
37	A High-throughput Assay for Phosphoprotein-specific Phosphatase Activity in Cellular Extracts. Molecular and Cellular Proteomics, 2013, 12, 797-806.	3.8	22
38	An engineering design approach to systems biology. Integrative Biology (United Kingdom), 2017, 9, 574-583.	1.3	22
39	Adenoviral vector saturates Akt pro-survival signaling and blocks insulin-mediated rescue of tumor-necrosis-factor-induced apoptosis. Journal of Cell Science, 2006, 119, 3788-3798.	2.0	21
40	Network Architecture Predisposes an Enzyme to Either Pharmacologic or Genetic Targeting. Cell Systems, 2016, 2, 112-121.	6.2	21
41	A cell-nonautonomous mechanism of yeast chronological aging regulated by caloric restriction and one-carbon metabolism. Journal of Biological Chemistry, 2021, 296, 100125.	3.4	17
42	Modeling the latent dimensions of multivariate signaling datasets. Physical Biology, 2012, 9, 045004.	1.8	16
43	Multiscale Models of Cell Signaling. Annals of Biomedical Engineering, 2012, 40, 2319-2327.	2.5	16
44	Profiling Subcellular Protein Phosphatase Responses to Coxsackievirus B3 Infection of Cardiomyocytes. Molecular and Cellular Proteomics, 2017, 16, S244-S262.	3.8	13
45	Distinct MUNC IncRNA structural domains regulate transcription of different promyogenic factors. Cell Reports, 2022, 38, 110361.	6.4	13
46	Modeling the complete kinetics of coxsackievirus B3 reveals human determinants of host-cell feedback. Cell Systems, 2021, 12, 304-323.e13.	6.2	12
47	Fragile epitopes—Antibody's guess is as good as yours. Science Signaling, 2020, 13, .	3.6	11
48	Premalignant Oligodendrocyte Precursor Cells Stall in a Heterogeneous State of Replication Stress Prior to Gliomagenesis. Cancer Research, 2021, 81, 1868-1882.	0.9	11
49	Pan-Cancer Drivers Are Recurrent Transcriptional Regulatory Heterogeneities in Early-Stage Luminal Breast Cancer. Cancer Research, 2021, 81, 1840-1852.	0.9	10
50	Fragmentation of Small-Cell Lung Cancer Regulatory States in Heterotypic Microenvironments. Cancer Research, 2021, 81, 1853-1867.	0.9	9
51	Paring down signaling complexity. Nature Biotechnology, 2010, 28, 681-682.	17.5	8
52	Cell-to-Cell Transcript Variability: Seeing Signal in the Noise. Cell, 2015, 163, 1566-1568.	28.9	7
53	CIRCOAST: a statistical hypothesis test for cellular colocalization with network structures. Bioinformatics, 2019, 35, 506-514.	4.1	4
54	Non-genetic heterogeneity caused by differential single-cell adhesion. Cell Cycle, 2014, 13, 2149-2150.	2.6	3

#	Article	IF	CITATIONS
55	Robust latent-variable interpretation of in vivo regression models by nested resampling. Scientific Reports, 2019, 9, 19671.	3.3	3
56	An ultrasensitive fiveplex activity assay for cellular kinases. Scientific Reports, 2019, 9, 19409.	3.3	3
57	Simulating coxsackievirus B3 infection with an accessible computational model of its complete kinetics. STAR Protocols, 2021, 2, 100940.	1.2	1
58	When microarrays Met epidermalâ€cell migration. Molecular Systems Biology, 2008, 4, 200.	7.2	0
59	Ten simple rules for being a faculty advocate of first-year graduate students. PLoS Computational Biology, 2021, 17, e1009379.	3.2	0
60	Systems-Engineering Principles in SignalÂTransduction and Cell-Fate Choice., 2012,, 1-14.		0
61	<i>Science Signaling</i> Podcast for 7 June 2016: Modeling signal integration. Science Signaling, 2016, 9, pc13.	3.6	0