
Sherri A Mcfarland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6237463/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fineâ€Feature Modifications to Strained Ruthenium Complexes Radically Alter Their Hypoxic Anticancer Activity ^{â€} . Photochemistry and Photobiology, 2022, 98, 73-84.	2.5	20
2	Photodynamic Inactivation of Human Coronaviruses. Viruses, 2022, 14, 110.	3.3	18
3	Preface: Memorial Issue Dedicated to Karen J. Brewer ^{â€} . Photochemistry and Photobiology, 2022, 98, 4-5.	2.5	0
4	Interaction with a Biomolecule Facilitates the Formation of the Function-Determining Long-Lived Triplet State in a Ruthenium Complex for Photodynamic Therapy. Journal of Physical Chemistry A, 2022, 126, 1336-1344.	2.5	6
5	Anticancer Agent with Inexplicable Potency in Extreme Hypoxia: Characterizing a Light-Triggered Ruthenium Ubertoxin. Journal of the American Chemical Society, 2022, 144, 9543-9547.	13.7	48
6	Photodynamic therapy of melanoma with new, structurally similar, NIR-absorbing ruthenium (II) complexes promotes tumor growth control via distinct hallmarks of immunogenic cell death American Journal of Cancer Research, 2022, 12, 210-228.	1.4	0
7	Intraligand Excited States Turn a Ruthenium Oligothiophene Complex into a Light-Triggered Ubertoxin with Anticancer Effects in Extreme Hypoxia. Journal of the American Chemical Society, 2022, 144, 8317-8336.	13.7	32
8	Remediating Desmoplasia with EGFRâ€Targeted Photoactivable Multiâ€Inhibitor Liposomes Doubles Overall Survival in Pancreatic Cancer. Advanced Science, 2022, 9, .	11.2	22
9	Insights into enantioselective separations of ionic metal complexes by sub/supercritical fluid chromatography. Analytica Chimica Acta, 2022, 1228, 340156.	5.4	3
10	It Takes Three to Tango: The Length of the Oligothiophene Chain Determines the Nature of the Longâ€Lived Excited State and the Resulting Photocytotoxicity of a Ruthenium(II) Photodrug. ChemPhotoChem, 2021, 5, 421-425.	3.0	12
11	Modification of amyloid-beta peptide aggregation <i>via</i> photoactivation of strained Ru(<scp>ii</scp>) polypyridyl complexes. Chemical Science, 2021, 12, 7510-7520.	7.4	15
12	Singlet Oxygen Formation vs Photodissociation for Light-Responsive Protic Ruthenium Anticancer Compounds: The Oxygenated Substituent Determines Which Pathway Dominates. Inorganic Chemistry, 2021, 60, 2138-2148.	4.0	20
13	String-Attached Oligothiophene Substituents Determine the Fate of Excited States in Ruthenium Complexes for Photodynamic Therapy. Journal of Physical Chemistry A, 2021, 125, 6985-6994.	2.5	9
14	Lightâ€responsive and Protic Ruthenium Compounds Bearing Bathophenanthroline and Dihydroxybipyridine Ligands Achieve Nanomolar Toxicity towards Breast Cancer Cells. Photochemistry and Photobiology, 2021, , .	2.5	6
15	Chiral resolution and absolute configuration determination of new metal-based photodynamic therapy antitumor agents. Journal of Pharmaceutical and Biomedical Analysis, 2021, 204, 114233.	2.8	6
16	Ruthenium Photosensitizers for NIR PDT Require Lowest-Lying Triplet Intraligand (3IL) Excited States. Journal of Photochemistry and Photobiology, 2021, 8, 100067.	2.5	8
17	Discovery of immunogenic cell death-inducing ruthenium-based photosensitizers for anticancer photodynamic therapy. Oncolmmunology, 2021, 10, 1863626.	4.6	22
18	Strained, Photoejecting Ru(II) Complexes that are Cytotoxic Under Hypoxic Conditions. Photochemistry and Photobiology, 2020, 96, 327-339.	2.5	38

SHERRI A MCFARLAND

#	Article	IF	CITATIONS
19	Metal-based photosensitizers for photodynamic therapy: the future of multimodal oncology?. Current Opinion in Chemical Biology, 2020, 56, 23-27.	6.1	224
20	Synthesis and Characterization of Ru(II) Complexes with Ï€â€Expansive Imidazophen Ligands for the Photokilling of Human Melanoma Cells. Photochemistry and Photobiology, 2020, 96, 349-357.	2.5	15
21	Bis[pyrrolyl Ru(<scp>ii</scp>)] triads: a new class of photosensitizers for metal–organic photodynamic therapy. Chemical Science, 2020, 11, 12047-12069.	7.4	23
22	Intracellular Photophysics of an Osmium Complex bearing an Oligothiophene Extended Ligand. Chemistry - A European Journal, 2020, 26, 14844-14851.	3.3	10
23	Enhanced Production and Anticancer Properties of Photoactivated Perylenequinones. Journal of Natural Products, 2020, 83, 2490-2500.	3.0	16
24	TLD1433-Mediated Photodynamic Therapy with an Optical Surface Applicator in the Treatment of Lung Cancer Cells In Vitro. Pharmaceuticals, 2020, 13, 137.	3.8	23
25	NIRâ€Absorbing Ru II Complexes Containing αâ€Oligothiophenes for Applications in Photodynamic Therapy. ChemBioChem, 2020, 21, 3594-3607.	2.6	9
26	Breaking the barrier: an osmium photosensitizer with unprecedented hypoxic phototoxicity for real world photodynamic therapy. Chemical Science, 2020, 11, 9784-9806.	7.4	67
27	Os(II) Oligothienyl Complexes as a Hypoxia-Active Photosensitizer Class for Photodynamic Therapy. Inorganic Chemistry, 2020, 59, 16341-16360.	4.0	37
28	Near-infrared absorbing Ru(<scp>ii</scp>) complexes act as immunoprotective photodynamic therapy (PDT) agents against aggressive melanoma. Chemical Science, 2020, 11, 11740-11762.	7.4	67
29	TLD1433 Photosensitizer Inhibits Conjunctival Melanoma Cells in Zebrafish Ectopic and Orthotopic Tumour Models. Cancers, 2020, 12, 587.	3.7	28
30	S,Sâ€Chiral Linker Induced U Shape with a Synâ€facial Sensitizer and Photocleavable Ethene Group. Photochemistry and Photobiology, 2019, 95, 293-305.	2.5	6
31	Neutral iridium(III) complexes bearing BODIPY-substituted N-heterocyclic carbene (NHC) ligands: synthesis, photophysics, in vitro theranostic photodynamic therapy, and antimicrobial activityâ€. Photochemical and Photobiological Sciences, 2019, 18, 2381-2396.	2.9	23
32	Photophysical Properties and Photobiological Activities of Ruthenium(II) Complexes Bearing Ï€-Expansive Cyclometalating Ligands with Thienyl Groups. Inorganic Chemistry, 2019, 58, 10778-10790.	4.0	34
33	New Class of Homoleptic and Heteroleptic Bis(terpyridine) Iridium(III) Complexes with Strong Photodynamic Therapy Effects. ACS Applied Bio Materials, 2019, 2, 2964-2977.	4.6	45
34	Monocationic Iridium(III) Complexes with Farâ€Red Chargeâ€Transfer Absorption and Nearâ€IR Emission: Synthesis, Photophysics, and Reverse Saturable Absorption. European Journal of Inorganic Chemistry, 2019, 2019, 2208-2215.	2.0	18
35	Predictive Strength of Photophysical Measurements for in Vitro Photobiological Activity in a Series of Ru(II) Polypyridyl Complexes Derived from π-Extended Ligands. Inorganic Chemistry, 2019, 58, 3156-3166.	4.0	29
36	Synthesis, Characterization and Photobiological Studies of Ru(<scp>II</scp>) Dyads Derived from <i>α</i> â€Oligothiophene Derivatives of 1,10â€Phenanthroline. Photochemistry and Photobiology, 2019, 95, 267-279.	2.5	16

#	Article	IF	CITATIONS
37	Heteroleptic Ir(III)N ₆ Complexes with Long-Lived Triplet Excited States and in Vitro Photobiological Activities. ACS Applied Materials & Interfaces, 2019, 11, 3629-3644.	8.0	45
38	Transition Metal Complexes and Photodynamic Therapy from a Tumor-Centered Approach: Challenges, Opportunities, and Highlights from the Development of TLD1433. Chemical Reviews, 2019, 119, 797-828.	47.7	899
39	Photodynamic Inactivation of Herpes Simplex Viruses. Viruses, 2018, 10, 532.	3.3	27
40	Dying to Be Noticed: Epigenetic Regulation of Immunogenic Cell Death for Cancer Immunotherapy. Frontiers in Immunology, 2018, 9, 654.	4.8	42
41	Photophysical and Photobiological Properties of Dinuclear Iridium(III) Bis-tridentate Complexes. Inorganic Chemistry, 2018, 57, 9859-9872.	4.0	41
42	Cyclometalated Ruthenium(II) Complexes Derived from α-Oligothiophenes as Highly Selective Cytotoxic or Photocytotoxic Agents. Inorganic Chemistry, 2018, 57, 7694-7712.	4.0	48
43	Ï€-Expansive Heteroleptic Ruthenium(II) Complexes as Reverse Saturable Absorbers and Photosensitizers for Photodynamic Therapy. Inorganic Chemistry, 2017, 56, 3245-3259.	4.0	57
44	Novel Osmiumâ€based Coordination Complexes as Photosensitizers for Panchromatic Photodynamic Therapy. Photochemistry and Photobiology, 2017, 93, 1248-1258.	2.5	62
45	Near-infrared-emitting heteroleptic cationic iridium complexes derived from 2,3-diphenylbenzo[g]quinoxaline as in vitro theranostic photodynamic therapy agents. Dalton Transactions, 2017, 46, 8091-8103.	3.3	56
46	Synthesis and Photobiological Activity of Ru(II) Dyads Derived from Pyrrole-2-carboxylate Thionoesters. Inorganic Chemistry, 2017, 56, 4121-4132.	4.0	59
47	Excited State Dynamics of a Photobiologically Active Ru(II) Dyad Are Altered in Biologically Relevant Environments. Journal of Physical Chemistry A, 2017, 121, 5635-5644.	2.5	34
48	Increasing the triplet lifetime and extending the ground-state absorption of biscyclometalated Ir(<scp>iii</scp>) complexes for reverse saturable absorption and photodynamic therapy applications. Dalton Transactions, 2016, 45, 16366-16378.	3.3	85
49	Influence of Protonation State on the Excited State Dynamics of a Photobiologically Active Ru(II) Dyad. Journal of Physical Chemistry A, 2016, 120, 6379-6388.	2.5	29
50	Organometallic Ru(II) Photosensitizers Derived from π-Expansive Cyclometalating Ligands: Surprising Theranostic PDT Effects. Inorganic Chemistry, 2016, 55, 83-95.	4.0	92
51	Strained ruthenium metal–organic dyads as photocisplatin agents with dual action. Journal of Inorganic Biochemistry, 2016, 158, 45-54.	3.5	52
52	A spectroscopic study of substituted anthranilic acids as sensitive environmental probes for detecting cancer cells. Bioorganic and Medicinal Chemistry, 2016, 24, 929-937.	3.0	13
53	Isolation and Synthetic Diversification of Jadomycin 4-Amino- <scp>I</scp> -phenylalanine. Journal of Natural Products, 2015, 78, 1208-1214.	3.0	21
54	Eight-Membered Ring-Containing Jadomycins: Implications for Non-enzymatic Natural Products Biosynthesis. Journal of the American Chemical Society, 2015, 137, 3271-3275.	13.7	38

#	Article	IF	CITATIONS
55	Photophysics of Ru(II) Dyads Derived from Pyrenyl-Substitued Imidazo[4,5- <i>f</i>][1,10]phenanthroline Ligands. Journal of Physical Chemistry A, 2015, 119, 3986-3994.	2.5	34
56	Ru(II) dyads derived from α-oligothiophenes: A new class of potent and versatile photosensitizers for PDT. Coordination Chemistry Reviews, 2015, 282-283, 127-138.	18.8	226
57	Ru(II) Dyads Derived from 2-(1-Pyrenyl)-1 <i>H</i> -imidazo[4,5- <i>f</i>][1,10]phenanthroline: Versatile Photosensitizers for Photodynamic Applications. Journal of Physical Chemistry A, 2014, 118, 10507-10521.	2.5	90
58	<i>In Vitro</i> Multiwavelength PDT with ³ IL States: Teaching Old Molecules New Tricks. Inorganic Chemistry, 2014, 53, 4548-4559.	4.0	91
59	Synthesis and antimalarial activity of prodigiosenes. Organic and Biomolecular Chemistry, 2014, 12, 4132.	2.8	40
60	Exploitation of Long-Lived ³ IL Excited States for Metal–Organic Photodynamic Therapy: Verification in a Metastatic Melanoma Model. Journal of the American Chemical Society, 2013, 135, 17161-17175.	13.7	265
61	Investigations regarding the utility of prodigiosenes to treat leukemia. Organic and Biomolecular Chemistry, 2013, 11, 62-68.	2.8	24
62	Synthetic prodigiosenes and the influence of C-ring substitution on DNA cleavage, transmembrane chloride transport and basicity. Organic and Biomolecular Chemistry, 2013, 11, 3834.	2.8	38
63	Photodynamic inactivation of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus with Ru(II)-based type I/type II photosensitizers. Photodiagnosis and Photodynamic Therapy, 2013, 10, 615-625.	2.6	119
64	Synthetic diversification of natural products: semi-synthesis and evaluation of triazole jadomycins. Chemical Science, 2012, 3, 1640.	7.4	35
65	Platinum-oxazoline complexes as anti-cancer agents: syntheses, characterisation and initial biological studies. MedChemComm, 2011, 2, 274.	3.4	20
66	Jadomycins Derived from the Assimilation and Incorporation of Norvaline and Norleucine. Journal of Natural Products, 2011, 74, 2420-2424.	3.0	26
67	Copper-mediated nuclease activity of jadomycin B. Bioorganic and Medicinal Chemistry, 2011, 19, 3357-3360.	3.0	21
68	Photobiological Activity of Ru(II) Dyads Based on (Pyren-1-yl)ethynyl Derivatives of 1,10-Phenanthroline. Inorganic Chemistry, 2010, 49, 2889-2900.	4.0	75
69	Diverse DNA-Cleaving Capacities of the Jadomycins through Precursor-Directed Biosynthesis. Organic Letters, 2010, 12, 1172-1175.	4.6	34
70	Nonthermalized excited states in Ru(II) polypyridyl complexes probed by ultrafast transient absorption spectroscopy with high photon energy excitation. Canadian Journal of Chemistry, 2008, 86, 1118-1125.	1.1	5
71	Picosecond Dynamics of Nonthermalized Excited States in Tris(2,2-bipyridine)ruthenium(II) Derivatives Elucidated by High Energy Excitation. Journal of the American Chemical Society, 2005, 127, 7065-7070.	13.7	44
72	Conformational Control of Excited-State Dynamics in Highly Distorted Ru(II) Polypyridyl Complexes. Inorganic Chemistry, 2005, 44, 4066-4076.	4.0	18

#	Article	IF	CITATIONS
73	Fluorescent Signaling Based on Control of Excited State Dynamics. Biarylacetylene Fluorescent Chemosensors. Journal of the American Chemical Society, 2002, 124, 1178-1179.	13.7	111
74	Fluorescent Chemosensors Based on Conformational Restriction of a Biaryl Fluorophore. Journal of the American Chemical Society, 2001, 123, 1260-1261.	13.7	135