Anne Baron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6236550/publications.pdf Version: 2024-02-01

ANNE RADON

#	Article	IF	CITATIONS
1	Migraine and Two-Pore-Domain Potassium Channels. Neuroscientist, 2021, 27, 268-284.	3.5	5
2	C-Jun N-Terminal Kinase Post-Translational Regulation of Pain-Related Acid-Sensing Ion Channels 1b and 3. Journal of Neuroscience, 2021, 41, 8673-8685.	3.6	8
3	TREK channel activation suppresses migraine pain phenotype. IScience, 2021, 24, 102961.	4.1	14
4	Migraine-Associated TRESK Mutations Increase Neuronal Excitability through Alternative Translation Initiation and Inhibition of TREK. Neuron, 2019, 101, 232-245.e6.	8.1	99
5	Effects of systemic inhibitors of acidâ€sensing ion channels 1 (ASIC1) against acute and chronic mechanical allodynia in a rodent model of migraine. British Journal of Pharmacology, 2018, 175, 4154-4166.	5.4	41
6	Analgesic effects of mambalgin peptide inhibitors of acid-sensing ion channels in inflammatory and neuropathic pain. Pain, 2016, 157, 552-559.	4.2	57
7	Mambalgin-1 Pain-relieving Peptide, Stepwise Solid-phase Synthesis, Crystal Structure, and Functional Domain for Acid-sensing Ion Channel 1a Inhibition. Journal of Biological Chemistry, 2016, 291, 2616-2629.	3.4	41
8	Pharmacology of acid-sensing ion channels – Physiological and therapeutical perspectives. Neuropharmacology, 2015, 94, 19-35.	4.1	132
9	Venom toxins in the exploration of molecular, physiological and pathophysiological functions of acid-sensing ion channels. Toxicon, 2013, 75, 187-204.	1.6	95
10	Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature, 2012, 490, 552-555.	27.8	344
11	Acid-Sensing Ion Channels (ASICs): Pharmacology and implication in pain. , 2010, 128, 549-558.		293
12	Current perspectives on acid-sensing ion channels: new advances and therapeutic implications. Expert Review of Clinical Pharmacology, 2010, 3, 331-346.	3.1	37
13	Acid Sensing Ion Channels in Dorsal Spinal Cord Neurons. Journal of Neuroscience, 2008, 28, 1498-1508.	3.6	105
14	Peptides inhibitors of acid-sensing ion channels. Toxicon, 2007, 49, 271-284.	1.6	100
15	A tarantula peptide against pain via ASIC1a channels and opioid mechanisms. Nature Neuroscience, 2007, 10, 943-945.	14.8	246
16	The receptor site of the spider toxin PcTx1 on the proton-gated cation channel ASIC1a. Journal of Physiology, 2006, 570, 339-354.	2.9	82
17	ASIC2b-dependent Regulation of ASIC3, an Essential Acid-sensing Ion Channel Subunit in Sensory Neurons via the Partner Protein PICK-1. Journal of Biological Chemistry, 2004, 279, 19531-19539.	3.4	96
18	A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. EMBO Journal, 2004, 23, 1516-1525.	7.8	352

Anne Baron

#	Article	IF	CITATIONS
19	Knockout of the ASIC2 channel in mice does not impair cutaneous mechanosensation, visceral mechanonociception and hearing. Journal of Physiology, 2004, 558, 659-669.	2.9	112
20	Protein Kinase C Stimulates the Acid-sensing Ion Channel ASIC2a via the PDZ Domain-containing Protein PICK1. Journal of Biological Chemistry, 2002, 277, 50463-50468.	3.4	106
21	ProInflammatory Mediators, Stimulators of Sensory Neuron Excitability via the Expression of Acid-Sensing Ion Channels. Journal of Neuroscience, 2002, 22, 10662-10670.	3.6	315
22	ASICâ€like, protonâ€activated currents in rat hippocampal neurons. Journal of Physiology, 2002, 539, 485-494.	2.9	191
23	Pituitary adenylate cyclase-activating polypeptide activates KATP current in rat atrial myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H1058-H1065.	3.2	17
24	Zn2+ and H+ Are Coactivators of Acid-sensing Ion Channels. Journal of Biological Chemistry, 2001, 276, 35361-35367.	3.4	175
25	Sulfonylurea receptor ligands modulate stretch-induced ANF secretion in rat atrial myocyte culture. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H2028-H2038.	3.2	15
26	A Novel K ATP Current in Cultured Neonatal Rat Atrial Appendage Cardiomyocytes. Circulation Research, 1999, 85, 707-715.	4.5	47
27	Epoxyeicosatrienoic acids activate a high-conductance, Ca2+-dependent K+channel on pig coronary artery endothelial cells. Journal of Physiology, 1997, 504, 537-543.	2.9	102
28	Ca(2+)â€dependent nonâ€selective cation and potassium channels activated by bradykinin in pig coronary artery endothelial cells Journal of Physiology, 1996, 493, 691-706.	2.9	46
29	Inhibition of L-type Ca2+ channels in portal vein myocytes by the enantiomers of oxodipine. European Journal of Pharmacology, 1994, 269, 105-113.	2.6	6
30	Dual effect of thrombin on voltage-dependent Ca2+ channels of portal vein smooth muscle cells Circulation Research, 1993, 72, 1317-1325.	4.5	12
31	Autoanti-phosphatidylinositide antibodies specifically inhibit noradrenaline effects on Ca2+ and Cl- channels in rat portal vein myocytes Journal of Biological Chemistry, 1992, 267, 4312-4316.	3.4	26
32	Ca ²⁺ channel activation and membrane depolarization mediated by Cl ^{â^'} channels in response to noradrenaline in vascular myocytes. British Journal of Pharmacology, 1991, 104, 1000-1006.	5.4	83
33	Large conductance calciumâ€activated nonâ€selective cation channel in smooth muscle cells isolated from rat portal vein Journal of Physiology, 1991, 437, 461-475.	2.9	94
34	Pharmacological block of Ca2+-activated Cl? current in rat vascular smooth muscle cells in short-term primary culture. Pflugers Archiv European Journal of Physiology, 1991, 419, 553-558.	2.8	51