Roberto Corradini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6236305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tuning the Loading and Release Properties of MicroRNA-Silencing Porous Silicon Nanoparticles by Using Chemically Diverse Peptide Nucleic Acid Payloads. ACS Biomaterials Science and Engineering, 2022, 8, 4123-4131.	5.2	7
2	Treatment of Human Glioblastoma U251 Cells with Sulforaphane and a Peptide Nucleic Acid (PNA) Targeting miR-15b-5p: Synergistic Effects on Induction of Apoptosis. Molecules, 2022, 27, 1299.	3.8	15
3	A Folding-Based Electrochemical Aptasensor for the Single-Step Detection of the SARS-CoV-2 Spike Protein. ACS Applied Materials & Interfaces, 2022, 14, 19204-19211.	8.0	42
4	Hollow-Core Fiber-Based Biosensor: A Platform for Lab-in-Fiber Optical Biosensors for DNA Detection. Sensors, 2022, 22, 5144.	3.8	10
5	Treatment of human airway epithelial Calu-3Âcells with a peptide-nucleic acid (PNA) targeting the microRNA miR-101-3p is associated with increased expression of the cystic fibrosis Transmembrane Conductance Regulator () gene. European Journal of Medicinal Chemistry, 2021, 209, 112876.	5.5	18
6	Submonomeric Strategy with Minimal Protection for the Synthesis of C(2)-Modified Peptide Nucleic Acids. Organic Letters, 2021, 23, 902-907.	4.6	3
7	A Peptide-Nucleic Acid Targeting miR-335-5p Enhances Expression of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Gene with the Possible Involvement of the CFTR Scaffolding Protein NHERF1. Biomedicines, 2021, 9, 117.	3.2	9
8	PNA-functionalized magnetic microbeads as substrates for enzyme-labelled voltammetric genoassay for DNA sensing applied to identification of GMO in food. Analytica Chimica Acta, 2021, 1153, 338297.	5.4	6
9	Detection of Tumor DNA in Human Plasma with a Functional PLL-Based Surface Layer and Plasmonic Biosensing. ACS Sensors, 2021, 6, 2307-2319.	7.8	19
10	Multifunctional Delivery Systems for Peptide Nucleic Acids. Pharmaceuticals, 2021, 14, 14.	3.8	27
11	Delivery of Peptide Nucleic Acids Using an Argininocalix[4]arene as Vector. Methods in Molecular Biology, 2021, 2211, 123-143.	0.9	2
12	Direct plasmonic detection of circulating RAS mutated DNA in colorectal cancer patients. Biosensors and Bioelectronics, 2020, 170, 112648.	10.1	24
13	Increasing the Sensitivity of Electrochemical DNA Detection by a Micropillar-Structured Biosensing Surface. Langmuir, 2020, 36, 4272-4279.	3.5	16
14	High Levels of Apoptosis Are Induced in the Human Colon Cancer HT-29 Cell Line by Co-Administration of Sulforaphane and a Peptide Nucleic Acid Targeting miR-15b-5p. Nucleic Acid Therapeutics, 2020, 30, 164-174.	3.6	27
15	A Peptide Nucleic Acid (PNA) Masking the miR-145-5p Binding Site of the 3′UTR of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) mRNA Enhances CFTR Expression in Calu-3 Cells. Molecules, 2020, 25, 1677.	3.8	18
16	"Plug-n-Play―Polymer Substrates: Surface Patterning with Reactive-Group-Appended Poly- <scp>l</scp> -lysine for Biomolecule Adhesion. ACS Applied Polymer Materials, 2019, 1, 3165-3173.	4.4	6
17	Demonstrating specificity of bioactive peptide nucleic acids (PNAs) targeting microRNAs for practical laboratory classes of applied biochemistry and pharmacology. PLoS ONE, 2019, 14, e0221923.	2.5	5
18	Single-Walled Carbon Nanotubes as Enhancing Substrates for PNA-Based Amperometric Genosensors. Sensors, 2019, 19, 588.	3.8	15

#	Article	IF	CITATIONS
19	Physiological expression of miR-130a during differentiation of CD34+ human hematopoietic stem cells results in the inhibition of monocyte differentiation. Experimental Cell Research, 2019, 382, 111445.	2.6	2
20	Targeting miR‑155‑5p and miR‑221‑3p by peptide nucleic acids induces caspase‑3 activation and apop temozolomide‑resistant T98G glioma cells. International Journal of Oncology, 2019, 55, 59-68.	tosis in	22
21	Efficient cell penetration and delivery of peptide nucleic acids by an argininocalix[4]arene. Scientific Reports, 2019, 9, 3036.	3.3	46
22	64Cu and fluorescein labeled anti-miRNA peptide nucleic acids for the detection of miRNA expression in living cells. Scientific Reports, 2019, 9, 3376.	3.3	13
23	Enhancing the Expression of CFTR Using Antisense Molecules against MicroRNA miR-145-5p. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1443-1444.	5.6	9
24	Novel amperometric genosensor based on peptide nucleic acid (PNA) probes immobilized on carbon nanotubes-screen printed electrodes for the determination of trace levels of non-amplified DNA in genetically modified (GM) soy. Biosensors and Bioelectronics, 2019, 129, 7-14.	10.1	34
25	Control of Probe Density at DNA Biosensor Surfaces Using Poly(<scp>l</scp> -lysine) with Appended Reactive Groups. Bioconjugate Chemistry, 2018, 29, 4110-4118.	3.6	38
26	Selective Functionalization with PNA of Silicon Nanowires on Silicon Oxide Substrates. Langmuir, 2018, 34, 11395-11404.	3.5	20
27	Preparation of Anti-miR PNAs for Drug Development and Nanomedicine. Methods in Molecular Biology, 2018, 1811, 49-63.	0.9	7
28	Loading of PNA and Other Molecular Payloads on Inorganic Nanostructures for Theranostics. Methods in Molecular Biology, 2018, 1811, 65-77.	0.9	1
29	A Peptide Nucleic Acid against MicroRNA miR-145-5p Enhances the Expression of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) in Calu-3 Cells. Molecules, 2018, 23, 71.	3.8	43
30	DNA Detection by Flow Cytometry using PNAâ€Modified Metal–Organic Framework Particles. Chemistry - A European Journal, 2017, 23, 4180-4186.	3.3	26
31	Focus on PNA Flexibility and RNA Binding using Molecular Dynamics and Metadynamics. Scientific Reports, 2017, 7, 42799.	3.3	36
32	Building on the peptide nucleic acid (PNA) scaffold: a biomolecular engineering approach. Supramolecular Chemistry, 2017, 29, 784-795.	1.2	16
33	Optical Fiber Sensors for Label-Free DNA Detection. Journal of Lightwave Technology, 2017, 35, 3461-3472.	4.6	43
34	Synthesis and Improved Cross-Linking Properties of C5-Modified Furan Bearing PNAs. Molecules, 2017, 22, 2010.	3.8	17
35	Breakable Hybrid Organosilica Nanocapsules for Protein Delivery. Angewandte Chemie, 2016, 128, 3384-3388.	2.0	16
36	Breakable Hybrid Organosilica Nanocapsules for Protein Delivery. Angewandte Chemie - International Edition, 2016, 55, 3323-3327.	13.8	126

#	Article	IF	CITATIONS
37	Innentitelbild: Breakable Hybrid Organosilica Nanocapsules for Protein Delivery (Angew. Chem.) Tj ETQq1 1 0.78-	4314 rgB1 2.0	[Qverlock]
38	Furan-PNA: a mildly inducible irreversible interstrand crosslinking system targeting single and double stranded DNA. Chemical Communications, 2016, 52, 6930-6933.	4.1	23
39	A Bifunctional Monomer for On-Resin Synthesis of Polyfunctional PNAs and Tailored Induced-Fit Switching Probes. Organic Letters, 2016, 18, 5452-5455.	4.6	8
40	High levels of apoptosis are induced in human glioma cell lines by co-administration of peptide nucleic acids targeting miR-221 and miR-222. International Journal of Oncology, 2016, 48, 1029-1038.	3.3	62
41	Peptide nucleic acids targeting β-globin mRNAs selectively inhibit hemoglobin production in murine erythroleukemia cells. International Journal of Molecular Medicine, 2015, 35, 51-58.	4.0	3
42	Combined Delivery of Temozolomide and Anti-miR221 PNA Using Mesoporous Silica Nanoparticles Induces Apoptosis in Resistant Glioma Cells. Small, 2015, 11, 5687-5695.	10.0	121
43	Structural Studies on Porphyrin–PNA Conjugates in Parallel PNA:PNA Duplexes: Effect of Stacking Interactions on Helicity. Chirality, 2015, 27, 864-874.	2.6	5
44	Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system. Biosensors and Bioelectronics, 2015, 63, 248-254.	10.1	86
45	Pyrene-modified PNAs: Stacking interactions and selective excimer emission in PNA2DNA triplexes. Beilstein Journal of Organic Chemistry, 2014, 10, 1495-1503.	2.2	12
46	Effect of chirality in gamma-PNA: PNA interaction, another piece in the picture. Artificial DNA, PNA & XNA, 2014, 5, e1131801.	1.4	10
47	Toward Peptide Nucleic Acid (PNA) Directed Peptide Translation Using Ester Based Aminoacyl Transfer. ACS Chemical Biology, 2014, 9, 2612-2620.	3.4	7
48	Bio-functionalized hollow core photonic crystal fibers for label-free DNA detection. , 2014, , .		0
49	Intracellular Delivery of Peptide Nucleic Acid and Organic Molecules Using Zeolite‣ Nanocrystals. Advanced Healthcare Materials, 2014, 3, 1812-1817.	7.6	43
50	Multifunctional Inorganic Nanocontainers for DNA and Drug Delivery into Living Cells. Chemistry - A European Journal, 2014, 20, 10900-10904.	3.3	41
51	Uptake by human glioma cell lines and biological effects of a peptide-nucleic acids targeting miR-221. Journal of Neuro-Oncology, 2014, 118, 19-28.	2.9	57
52	Chiral PNAs with Constrained Open-Chain Backbones. Methods in Molecular Biology, 2014, 1050, 19-35.	0.9	2
53	Molecular Methods for Validation of the Biological Activity of Peptide Nucleic Acids Targeting MicroRNAs. Methods in Molecular Biology, 2014, 1095, 165-176.	0.9	9
54	Optical Fiber Sensor for DNA Detection Based on Doubled-Tilted Bragg Grating. Lecture Notes in Electrical Engineering, 2014, , 349-352.	0.4	0

#	Article	IF	CITATIONS
55	Use of Peptide Nucleic Acids (PNAs) for Genotyping by Solution and Surface Methods. Methods in Molecular Biology, 2014, 1050, 143-157.	0.9	2
56	Peptide nucleic acid molecular beacons for the detection of PCR amplicons in droplet-based microfluidic devices. Analytical and Bioanalytical Chemistry, 2013, 405, 615-624.	3.7	21
57	Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating. Journal of Biomedical Optics, 2013, 18, 057004.	2.6	64
58	DNA biosensors implemented on PNA-functionalized microstructured optical fibers Bragg gratings. Proceedings of SPIE, 2013, , .	0.8	1
59	PNA–NLS conjugates as single-molecular activators of target sites in double-stranded DNA for site-selective scission. Organic and Biomolecular Chemistry, 2013, 11, 5233.	2.8	13
60	Microstructured optical fiber Bragg grating sensor for DNA detection. Proceedings of SPIE, 2013, , .	0.8	1
61	PNA-modified photonic crystal fibers for DNA detection. , 2013, , .		Ο
62	Antitumor Activity of Sustained N-Myc Reduction in Rhabdomyosarcomas and Transcriptional Block by Antigene Therapy. Clinical Cancer Research, 2012, 18, 796-807.	7.0	74
63	Label-free DNA biosensor based on doubled tilted fiber Bragg grating. , 2012, , .		2
64	PNA bearing 5-azidomethyluracil. Artificial DNA, PNA & XNA, 2012, 3, 53-62.	1.4	14
65	DNA biosensor based on a double tilted fiber Bragg grating. , 2012, , .		Ο
66	Peptide nucleic acids targeting miR-221 modulate p27Kip1 expression in breast cancer MDA-MB-231 cells. International Journal of Oncology, 2012, 41, 2119-2127.	3.3	67
67	Optical Fiber Ring Cavity Sensor for Label-Free DNA Detection. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1176-1183.	2.9	40
68	Advanced Molecular Probes for Sequence-Specific DNA Recognition. Soft and Biological Matter, 2012, , 89-124.	0.3	6
69	Selective recognition of DNA from olive leaves and olive oil by PNA and modified-PNA microarrays. Artificial DNA, PNA & XNA, 2012, 3, 63-72.	1.4	20
70	Cellular Uptakes, Biostabilities and Antiâ€miRâ€210 Activities of Chiral Arginineâ€₽NAs in Leukaemic K562 Cells. ChemBioChem, 2012, 13, 1327-1337.	2.6	56
71	Carboxyalkyl peptoid PNAs: synthesis and hybridization properties. Tetrahedron, 2012, 68, 499-506.	1.9	13
72	miRNA therapeutics: delivery and biological activity of peptide nucleic acids targeting miRNAs. Epigenomics, 2011, 3, 733-745.	2.1	39

#	Article	IF	CITATIONS
73	Real time RNA transcription monitoring by Thiazole Orange (TO)-conjugated Peptide Nucleic Acid (PNA) probes: norovirus detection. Molecular BioSystems, 2011, 7, 1684.	2.9	17
74	Patterning of Peptide Nucleic Acids Using Reactive Microcontact Printing. Langmuir, 2011, 27, 1536-1542.	3.5	26
75	A PNA microarray for tomato genotyping. Molecular BioSystems, 2011, 7, 1902.	2.9	12
76	lsolation and Characterization of a New Less-Toxic Derivative of theFusariumMycotoxin Diacetoxyscirpenol after Thermal Treatment. Journal of Agricultural and Food Chemistry, 2011, 59, 9709-9714.	5.2	20
77	Food analysis and food authentication by peptide nucleic acid (PNA)-based technologies. Chemical Society Reviews, 2011, 40, 221-232.	38.1	58
78	Long period grating-based fiber optic sensor for label-free DNA detection. , 2011, , .		3
79	Control of Helical Handedness in DNA and PNA Nanostructures. Methods in Molecular Biology, 2011, 749, 79-92.	0.9	4
80	Peptide Nucleic Acids with a Structurally Biased Backbone. Updated Review and Emerging Challenges. Current Topics in Medicinal Chemistry, 2011, 11, 1535-1554.	2.1	72
81	C(5) modified uracil derivatives showing antiproliferative and erythroid differentiation inducing activities on human chronic myelogenous leukemia K562 cells. European Journal of Pharmacology, 2011, 672, 30-37.	3.5	8
82	Targeting microRNAs involved in human diseases: A novel approach for modification of gene expression and drug development. Biochemical Pharmacology, 2011, 82, 1416-1429.	4.4	100
83	Modulation of the Biological Activity of microRNAâ€⊋10 with Peptide Nucleic Acids (PNAs). ChemMedChem, 2011, 6, 2192-2202.	3.2	72
84	DNA and RNA binding properties of an arginine-based â€ [−] Extended Chiral Box' Peptide Nucleic Acid. Tetrahedron Letters, 2011, 52, 300-304.	1.4	13
85	Molecular Computing by PNA. Artificial DNA, PNA & XNA, 2011, 2, 16-22.	1.4	6
86	Modification of a long period grating-based fiber optic for DNA biosensing. Proceedings of SPIE, 2011, ,	0.8	11
87	Double Tilted Fiber Bragg Grating for label-free DNA detection. , 2011, , .		1
88	Ultrasensitive Detection of Non-amplified Genomic DNA. Lecture Notes in Electrical Engineering, 2011, , 485-488.	0.4	0
89	Ultrasensitive detection of non-amplified genomic DNA by nanoparticle-enhanced surface plasmon resonance imaging. Biosensors and Bioelectronics, 2010, 25, 2095-2100.	10.1	76
90	A Peptide Nucleic Acid Embedding a Pseudopeptide Nuclear Localization Sequence in the Backbone Behaves as a Peptide Mimic. European Journal of Organic Chemistry, 2010, 2010, 2441-2444.	2.4	22

#	Article	IF	CITATIONS
91	Affinity and selectivity of C2―and C5â€substituted "chiralâ€box―PNA in solution and on microarrays. Chirality, 2010, 22, E161-72.	2.6	24
92	DNA recognition by peptide nucleic acid-modified PCFs: from models to real samples. , 2010, , .		1
93	A pyrenyl-PNA probe for DNA and RNA recognition. Artificial DNA, PNA & XNA, 2010, 1, 83-89.	1.4	16
94	Enantioselective Sensing by Luminescence. Topics in Current Chemistry, 2010, 300, 175-216.	4.0	86
95	Conformational Heterogeneity in PNA:PNA Duplexes. Macromolecules, 2010, 43, 2692-2703.	4.8	28
96	Toward A Highly Specific DNA Biosensor: PNA-Modified Suspended-Core Photonic Crystal Fibers. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 967-972.	2.9	72
97	Highly selective single nucleotide polymorphism recogniton by a chiral (5S) PNA beacon. Chirality, 2009, 21, 245-253.	2.6	19
98	SSBâ€Assisted Duplex Invasion of Preorganized PNA into Doubleâ€Stranded DNA. ChemBioChem, 2009, 10, 2607-2612.	2.6	19
99	Complexation of zearalenone and zearalenols with native and modified β-cyclodextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 64, 331-340.	1.6	12
100	Occurrence of deoxynivalenol and its 3- <i>β</i> -D-glucoside in wheat and maize. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2009, 26, 507-511.	2.3	163
101	Arginine-based PNA microarrays for APOE genotyping. Molecular BioSystems, 2009, 5, 1323.	2.9	25
102	New Uracil Dimers Showing Erythroid Differentiation Inducing Activities. Journal of Medicinal Chemistry, 2009, 52, 87-94.	6.4	10
103	A Fmoc-based submonomeric strategy for the solid phase synthesis of optically pure chiral PNAs. Tetrahedron Letters, 2008, 49, 4958-4961.	1.4	9
104	Complexation of the mycotoxin zearalenone with β-cyclodextrin: Study of the interaction and first promising applications. Mycotoxin Research, 2008, 24, 14-18.	2.3	16
105	Ultrasensitive Detection of DNA by PNA and Nanoparticleâ€Enhanced Surface Plasmon Resonance Imaging. ChemBioChem, 2008, 9, 2067-2070.	2.6	73
106	Circular dichroism study of DNA binding by a potential anticancer peptide nucleic acid targeted against the <i>MYCN</i> oncogene. Chirality, 2008, 20, 494-500.	2.6	20
107	Label-free selective DNA detection with high mismatch recognition by PNA beacons and ion exchange HPLC. Organic and Biomolecular Chemistry, 2008, 6, 1232.	2.8	15
108	Chiral introduction of positive charges to PNA for double-duplex invasion to versatile sequences. Nucleic Acids Research, 2008, 36, 1464-1471.	14.5	80

#	Article	IF	CITATIONS
109	Cyclodextrins as selectors for mycotoxin recognition. World Mycotoxin Journal, 2008, 1, 397-406.	1.4	17
110	Peptide Nucleic Acids with a Structurally Biased Backbone: Effects of Conformational Constraints and Stereochemistry. Current Topics in Medicinal Chemistry, 2007, 7, 681-694.	2.1	41
111	A new concept in double duplex DNA invasion by chiral PNAs which simultaneously depress PNA-PNA and improve PNA-DNA duplex stability Nucleic Acids Symposium Series, 2007, 51, 19-20.	0.3	0
112	PNA Conjugated to High-Molecular Weight Poly(Ethylene Glycol): Synthesis and Properties. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 661-664.	1.1	14
113	Identification of PCR-Amplified Genetically Modified Organisms (GMOs) DNA by Peptide Nucleic Acid (PNA) Probes in Anion-Exchange Chromatographic Analysis. Journal of Agricultural and Food Chemistry, 2007, 55, 2509-2516.	5.2	14
114	Effect of ionic strength on PNA-DNA hybridization on surfaces and in solution. Biointerphases, 2007, 2, 80-88.	1.6	40
115	Chirality as a tool in nucleic acid recognition: Principles and relevance in biotechnology and in medicinal chemistry. Chirality, 2007, 19, 269-294.	2.6	127
116	Induction of Helical Handedness and DNA Binding Properties of Peptide Nucleic Acids (PNAs) with Two Stereogenic Centres. European Journal of Organic Chemistry, 2007, 2007, 5879-5885.	2.4	64
117	Fast and easy colorimetric tests for single mismatch recognition by PNA–DNA duplexes with the diethylthiadicarbocyanine dye and succinyl-β-cyclodextrin. Journal of Proteomics, 2007, 70, 735-741.	2.4	10
118	Fluorescent cyclodextrins bearing metal binding sites and their use for chemo- and enantioselective sensing of amino acid derivatives. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 625-630.	1.6	11
119	Kinetic and affinity analyses of hybridization reactions between peptide nucleic acid probes and DNA targets using surface plasmon field-enhanced fluorescence spectroscopy. Biointerphases, 2006, 1, 113-122.	1.6	25
120	A PNA-array platform for the detection of hidden allergens in foodstuffs. European Food Research and Technology, 2006, 223, 1-6.	3.3	45
121	Highly efficient strand invasion by peptide nucleic acid bearing optically pure lysine residues in its backbone. Nucleic Acids Symposium Series, 2006, 50, 109-110.	0.3	7
122	Synthesis of new chiral PNAs bearing a dipeptide-mimic monomer with two lysine-derived stereogenic centres. Tetrahedron Letters, 2005, 46, 8395-8399.	1.4	59
123	Development of a peptide nucleic acid polymerase chain reaction clamping assay for semiquantitative evaluation of genetically modified organism content in food. Analytical Biochemistry, 2005, 344, 174-182.	2.4	23
124	Detection of the R553X DNA single point mutation related to cystic fibrosis by a "chiral boxâ€D-lysine-peptide nucleic acid probe by capillary electrophoresis. Electrophoresis, 2005, 26, 4310-4316.	2.4	28
125	Lysine-based peptide nucleic acids (PNAs) with strong chiral constraint: Control of helix handedness and DNA binding by chirality. Chirality, 2005, 17, S196-S204.	2.6	39
126	Unconventional method based on circular dichroism to detect peanut DNA in food by means of a PNA probe and a cyanine dye. Chirality, 2005, 17, 515-521.	2.6	24

#	Article	IF	CITATIONS
127	Enantioselective Fluorescence Sensing of Amino Acids by Modified Cyclodextrins: Role of the Cavity and Sensing Mechanism. Chemistry - A European Journal, 2005, 11, 7145-7145.	3.3	3
128	Polymerase chain reaction coupled with peptide nucleic acid high-performance liquid chromatography for the sensitive detection of traces of potentially allergenic hazelnut in foodstuffs. European Food Research and Technology, 2005, 220, 619-624.	3.3	26
129	Anti-gene peptide nucleic acid specifically inhibits MYCN expression in human neuroblastoma cells leading to cell growth inhibition and apoptosis. Molecular Cancer Therapeutics, 2005, 4, 779-786.	4.1	86
130	Development of a Peptide Nucleic Acid Array Platform for the Detection of Genetically Modified Organisms in Food. Journal of Agricultural and Food Chemistry, 2005, 53, 3958-3962.	5.2	74
131	Fast parallel enantiomeric analysis of unmodified amino acids by sensing with fluorescent β-cyclodextrins. Journal of Materials Chemistry, 2005, 15, 2741.	6.7	50
132	Targeted inhibition of NMYC by peptide nucleic acid in N-myc amplified human neuroblastoma cells: cell-cycle inhibition with induction of neuronal cell differentiation and apoptosis. International Journal of Oncology, 2004, 24, 265.	3.3	9
133	Functional Dissection of RNA Polymerase III Termination Using a Peptide Nucleic Acid as a Transcriptional Roadblock. Journal of Biological Chemistry, 2004, 279, 20708-20716.	3.4	11
134	Enhanced recognition of cystic fibrosis W1282X DNA point mutation by chiral peptide nucleic acid probes by a surface plasmon resonance biosensor. Journal of Molecular Recognition, 2004, 17, 76-84.	2.1	59
135	Enantioselective Fluorescence Sensing of Amino Acids by Modified Cyclodextrins: Role of the Cavity and Sensing Mechanism. Chemistry - A European Journal, 2004, 10, 2749-2758.	3.3	121
136	Detection of Genetically Modified Soybean Using Peptide Nucleic Acids (PNAs) and Microarray Technology. Journal of Agricultural and Food Chemistry, 2004, 52, 4535-4540.	5.2	43
137	Fluorescence Enhancement of Aflatoxins Using Native and Substituted Cyclodextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2003, 45, 257-263.	1.6	33
138	Fast, Solid-Phase Synthesis of Chiral Peptide Nucleic Acids with a High Optical Purity by a Submonomeric Strategy. European Journal of Organic Chemistry, 2003, 2003, 1056-1063.	2.4	34
139	Enantiomeric separation of chiral peptide nucleic acid monomers by capillary electrophoresis with charged cyclodextrins. Electrophoresis, 2003, 24, 2698-2703.	2.4	6
140	Design and synthesis of fluorescent ?-cyclodextrins for the enantioselective sensing of ?-amino acids. Chirality, 2003, 15, S30-S39.	2.6	36
141	ESI-mass spectrometry analysis of unsubstituted and disubstituted β-cyclodextrins: fragmentation mode and identification of the AB, AC, AD regioisomers. Journal of the American Society for Mass Spectrometry, 2003, 14, 124-135.	2.8	23
142	Direction control in DNA binding of chiral d-lysine-based peptide nucleic acid (PNA) probed by electrospray mass spectrometry. Chemical Communications, 2003, , 1102-1103.	4.1	22
143	Insights into peptide nucleic acid (PNA) structural features: The crystal structure of a D-lysine-based chiral PNA-DNA duplex. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12021-12026.	7.1	143
144	Role of chirality and optical purity in nucleic acid recognition by PNA and PNA analogs. Chirality, 2002, 14, 591-598.	2.6	37

#	Article	IF	CITATIONS
145	Racemization of chiral PNAs during solid-phase synthesis: effect of the coupling conditions on enantiomeric purity. Tetrahedron: Asymmetry, 2002, 13, 1629-1636.	1.8	32
146	Crystallization and preliminary X-ray diffraction studies of aD-lysine-based chiral PNA–DNA duplex. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 553-555.	2.5	6
147	Epimerization of peptide nucleic acids analogs during solid-phase synthesis: optimization of the coupling conditions for increasing the optical purity. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 2690-2696.	1.3	17
148	Dansylated Polyamines as Fluorescent Sensors for Metal Ions: Photophysical Properties and Stability of Copper(II) Complexes in Solution. Helvetica Chimica Acta, 2001, 84, 690-706.	1.6	72
149	Enantiomeric separation of hydroxy acids and carboxylic acids by diamino-β-cyclodextrins (AB, AC, AD) in capillary electrophoresis. Electrophoresis, 2001, 22, 3171-3177.	2.4	28
150	Recognition and strand displacement of DNA oligonucleotides by peptide nucleic acids (PNAs). Journal of Chromatography A, 2001, 922, 177-185.	3.7	28
151	Chiral separation of amino acids by copper(II) complexes of tetradentate diaminodiamido-type ligands added to the eluent in reversed-phase high-performance liquid chromatography: a ligand exchange mechanism. Journal of Chromatography A, 2001, 922, 151-163.	3.7	41
152	Peptide Nucleic Acids and Biosensor Technology for Real-Time Detection of the Cystic Fibrosis W1282X Mutation by Surface Plasmon Resonance. Laboratory Investigation, 2001, 81, 1415-1427.	3.7	50
153	Inhibition of RNA Polymerase III Elongation by a T10 Peptide Nucleic Acid. Journal of Biological Chemistry, 2001, 276, 5720-5725.	3.4	16
154	DNA Binding of AD-Lysine-Based Chiral PNA: Direction Control and Mismatch Recognition. European Journal of Organic Chemistry, 2000, 2000, 2905-2913.	2.4	83
155	Enantioselective sensing of amino acids by copper(II) complexes of phenylalanine-based fluorescent β-cyclodextrins. Tetrahedron Letters, 2000, 41, 3691-3695.	1.4	61
156	Calcein-AM is a detector of intracellular oxidative activity. Histochemistry and Cell Biology, 2000, 122, 499-505.	1.7	69
157	Copper(II) Complexes with Chiral Diaminodiamido Ligands: Solution and Structural Studies. Journal of Coordination Chemistry, 2000, 51, 135-151.	2.2	4
158	Synthesis and chiral recognition properties of L-Ala-Crown(3)-L-Ala capped β-cyclodextrin. Tetrahedron Letters, 1999, 40, 3025-3028.	1.4	10
159	Direct enantiomeric separation of N-aminoethylamino acids: determination of the enantiomeric excess of chiral peptide nucleic acids (PNAs) by GC. Tetrahedron: Asymmetry, 1999, 10, 2063-2066.	1.8	29
160	Histamine-modified cationic β-cyclodextrins as chiral selectors for the enantiomeric separation of hydroxy acids and carboxylic acids by capillary electrophoresis. Electrophoresis, 1999, 20, 2619-2629.	2.4	45
161	Histamine-modified cationic \hat{l}^2 -cyclodextrins as chiral selectors for the enantiomeric separation of hydroxy acids and carboxylic acids by capillary electrophoresis. Electrophoresis, 1999, 20, 2619-2629.	2.4	0
162	Discrimination properties of tetraamidic branched selectors. Journal of Chromatography A, 1998, 802, 315-324.	3.7	4

#	Article	IF	CITATIONS
163	Tf2OAmide adducts: Versatile reagents for the synthesis of imidates and amidines. Tetrahedron Letters, 1998, 39, 711-714.	1.4	37
164	Chiral discrimination of Dns- and unmodified d,l-amino acids by copper(II) complexes of terdentate ligands in high-performance liquid chromatography. Journal of Chromatography A, 1998, 829, 101-113.	3.7	29
165	Fluorescent Chemosensor for Organic Guests and Copper(II) Ion Based on Dansyldiethylenetriamine-Modified β-Cyclodextrin. Journal of Organic Chemistry, 1997, 62, 6283-6289.	3.2	192
166	Histamine-modified β-cyclodextrins for the enantiomeric separation of dansyl-amino acids in capillary electrophoresis. Electrophoresis, 1997, 18, 905-911.	2.4	65
167	Chiral recognition by the copper(II) complex of 6-deoxy-6-N-(2-methylaminopyridine)-?-cyclodextrin. , 1997, 9, 341-349.		30
168	Copper(II) complexes ofN2-alkyl-(S)-amino acid amides as chiral selectors for dynamically coated chiral stationary phases in RP-HPLC. , 1996, 8, 189-196.		19
169	Chiral discrimination by ligand-exchange chromatography: A comparison between phenylalaninamide-based stationary and mobile phases. Chirality, 1996, 8, 452-461.	2.6	27
170	A Modified Cyclodextrin with a Fully Encapsulated Dansyl Group: Selfâ€inclusion in the Solid State and in Solution. Chemistry - A European Journal, 1996, 2, 373-381.	3.3	105
171	Copper(II) complexes of potentially terdentateN2-[(R)-2-hydroxypropyl]- andN2-[(S)-2-hydroxypropyl]-(S)-phenylalaninamide for chiral recognition: Synthesis of the Ligands and Formation Constants. Helvetica Chimica Acta, 1995, 78, 1785-1792.	1.6	10
172	Enantiomeric separation of dansyl- and dabsylamino acids by ligand-exchange chromatography with (S)- and (R)-phenylalaninamide-modified silica gel. Journal of Chromatography A, 1994, 666, 77-89.	3.7	31
173	Properties of L-phenylalanine tetraamides as chiral selectors for D,L-amino acids by capillary gas chromatography. Chromatographia, 1994, 38, 173-176.	1.3	6
174	Chiral Recognition and Separation of Amino Acids by Means of a Copper(II) Complex of Histamine Monofunctionalized .betaCyclodextrin. Journal of the American Chemical Society, 1994, 116, 10267-10274.	13.7	100
175	Chiral separation of unmodified amino acids by ligand-exchange high-performance liquid chromatography using copper(II) complexes of l-amino acid amides as additives to the eluent. Journal of Chromatography A, 1993, 657, 43-54.	3.7	40
176	Two-dimensional high-performance liquid chromatographic system for the determination of enantiomeric excess in complex amino acid mixtures. Journal of Chromatography A, 1993, 653, 229-234.	3.7	21
177	Diaminomethane dihydrochloride, a novel reagent for the synthesis of primary amides of amino acids and peptides from active esters. International Journal of Peptide and Protein Research, 1993, 42, 53-57.	0.1	13
178	Enantioselective fluorescence quenching by a chiral copper(II) complex in ligand exchange equilibria. Journal of the Chemical Society Perkin Transactions II, 1992, , 1979.	0.9	24
179	The effect of N2-mono- and dimethylation on the crystal structures of bis[(S)-phenylalaninamidato]copper(II) complexes. Tetrahedron: Asymmetry, 1992, 3, 387-400.	1.8	10
180	6-Deoxy-6-N-histamino-β-cyclodextrin Copper(II) Complex, a New Enantioselective Receptor for Aromatic Amino Acids. Angewandte Chemie International Edition in English, 1991, 30, 1348-1349.	4.4	67

#	Article	IF	CITATIONS
181	Thermodynamics of Chiral Recognition of Aromatic Amino Acids by Histamine Functionalized-l²-Cyclodextrin Copper(II) Complex in Aqueous Solution. Topics in Molecular Organization and Engineering, 1991, , 209-221.	0.1	5
182	Complex formation equilibria ofL-Amino-Acid amides with copper(II) in aqueous solution. Helvetica Chimica Acta, 1989, 72, 1479-1486.	1.6	29
183	pH regulation of calcium recognition by an amino acid containing acyclic ionophore. Journal of Molecular Recognition, 1989, 2, 94-101.	2.1	1
184	Chiral recognition of amino acid derivatives: an NMR investigation of the selector and the diastereomeric complexes. Journal of Organic Chemistry, 1989, 54, 684-688.	3.2	14
185	Gene Modulation by Peptide Nucleic Acids (PNAs) Targeting microRNAs (miRs). , 0, , .		4
186	Enantioselective Separation of Amino Acids and Hydroxy Acids by Ligand Exchange with Copper(II) Complexes in HPLC (Chiral Eluent) and in Fast Sensing Systems. , 0, , 301-331.		0