Gernot Segelbacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6235607/publications.pdf

Version: 2024-02-01

114 4,963 35 papers citations h-index

119 119 119 6162 all docs docs citations times ranked citing authors

64

g-index

#	Article	IF	Citations
1	Genomics and the challenging translation into conservation practice. Trends in Ecology and Evolution, 2015, 30, 78-87.	8.7	469
2	Applications of landscape genetics in conservation biology: concepts and challenges. Conservation Genetics, 2010, 11, 375-385.	1.5	356
3	Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biological Conservation, 2020, 248, 108654.	4.1	285
4	Genetic variation and differentiation in captive and wild zebra finches (<i>Taeniopygia guttata</i>). Molecular Ecology, 2007, 16, 4039-4050.	3.9	156
5	Contemporary Evolution of Reproductive Isolation and Phenotypic Divergence in Sympatry along a Migratory Divide. Current Biology, 2009, 19, 2097-2101.	3.9	152
6	Bringing genetic diversity to the forefront of conservation policy and management. Conservation Genetics Resources, 2013, 5, 593-598.	0.8	145
7	From connectivity to isolation: genetic consequences of population fragmentation in capercaillie across Europe. Molecular Ecology, 2003, 12, 1773-1780.	3.9	142
8	Post-2020 goals overlook genetic diversity. Science, 2020, 367, 1083-1085.	12.6	132
9	Is It Time for Synthetic Biodiversity Conservation?. Trends in Ecology and Evolution, 2017, 32, 97-107.	8.7	129
10	The bacterial microbiota in the ceca of Capercaillie (Tetrao urogallus) differs between wild and captive birds. Systematic and Applied Microbiology, 2011, 34, 542-551.	2.8	106
11	Comparative evaluation of potential indicators and temporal sampling protocols for monitoring genetic erosion. Evolutionary Applications, 2014, 7, 984-998.	3.1	102
12	Global Commitments to Conserving and Monitoring Genetic Diversity Are Now Necessary and Feasible. BioScience, 2021, 71, 964-976.	4.9	96
13	Characterization of microsatellites in capercaillieTetrao urogallus(AVES). Molecular Ecology, 2000, 9, 1934-1935.	3.9	90
14	Bloodmeal Analysis Reveals Avian Plasmodium Infections and Broad Host Preferences of Culicoides (Diptera: Ceratopogonidae) Vectors. PLoS ONE, 2012, 7, e31098.	2.5	87
15	Conservation genetics: Linking science with practice. Molecular Ecology, 2019, 28, 3848-3856.	3.9	76
16	Capercaillie in the Alps: genetic evidence of metapopulation structure and population decline. Molecular Ecology, 2002, 11, 1669-1677.	3.9	75
17	Noninvasive genetic analysis in birds: testing reliability of feather samples. Molecular Ecology Notes, 2002, 2, 367-369.	1.7	74
18	Lessons learned from microsatellite development for nonmodel organisms using 454 pyrosequencing. Journal of Evolutionary Biology, 2013, 26, 600-611.	1.7	73

#	Article	IF	Citations
19	Radical loss of an extreme extra-pair mating system. BMC Ecology, 2009, 9, 15.	3.0	67
20	Genetic diversity is considered important but interpreted narrowly in country reports to the Convention on Biological Diversity: Current actions and indicators are insufficient. Biological Conservation, 2021, 261, 109233.	4.1	65
21	Temporal and spatial analyses disclose consequences of habitat fragmentation on the genetic diversity in capercaillie (<i>Tetrao urogallus</i>). Molecular Ecology, 2008, 17, 2356-2367.	3.9	63
22	Urban forests as hubs for novel zoonosis: blood meal analysis, seasonal variation in <i>Culicoides</i> (Diptera: Ceratopogonidae) vectors, and avian haemosporidians. Parasitology, 2013, 140, 1799-1810.	1.5	63
23	Modelling functional landscape connectivity from genetic population structure: a new spatially explicit approach. Molecular Ecology, 2010, 19, 3664-3678.	3.9	57
24	The evolutionary history and genomics of European blackcap migration. ELife, 2020, 9, .	6.0	57
25	Can balancing selection on MHC loci counteract genetic drift in small fragmented populations of black grouse?. Ecology and Evolution, 2012, 2, 341-353.	1.9	56
26	Evaluating the effectiveness of retention forestry to enhance biodiversity in production forests of Central Europe using an interdisciplinary, multiâ€scale approach. Ecology and Evolution, 2020, 10, 1489-1509.	1.9	56
27	Opportunities and challenges of macrogenetic studies. Nature Reviews Genetics, 2021, 22, 791-807.	16.3	55
28	Genetic differentiation of an endangered capercaillie (Tetrao urogallus) population at the Southern edge of the species range. Conservation Genetics, 2007, 8, 659-670.	1.5	53
29	Landscape Genomics: Understanding Relationships Between Environmental Heterogeneity and Genomic Characteristics of Populations. Population Genomics, 2017, , 261-322.	0.5	46
30	Genetic depletion at adaptive but not neutral loci in an endangered bird species. Molecular Ecology, 2014, 23, 5712-5725.	3.9	45
31	Nextâ€generation conservation genetics and biodiversity monitoring. Evolutionary Applications, 2018, 11, 1029-1034.	3.1	43
32	Potential barriers to gene flow in the endangered European wildcat (Felis silvestris). Conservation Genetics, 2013, 14, 413-426.	1.5	41
33	Genetic correlates of spatial population structure in central European capercaillieTetrao urogallusand black grouseT. tetrix: a project in progress. Wildlife Biology, 2000, 6, 305-310.	1.4	40
34	Genetic structure of kestrel populations and colonization of the Cape Verde archipelago. Molecular Ecology, 2003, 12, 2145-2151.	3.9	40
35	Genetic impoverishment of the last black grouse (<i>Tetrao tetrix</i>) population in the Netherlands: detectable only with a reference from the past. Molecular Ecology, 2008, 17, 1897-1904.	3.9	38
36	Prevalence, diversity, and interaction patterns of avian haemosporidians in a four-year study of blackcaps in a migratory divide. Parasitology, 2011, 138, 824-835.	1.5	38

#	Article	IF	Citations
37	Genetic analysis of differentiation among breeding ponds reveals a candidate gene for local adaptation in Rana arvalis. Molecular Ecology, 2011, 20, 1582-1600.	3.9	37
38	The high Andes, gene flow and a stable hybrid zone shape the genetic structure of a wide-ranging South American parrot. Frontiers in Zoology, 2011, 8, 16.	2.0	37
39	Sex ratio ofParus majorandP. caeruleusbroods depends on parental condition and habitat quality. Oikos, 2005, 109, 367-373.	2.7	36
40	Permanent Genetic Resources added to the Molecular Ecology Resources Database 1 February 2010–31 March 2010. Molecular Ecology Resources, 2010, 10, 751-754.	4.8	35
41	Haemosporidian parasitism in the blackcap <i>Sylvia atricapilla</i> in relation to spring arrival and body condition. Journal of Avian Biology, 2013, 44, 521-530.	1.2	35
42	Multilateral benefit-sharing from digital sequence information will support both science and biodiversity conservation. Nature Communications, 2022, 13, 1086.	12.8	34
43	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2012–30 November 2012. Molecular Ecology Resources, 2013, 13, 341-343.	4.8	33
44	Optimizing sampling of flying insects using a modified window trap. Methods in Ecology and Evolution, 2019, 10, 1820-1825.	5. 2	33
45	Conservation Genetic Resources for Effective Species Survival (ConGRESS): Bridging the divide between conservation research and practice. Journal for Nature Conservation, 2013, 21, 433-437.	1.8	32
46	Avian haemosporidian parasites in an urban forest and their relationship to bird size and abundance. Urban Ecosystems, 2016, 19, 331-346.	2.4	32
47	Effective population size remains a suitable, pragmatic indicator of genetic diversity for all species, including forest trees. Biological Conservation, 2021, 253, 108906.	4.1	32
48	Genetic Consequences of Forest Fragmentation for a Highly Specialized Arboreal Mammal - the Edible Dormouse. PLoS ONE, 2014, 9, e88092.	2.5	31
49	Contrasting Patterns of Genetic Differentiation among Blackcaps (Sylvia atricapilla) with Divergent Migratory Orientations in Europe. PLoS ONE, 2013, 8, e81365.	2.5	29
50	Genetic variability in European black grouse (Tetrao tetrix). Conservation Genetics, 2006, 8, 239-243.	1.5	27
51	Phylogeography of the European capercaillie (Tetrao urogallus) and its implications for conservation. Journal Fur Ornithologie, 2007, 148, 269-274.	1.2	27
52	Macrogenetic studies must not ignore limitations of genetic markers and scale. Ecology Letters, 2021, 24, 1282-1284.	6.4	27
53	Perspectives and challenges in landscape genetics. Molecular Ecology, 2009, 18, 1821-1822.	3.9	26
54	Parasites in space and time: a case study of haemosporidian spatiotemporal prevalence in urban birds. International Journal for Parasitology, 2019, 49, 235-246.	3.1	26

#	Article	IF	Citations
55	eDNA Detection of Native and Invasive Crayfish Species Allows for Year-Round Monitoring and Large-Scale Screening of Lotic Systems. Frontiers in Environmental Science, 2021, 9, .	3.3	26
56	New developments in the field of genomic technologies and their relevance to conservation management. Conservation Genetics, 2022, 23, 217-242.	1.5	26
57	Pronounced genetic structure and low genetic diversity in European red-billed chough (Pyrrhocorax) Tj ETQq1	1 0.784314 1.5	l rgBT /Overlo
58	Reply to Garner et al Trends in Ecology and Evolution, 2016, 31, 83-84.	8.7	24
59	Bringing together approaches to reporting on within species genetic diversity. Journal of Applied Ecology, 2022, 59, 2227-2233.	4.0	24
60	Mitochondrial DNA analysis reveals Holarctic homogeneity and a distinct Mediterranean lineage in the Golden eagle (<i>Aquila chrysaetos</i>). Biological Journal of the Linnean Society, 2015, 116, 328-340.	1.6	23
61	Forests of opportunities and mischief: disentangling the interactions between forests, parasites and immune responses. International Journal for Parasitology, 2016, 46, 571-579.	3.1	23
62	Genetic evidence of capercaillie <i>Tetrao urogallus</i> dispersal sources and sinks in the Alps. Wildlife Biology, 2003, 9, 267-273.	1.4	22
63	Male and female contributions to provisioning rates of thin-billed prions, Pachyptila belcheri, in the South Atlantic. Journal of Ornithology, 2007, 148, 367-372.	1.1	22
64	Genetic structure among black grouse in Britain: implications for designing conservation units. Animal Conservation, 2011, 14, 400-408.	2.9	22
65	Noninvasive genetic sampling allows estimation of capercaillie numbers and population structure in the Bohemian Forest. European Journal of Wildlife Research, 2014, 60, 789-801.	1.4	22
66	Analyses of historical and current populations of black grouse in Central Europe reveal strong effects of genetic drift and loss of genetic diversity. Conservation Genetics, 2014, 15, 1183-1195.	1.5	21
67	Individual differences in migratory behavior shape population genetic structure and microhabitat choice in sympatric blackcaps (<i>Sylvia atricapilla</i>). Ecology and Evolution, 2013, 3, 4278-4289.	1.9	20
68	Projected impacts of climate change on habitat availability for an endangered parakeet. PLoS ONE, 2018, 13, e0191773.	2.5	20
69	Kin groups in closely spaced capercaillie leks. Journal of Ornithology, 2007, 148, 79-84.	1.1	19
70	Charting a course for genetic diversity in the UN Decade of Ocean Science. Evolutionary Applications, 2021, 14, 1497-1518.	3.1	19
71	Authors' Reply to Letter to the Editor: Continued improvement to genetic diversity indicator for CBD. Conservation Genetics, 2021, 22, 533-536.	1.5	18
72	Islands in the ice: colonisation routes for rock ptarmigan to the Svalbard archipelago. Ecography, 2009, 32, 840-848.	4.5	17

#	Article	IF	Citations
73	Reproductive success depends on the quality of helpers in the endangered, cooperative <scp>E</scp> l <scp>O</scp> ro parakeet (<i><scp>P</scp>yrrhura orcesi</i>). Molecular Ecology, 2013, 22, 2011-2027.	3.9	17
74	The Coalition for Conservation Genetics: Working across organizations to build capacity and achieve change in policy and practice. Conservation Science and Practice, 2022, 4, .	2.0	17
7 5	Amplification success of multilocus genotypes from feathers found in the field compared with feathers obtained from shot birds. Ibis, 2012, 154, 15-20.	1.9	16
76	†Intentional Genetic Manipulation' as a conservation threat. Conservation Genetics Resources, 2019, 11, 237-247.	0.8	16
77	Interactions between a Candidate Gene for Migration (ADCYAP1), Morphology and Sex Predict Spring Arrival in Blackcap Populations. PLoS ONE, 2015, 10, e0144587.	2.5	16
78	Effects of forest fragmentation on the morphological and genetic structure of a dispersal-limited, endangered bird species. Nature Conservation, 0, 16, 39-58.	0.0	16
79	Extra-pair paternity in seabirds: a review and case study of Thin-billed Prions Pachyptila belcheri. Journal of Ornithology, 2012, 153, 367-373.	1.1	14
80	Gene flow and immigration: genetic diversity and population structure of lions (Panthera leo) in Hwange National Park, Zimbabwe. Conservation Genetics, 2014, 15, 697-706.	1.5	14
81	Female genetic heterogeneity affects the reproduction of great tits (Parus major L., 1758) in low-quality woodlands. Journal of Zoological Systematics and Evolutionary Research, 2007, 45, 144-150.	1.4	13
82	Do large carnivores use riparian zones? Ecological implications for forest management. Forest Ecology and Management, 2017, 402, 157-165.	3.2	13
83	Limited Dispersal and Significant Fine - Scale Genetic Structure in a Tropical Montane Parrot Species. PLoS ONE, 2016, 11, e0169165.	2.5	13
84	New insights into population structure of the European golden eagle (Aquila chrysaetos) revealed by microsatellite analysis. Biological Journal of the Linnean Society, 2019, 128, 611-631.	1.6	12
85	Effects of habitat management can vary over time during the recovery of an endangered bird species. Biological Conservation, 2015, 192, 154-160.	4.1	10
86	Decline in territory size and fecundity as a response to carrying capacity in an endangered songbird. Oecologia, 2017, 183, 597-606.	2.0	10
87	Sex-specific recombination rates in Parus major and P. caeruleus, an exception to Huxley's rule. Hereditas, 2003, 139, 199-205.	1.4	9
88	Isolation of 10 tetranucleotide microsatellite loci in the blackcap (<i>Sylvia atricapilla</i>). Molecular Ecology Resources, 2008, 8, 1108-1110.	4.8	9
89	Genetic variation in Black Grouse populations with different lekking systems in the Czech Republic. Journal of Ornithology, 2011, 152, 37-44.	1.1	9
90	Extra-pair young despite strong pair bonds in the European Nuthatch (Sitta europaea). Journal Fur Ornithologie, 2005, 146, 99-102.	1.2	8

#	Article	IF	CITATIONS
91	Isolation of tetranucleotide microsatellite loci in the burrowing parrot (Cyanoliseus patagonus). Journal of Ornithology, 2009, 150, 921-924.	1.1	8
92	Isolation and characterisation of 17 microsatellite loci for the red-billed chough (Pyrrhocorax) Tj ETQq0 0 0 rgBT /C	yerlock 10	0 ₈ Tf 50 702
93	A framework for prioritizing areas for conservation in tropical montane cloud forests. Ecoscience, 2018, 25, 97-108.	1.4	8
94	Ecological genomics and conservation: where do we stand?. Genetica, 2009, 136, 387-390.	1.1	7
95	Crossing the Rhine: a potential barrier to wildcat (Felis silvestris silvestris) movement?. Conservation Genetics, 2016, 17, 1435-1444.	1.5	7
96	Seasonal Trends in Movement Patterns of Birds and Insects Aloft Simultaneously Recorded by Radar. Remote Sensing, 2021, 13, 1839.	4.0	7
97	Microsatellite variation in Rufous Hummingbirds (Selasphorus rufus) and evidence for a weakly structured population. Journal of Ornithology, 2013, 154, 1029-1037.	1.1	6
98	Delimitation of call types of Red Crossbill (<i>Loxia curvirostra</i>) in the Western Palearctic. Ecoscience, 2019, 26, 177-194.	1.4	6
99	Two grouse clutches in the same nest: evidence for nest site adoption in capercaillie (Tetrao) Tj ETQq1 1 0.784314	1 rgBT /Ov	erlock 10 Tf
100	Extrapair paternity in a German population of the Northern Wheatear (Oenanthe oenanthe). Journal of Ornithology, 2010, 151, 491-498.	1.1	5
101	Eight microsatellite loci characterised in the European blackbird, Turdus merula. Journal of Ornithology, 2008, 149, 131-133.	1.1	4
102	Development of 12 microsatellite loci for the endangered Pale-headed Brushfinch (Atlapetes) Tj ETQq0 0 0 rgBT /C 2014, 155, 835-839.	verlock 10	O Tf 50 307
103	Spatial Isolation and Temporal Variation in Fitness and Condition Facilitate Divergence in a Migratory Divide. PLoS ONE, 2015, 10, e0144264.	2.5	4
104	On the relative importance of ecology and geographic isolation as drivers for differentiation of call types of red crossbill <i>Loxia curvirostra</i>) in the Palearctic. Journal of Avian Biology, 2020, 51, .	1.2	4
105	Frequent non-reciprocal exchange in microsatellite-containing-DNA-regions of vertebrates. Journal of Zoological Systematics and Evolutionary Research, 2009, 47, 15-20.	1.4	3
106	High Genetic Variability of Esterase Loci in Natural Populations of Parus major, P. caeruleus, and P. ater. Biochemical Genetics, 2004, 42, 109-119.	1.7	2
107	Isolation of ten tetranucleotide microsatellite loci in the Northern Wheatear (<i>Oenanthe) Tj ETQq1 1 0.784314</i>	rgBT /Over	rlock 10 Tf 5
108	Isolation of 13 tetranucleotide microsatellite loci in the Rock Bunting (Emberiza cia). Conservation Genetics Resources, 2014, 6, 597-599.	0.8	2

#	Article	IF	CITATIONS
109	Microsatellite variation in a Chinese grouseBonasa sewerzowipopulation: signs of genetic impoverishment?. Wildlife Biology, 2003, 9, 261-266.	1.4	2
110	Stable isotope ratios in alpine rock ptarmigan and black grouse sampled along a precipitation gradient. Basic and Applied Ecology, 2016, 17, 648-658.	2.7	1
111	Urban forests as hubs for novel zoonosis: blood meal analysis, seasonal variation in Culicoides (Diptera: Ceratopogonidae) vectors, and avian haemosporidians – CORRIGENDUM. Parasitology, 2014, 141, 1354-1354.	1.5	O
112	Year-round monitoring and large-scale screening of native and invasive crayfishes in lotic systems. ARPHA Conference Abstracts, 0, 4, .	0.0	0
113	Lost in dead wood? Environmental DNA sequencing from dead wood shows little signs of saproxylic beetles. Environmental DNA, 0, , .	5.8	O
114	Dinucleotide microsatellite loci for Andrena vaga and other andrenid bees from non-enriched and CT-enriched libraries. Molecular Ecology, 2000, 9, 2189-2192.	3.9	0