David A Brow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6237210/publications.pdf Version: 2024-02-01

Ολυίο Α Βροιμ

#	Article	IF	CITATIONS
1	Spliceosomal RNA U6 is remarkably conserved from yeast to mammals. Nature, 1988, 334, 213-218.	27.8	413
2	RNA-binding protein Nrd1 directs poly(A)-independent 3′-end formation of RNA polymerase II transcripts. Nature, 2001, 413, 327-331.	27.8	328
3	Allosteric Cascade of Spliceosome Activation. Annual Review of Genetics, 2002, 36, 333-360.	7.6	318
4	Genome-Wide Distribution of Yeast RNA Polymerase II and Its Control by Sen1 Helicase. Molecular Cell, 2006, 24, 735-746.	9.7	293
5	Regulation of a Eukaryotic Gene by GTP-Dependent Start Site Selection and Transcription Attenuation. Molecular Cell, 2008, 31, 201-211.	9.7	128
6	A Yeast Heterogeneous Nuclear Ribonucleoprotein Complex Associated With RNA Polymerase II. Genetics, 2000, 154, 557-571.	2.9	125
7	An essential snRNA from S. cerevisiae has properties predicted for U4, including interaction with a U6-like snRNA. Cell, 1987, 50, 585-592.	28.9	112
8	Ssu72 Protein Mediates Both Poly(A)-Coupled and Poly(A)-Independent Termination of RNA Polymerase II Transcription. Molecular and Cellular Biology, 2003, 23, 6339-6349.	2.3	102
9	Splicing a spliceosomal RNA. Nature, 1989, 337, 14-15.	27.8	92
10	Splicing Factor Prp8 Governs U4/U6 RNA Unwinding during Activation of the Spliceosome. Molecular Cell, 1999, 3, 65-75.	9.7	92
11	The life of U6 small nuclear RNA, from cradle to grave. Rna, 2018, 24, 437-460.	3.5	92
12	cis - and trans -Acting Determinants of Transcription Termination by Yeast RNA Polymerase II. Molecular and Cellular Biology, 2006, 26, 2688-2696.	2.3	72
13	Suppressors of a Cold-Sensitive Mutation in Yeast U4 RNA Define Five Domains in the Splicing Factor Prp8 That Influence Spliceosome Activation. Genetics, 2000, 155, 1667-1682.	2.9	70
14	Distinct domains of splicing factor Prp8 mediate different aspects of spliceosome activation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9145-9149.	7.1	69
15	Core structure of the U6 small nuclear ribonucleoprotein at 1.7-Ã resolution. Nature Structural and Molecular Biology, 2014, 21, 544-551.	8.2	65
16	Saccharomyces cerevisiae Sen1 Helicase Domain Exhibits 5′- to 3′-Helicase Activity with a Preference for Translocation on DNA Rather than RNA. Journal of Biological Chemistry, 2015, 290, 22880-22889.	3.4	52
17	A novel occluded RNA recognition motif in Prp24 unwinds the U6 RNA internal stem loop. Nucleic Acids Research, 2011, 39, 7837-7847.	14.5	42
18	Structure and Interactions of the First Three RNA Recognition Motifs of Splicing Factor Prp24. Journal of Molecular Biology, 2007, 367, 1447-1458.	4.2	36

DAVID A BROW

#	Article	IF	CITATIONS
19	Small nuclear rnas from budding yeasts: phylogenetic comparisons reveal extensive size variation. Gene, 1989, 82, 137-144.	2.2	34
20	A Novel Upstream RNA Polymerase III Promoter Element Becomes Essential When the Chromatin Structure of the Yeast U6 RNA Gene Is Altered. Molecular and Cellular Biology, 2001, 21, 6429-6439.	2.3	33
21	Multiple Functions of Saccharomyces cerevisiae Splicing Protein Prp24 in U6 RNA Structural Rearrangements. Genetics, 1999, 153, 1205-1218.	2.9	31
22	<i>Saccharomyces cerevisiae</i> Sen1 as a Model for the Study of Mutations in Human Senataxin That Elicit Cerebellar Ataxia. Genetics, 2014, 198, 577-590.	2.9	30
23	A dynamic bulge in the U6 RNA internal stem–loop functions in spliceosome assembly and activation. Rna, 2007, 13, 2252-2265.	3.5	25
24	Lethal Mutations in a Yeast U6 RNA Gene B Block Promoter Element Identify Essential Contacts with Transcription Factor-IIIC. Journal of Biological Chemistry, 1995, 270, 11398-11405.	3.4	22
25	The N- and C-terminal RNA recognition motifs of splicing factor Prp24 have distinct functions in U6 RNA binding. Rna, 2005, 11, 808-820.	3.5	22
26	Structure and functional implications of a complex containing a segment of U6 RNA bound by a domain of Prp24. Rna, 2010, 16, 792-804.	3.5	22
27	Structural requirements for protein-catalyzed annealing of U4 and U6 RNAs during di-snRNP assembly. Nucleic Acids Research, 2016, 44, 1398-1410.	14.5	22
28	Molecular basis for the distinct cellular functions of the Lsm1–7 and Lsm2–8 complexes. Rna, 2020, 26, 1400-1413.	3.5	22
29	Usb1 controls U6 snRNP assembly through evolutionarily divergent cyclic phosphodiesterase activities. Nature Communications, 2017, 8, 497.	12.8	20
30	An unanticipated early function of DEAD-box ATPase Prp28 during commitment to splicing is modulated by U5 snRNP protein Prp8. Rna, 2014, 20, 46-60.	3.5	17
31	Architecture of the U6 snRNP reveals specific recognition of 3′-end processed U6 snRNA. Nature Communications, 2018, 9, 1749.	12.8	17
32	A multi-step model for facilitated unwinding of the yeast U4/U6 RNA duplex. Nucleic Acids Research, 2016, 44, 10912-10928.	14.5	14
33	Transcriptomes of six mutants in the Sen1 pathway reveal combinatorial control of transcription termination across the Saccharomyces cerevisiae genome. PLoS Genetics, 2017, 13, e1006863.	3.5	14
34	Disruption of the 5′ stem-loop of yeast U6 RNA induces trimethylguanosine capping of this RNA polymerase III transcript in vivo. Rna, 2000, 6, 1859-1869.	3.5	13
35	Human spliceosomal snRNA sequence variants generate variant spliceosomes. Rna, 2021, 27, 1186-1203.	3.5	12
36	Spliceosome assembly in the absence of stable U4/U6 RNA pairing. Rna, 2015, 21, 923-934.	3.5	9

DAVID A BROW

#	Article	IF	CITATIONS
37	Position-dependent function of a B block promoter element implies a specialized chromatin structure on the S.cerevisiae U6 RNA gene, SNR6. Nucleic Acids Research, 2004, 32, 4297-4305.	14.5	8
38	Sen-sing RNA Terminators. Molecular Cell, 2011, 42, 717-718.	9.7	8
39	Structure and conformational plasticity of the U6 small nuclear ribonucleoprotein core. Acta Crystallographica Section D: Structural Biology, 2017, 73, 1-8.	2.3	5
40	An Allosteric Network for Spliceosome Activation Revealed by High-Throughput Suppressor Analysis in <i>Saccharomyces cerevisiae</i> . Genetics, 2019, 212, 111-124.	2.9	3
41	Eye on RNA unwinding. Nature Structural and Molecular Biology, 2009, 16, 7-8.	8.2	2
42	A NRD1-NAB3 COMPLEX ASSOCIATED WITH YEAST RNA POLYMERASE II. Biochemical Society Transactions, 2000, 28, A442-A442.	3.4	0
43	An RNA mystery and its denouement. Rna, 2015, 21, 576-577.	3.5	0