
Koji Shido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/623738/publications.pdf Version: 2024-02-01

KOII SHIDO

#	Article	IF	CITATIONS
1	Histone variant H3.3 maintains adult haematopoietic stem cell homeostasis by enforcing chromatin adaptability. Nature Cell Biology, 2022, 24, 99-111.	10.3	17
2	Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis. Nature, 2020, 585, 426-432.	27.8	145
3	Histone variant H3.3–mediated chromatin remodeling is essential for paternal genome activation in mouse preimplantation embryos. Journal of Biological Chemistry, 2018, 293, 3829-3838.	3.4	42
4	Platelets prime hematopoietic–vascular niche to drive angiocrine-mediated liver regeneration. Signal Transduction and Targeted Therapy, 2017, 2, .	17.1	26
5	Conversion of adult endothelium to immunocompetent haematopoietic stem cells. Nature, 2017, 545, 439-445.	27.8	191
6	Molecular Checkpoint Decisions Made by Subverted Vascular Niche Transform Indolent Tumor Cells into Chemoresistant Cancer Stem Cells. Cancer Cell, 2017, 31, 110-126.	16.8	108
7	Targeting the vascular and perivascular niches as a regenerative therapy for lung and liver fibrosis. Science Translational Medicine, 2017, 9, .	12.4	91
8	Endothelial jagged-2 sustains hematopoietic stem and progenitor reconstitution after myelosuppression. Journal of Clinical Investigation, 2017, 127, 4242-4256.	8.2	63
9	Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis. Nature Medicine, 2016, 22, 154-162.	30.7	201
10	Direct Conversion of Adult Endothelial Cells into Immunecompetent Long-Term Engraftable Clinically Scalable Hematopoietic Stem Cells: Pathway to Therapeutic Translation. Blood, 2016, 128, 372-372.	1.4	1
11	Direct conversion of human amniotic cells into endothelial cells without transitioning through a pluripotent state. Nature Protocols, 2015, 10, 1975-1985.	12.0	27
12	Platelet-derived SDF-1 primes the pulmonary capillary vascular niche to drive lung alveolar regeneration. Nature Cell Biology, 2015, 17, 123-136.	10.3	120
13	Angiocrine Factors Deployed by Tumor Vascular Niche Induce B Cell Lymphoma Invasiveness and Chemoresistance. Cancer Cell, 2014, 25, 350-365.	16.8	203
14	Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature, 2014, 505, 97-102.	27.8	496
15	Molecular Signatures of Tissue-Specific Microvascular Endothelial Cell Heterogeneity in Organ Maintenance and Regeneration. Developmental Cell, 2013, 26, 204-219.	7.0	548
16	Efficient Direct Reprogramming of Mature Amniotic Cells into Endothelial Cells by ETS Factors and TGFÎ ² Suppression. Cell, 2012, 151, 559-575.	28.9	212
17	Endothelial-Derived Angiocrine Signals Induce and Sustain Regenerative Lung Alveolarization. Cell, 2011, 147, 539-553.	28.9	436
18	Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature, 2010, 468, 310-315.	27.8	686

Којі Ѕнідо

#	Article	IF	CITATIONS
19	Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nature Cell Biology, 2010, 12, 1046-1056.	10.3	343
20	Endothelial Cells Are Essential for the Self-Renewal and Repopulation of Notch-Dependent Hematopoietic Stem Cells. Cell Stem Cell, 2010, 6, 251-264.	11.1	582
21	Engraftment and Reconstitution of Hematopoiesis Is Dependent on VEGFR2-Mediated Regeneration of Sinusoidal Endothelial Cells. Cell Stem Cell, 2009, 4, 263-274.	11.1	548
22	Newly Discovered Polymorphism in the CD34+ Stem Cell Specific AC133-P1 Promoter Linked to Leukemias Blood, 2004, 104, 2002-2002.	1.4	0