Peter Devilee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6234905/publications.pdf Version: 2024-02-01

		9264	3830
208	34,133	74	178
papers	citations	h-index	g-index
226	226	226	28888
all docs	docs citations	times ranked	citing authors

DETED DEVILEE

#	Article	IF	CITATIONS
1	Identification of the breast cancer susceptibility gene BRCA2. Nature, 1995, 378, 789-792.	27.8	3,230
2	Mutations in the p53 gene occur in diverse human tumour types. Nature, 1989, 342, 705-708.	27.8	2,702
3	Genome-wide association study identifies novel breast cancer susceptibility loci. Nature, 2007, 447, 1087-1093.	27.8	2,165
4	Localization of a Breast Cancer Susceptibility Gene, <i>BRCA2</i> , to Chromosome 13q12-13. Science, 1994, 265, 2088-2090.	12.6	1,725
5	Mutations in <i>SDHD</i> , a Mitochondrial Complex II Gene, in Hereditary Paraganglioma. Science, 2000, 287, 848-851.	12.6	1,554
6	Association analysis identifies 65 new breast cancer risk loci. Nature, 2017, 551, 92-94.	27.8	1,099
7	Low-penetrance susceptibility to breast cancer due to CHEK2*1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nature Genetics, 2002, 31, 55-59.	21.4	1,001
8	Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nature Genetics, 2013, 45, 353-361.	21.4	960
9	Gene-Panel Sequencing and the Prediction of Breast-Cancer Risk. New England Journal of Medicine, 2015, 372, 2243-2257.	27.0	764
10	Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. American Journal of Human Genetics, 2019, 104, 21-34.	6.2	711
11	<i>SDH5</i> , a Gene Required for Flavination of Succinate Dehydrogenase, Is Mutated in Paraganglioma. Science, 2009, 325, 1139-1142.	12.6	682
12	Multifactorial Analysis of Differences Between Sporadic Breast Cancers and Cancers Involving BRCA1 and BRCA2 Mutations. Journal of the National Cancer Institute, 1998, 90, 1138-1145.	6.3	652
13	Prediction of <i>BRCA1</i> Status in Patients with Breast Cancer Using Estrogen Receptor and Basal Phenotype. Clinical Cancer Research, 2005, 11, 5175-5180.	7.0	577
14	Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature, 2014, 514, 92-97.	27.8	548
15	Breast Cancer Risk Genes — Association Analysis in More than 113,000 Women. New England Journal of Medicine, 2021, 384, 428-439.	27.0	532
16	Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nature Genetics, 2015, 47, 373-380.	21.4	513
17	Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nature Genetics, 2013, 45, 371-384.	21.4	493
18	Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nature Genetics, 2009, 41, 585-590.	21.4	434

#	Article	IF	CITATIONS
19	Prediction of Breast Cancer Risk Based on Profiling With Common Genetic Variants. Journal of the National Cancer Institute, 2015, 107, .	6.3	428
20	Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nature Genetics, 2017, 49, 834-841.	21.4	426
21	BRCA1 genomic deletions are major founder mutations in Dutch breast cancer patients. Nature Genetics, 1997, 17, 341-345.	21.4	414
22	Association of Type and Location of <i>BRCA1</i> and <i>BRCA2</i> Mutations With Risk of Breast and Ovarian Cancer. JAMA - Journal of the American Medical Association, 2015, 313, 1347.	7.4	390
23	Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nature Genetics, 2015, 47, 1294-1303.	21.4	357
24	Heterogeneity of Breast Cancer Associations with Five Susceptibility Loci by Clinical and Pathological Characteristics. PLoS Genetics, 2008, 4, e1000054.	3.5	315
25	A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor–negative breast cancer in the general population. Nature Genetics, 2010, 42, 885-892.	21.4	309
26	Rapid detection of BRCA1 mutations by the protein truncation test. Nature Genetics, 1995, 10, 208-212.	21.4	307
27	Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nature Genetics, 2017, 49, 1767-1778.	21.4	289
28	Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nature Genetics, 2020, 52, 572-581.	21.4	265
29	Genome-wide association analysis identifies three new breast cancer susceptibility loci. Nature Genetics, 2012, 44, 312-318.	21.4	256
30	Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk. PLoS Genetics, 2013, 9, e1003212.	3.5	244
31	RAD51 135C→C Modifies Breast Cancer Risk among BRCA2 Mutation Carriers: Results from a Combined Analysis of 19 Studies. American Journal of Human Genetics, 2007, 81, 1186-1200.	6.2	217
32	Functional Variants at the 11q13 Risk Locus for Breast Cancer Regulate Cyclin D1 Expression through Long-Range Enhancers. American Journal of Human Genetics, 2013, 92, 489-503.	6.2	201
33	Making sense of big data in health research: Towards an EU action plan. Genome Medicine, 2016, 8, 71.	8.2	190
34	A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer. Nature Genetics, 2018, 50, 968-978.	21.4	184
35	Personalized early detection and prevention of breast cancer: ENVISION consensus statement. Nature Reviews Clinical Oncology, 2020, 17, 687-705.	27.6	178
36	<i>PALB2</i> , <i>CHEK2</i> and <i>ATM</i> rare variants and cancer risk: data from COGS. Journal of Medical Genetics, 2016, 53, 800-811.	3.2	174

#	Article	IF	CITATIONS
37	Common Breast Cancer Susceptibility Alleles and the Risk of Breast Cancer for <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers: Implications for Risk Prediction. Cancer Research, 2010, 70, 9742-9754.	0.9	169
38	The Warburg effect in 2012. Current Opinion in Oncology, 2012, 24, 62-67.	2.4	164
39	<i>CHEK2</i> *1100delC Heterozygosity in Women With Breast Cancer Associated With Early Death, Breast Cancer–Specific Death, and Increased Risk of a Second Breast Cancer. Journal of Clinical Oncology, 2012, 30, 4308-4316.	1.6	162
40	Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types. Cancer Discovery, 2016, 6, 1052-1067.	9.4	157
41	Nuclear receptor NR4A1 promotes breast cancer invasion and metastasis by activating TGF-β signalling. Nature Communications, 2014, 5, 3388.	12.8	156
42	TP53 mutations and breast cancer prognosis: Particularly poor survival rates for cases with mutations in the zinc-binding domains. Genes Chromosomes and Cancer, 1995, 14, 71-75.	2.8	154
43	Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium. Human Molecular Genetics, 2011, 20, 3289-3303.	2.9	152
44	Nearly all hereditary paragangliomas in The Netherlands are caused by two founder mutations in theSDHDgene. Genes Chromosomes and Cancer, 2001, 31, 274-281.	2.8	149
45	Familial male breast cancer is not linked to the BRCA1 locus on chromosome 17q. Nature Genetics, 1994, 7, 103-107.	21.4	146
46	Somatic loss of maternal chromosome 11 causes parent-of-origin-dependent inheritance in SDHD-linked paraganglioma and phaeochromocytoma families. Oncogene, 2004, 23, 4076-4083.	5.9	146
47	Inhibition of succinate dehydrogenase dysregulates histone modification in mammalian cells. Molecular Cancer, 2009, 8, 89.	19.2	127
48	Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. Nature Genetics, 2016, 48, 374-386.	21.4	125
49	At least two different regions are involved in allelic imbalance on chromosome arm 16q in breast cancer. Genes Chromosomes and Cancer, 1994, 9, 101-107.	2.8	123
50	Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nature Genetics, 2020, 52, 56-73.	21.4	120
51	Genetically Predicted Body Mass Index and Breast Cancer Risk: Mendelian Randomization Analyses of Data from 145,000 Women of European Descent. PLoS Medicine, 2016, 13, e1002105.	8.4	118
52	A genome wide linkage search for breast cancer susceptibility genes. Genes Chromosomes and Cancer, 2006, 45, 646-655.	2.8	111
53	Warburg tumours and the mechanisms of mitochondrial tumour suppressor genes. Barking up the right tree?. Current Opinion in Genetics and Development, 2010, 20, 324-329.	3.3	111
54	Survival after bilateral risk-reducing mastectomy in healthy BRCA1 and BRCA2 mutation carriers. Breast Cancer Research and Treatment, 2019, 177, 723-733.	2.5	111

#	Article	IF	CITATIONS
55	Combined mismatch repair and POLE/POLD1 defects explain unresolved suspected Lynch syndrome cancers. European Journal of Human Genetics, 2016, 24, 1089-1092.	2.8	110
56	Evidence that breast cancer risk at the 2q35 locus is mediated through IGFBP5 regulation. Nature Communications, 2014, 5, 4999.	12.8	105
57	19p13.1 Is a Triple-Negative–Specific Breast Cancer Susceptibility Locus. Cancer Research, 2012, 72, 1795-1803.	0.9	100
58	Risk of Estrogen Receptor–Positive and –Negative Breast Cancer and Single–Nucleotide Polymorphism 2q35-rs13387042. Journal of the National Cancer Institute, 2009, 101, 1012-1018.	6.3	99
59	Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers. Human Molecular Genetics, 2009, 18, 4442-4456.	2.9	99
60	Height and Breast Cancer Risk: Evidence From Prospective Studies and Mendelian Randomization. Journal of the National Cancer Institute, 2015, 107, djv219.	6.3	99
61	Fine-Scale Mapping of the FGFR2 Breast Cancer Risk Locus: Putative Functional Variants Differentially Bind FOXA1 and E2F1. American Journal of Human Genetics, 2013, 93, 1046-1060.	6.2	98
62	Refined histopathological predictors of BRCA1 and BRCA2mutation status: a large-scale analysis of breast cancer characteristics from the BCAC, CIMBA, and ENIGMA consortia. Breast Cancer Research, 2014, 16, 3419.	5.0	97
63	Comparative genomic hybridization profiles in human BRCA1 and BRCA2 breast tumors highlight differential sets of genomic aberrations. Cancer Research, 2005, 65, 822-7.	0.9	97
64	Whole Exome Sequencing Suggests Much of Non-BRCA1/BRCA2 Familial Breast Cancer Is Due to Moderate and Low Penetrance Susceptibility Alleles. PLoS ONE, 2013, 8, e55681.	2.5	95
65	No evidence that protein truncating variants in <i>BRIP1</i> are associated with breast cancer risk: implications for gene panel testing. Journal of Medical Genetics, 2016, 53, 298-309.	3.2	94
66	Ever since Knudson. Trends in Genetics, 2001, 17, 569-573.	6.7	93
67	Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer. Nature Communications, 2016, 7, 11375.	12.8	93
68	<i>FANCM</i> c.5791C>T nonsense mutation (rs144567652) induces exon skipping, affects DNA repair activity and is a familial breast cancer risk factor. Human Molecular Genetics, 2015, 24, 5345-5355.	2.9	91
69	Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer. Nature Communications, 2019, 10, 1741.	12.8	90
70	Inactivation of <i>SDH</i> and <i>FH</i> cause loss of 5hmC and increased H3K9me3 in paraganglioma/pheochromocytoma and smooth muscle tumors. Oncotarget, 2015, 6, 38777-38788.	1.8	90
71	Shared heritability and functional enrichment across six solid cancers. Nature Communications, 2019, 10, 431.	12.8	88
72	The CHEK2*1100delC variant acts as a breast cancer risk modifier in non-BRCA1/BRCA2 multiple-case families. Cancer Research, 2003, 63, 8153-7.	0.9	86

#	Article	IF	CITATIONS
73	Prevalence of founderBRCA1 andBRCA2 mutations among breast and ovarian cancer patients in hungary. International Journal of Cancer, 2000, 86, 737-740.	5.1	85
74	Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants. Genetics in Medicine, 2020, 22, 1653-1666.	2.4	82
75	BRCA1-related breast cancer in Austrian breast and ovarian cancer families: SpecificBRCA1 mutations and pathological characteristics. , 1998, 77, 354-360.		81
76	The role of genetic breast cancer susceptibility variants as prognostic factors. Human Molecular Genetics, 2012, 21, 3926-3939.	2.9	80
77	Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus. Nature Communications, 2016, 7, 12675.	12.8	78
78	BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers. Journal of the National Cancer Institute, 2016, 108, djv315.	6.3	77
79	Fine-Scale Mapping of the 5q11.2 Breast Cancer Locus Reveals at Least Three Independent Risk Variants Regulating MAP3K1. American Journal of Human Genetics, 2015, 96, 5-20.	6.2	76
80	<i>BRCA2</i> Hypomorphic Missense Variants Confer Moderate Risks of Breast Cancer. Cancer Research, 2017, 77, 2789-2799.	0.9	75
81	Breast and ovarian cancer risks in a large series of clinically ascertained families with a high proportion of BRCA1 and BRCA2 Dutch founder mutations. Journal of Medical Genetics, 2014, 51, 98-107.	3.2	74
82	Leiden open variation database of the MUTYH gene. Human Mutation, 2010, 31, 1205-1215.	2.5	72
83	Deep sequencing to reveal new variants in pooled DNA samples. Human Mutation, 2009, 30, 1703-1712.	2.5	71
84	Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers. Human Molecular Genetics, 2011, 20, 3304-3321.	2.9	68
85	Genetic modifiers of CHEK2*1100delC-associated breast cancer risk. Genetics in Medicine, 2017, 19, 599-603.	2.4	67
86	Clinical correlates of low-risk variants in FGFR2, TNRC9, MAP3K1, LSP1 and 8q24 in a Dutch cohort of incident breast cancer cases. Breast Cancer Research, 2007, 9, R78.	5.0	64
87	Mutation of <i>SDHB</i> is a Cause of Hypoxia-Related High-Altitude Paraganglioma. Clinical Cancer Research, 2010, 16, 4148-4154.	7.0	64
88	Evidence that the 5p12 Variant rs10941679 Confers Susceptibility to Estrogen-Receptor-Positive Breast Cancer through FGF10 and MRPS30 Regulation. American Journal of Human Genetics, 2016, 99, 903-911.	6.2	59
89	Personalized Risk Assessment for Prevention and Early Detection of Breast Cancer: Integration and Implementation (PERSPECTIVE I&I). Journal of Personalized Medicine, 2021, 11, 511.	2.5	59
90	The functional impact of variants of uncertain significance in BRCA2. Genetics in Medicine, 2019, 21, 293-302.	2.4	58

#	Article	IF	CITATIONS
91	Allelotype of head and neck paragangliomas: Allelic imbalance is confined to the long arm of chromosome 11, the site of the predisposing locusPGL. Genes Chromosomes and Cancer, 1994, 11, 71-78.	2.8	56
92	Crowdsourcing the General Public for Large Scale Molecular Pathology Studies in Cancer. EBioMedicine, 2015, 2, 681-689.	6.1	56
93	Identification of Novel Genetic Markers of Breast Cancer Survival. Journal of the National Cancer Institute, 2015, 107, .	6.3	56
94	Prognostic value of automated KI67 scoring in breast cancer: a centralised evaluation of 8088 patients from 10 study groups. Breast Cancer Research, 2016, 18, 104.	5.0	56
95	A targeted mouse Brca1 mutation removing the last BRCT repeat results in apoptosis and embryonic lethality at the headfold stage. Oncogene, 2001, 20, 2544-2550.	5.9	55
96	Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium. Human Molecular Genetics, 2014, 23, 6096-6111.	2.9	53
97	Repositioning the hereditary paraganglioma critical region on chromosome band 11q23. Human Genetics, 1999, 104, 219-225.	3.8	52
98	Genome-wide association study of germline variants and breast cancer-specific mortality. British Journal of Cancer, 2019, 120, 647-657.	6.4	52
99	Fineâ€scale mapping of 8q24 locus identifies multiple independent risk variants for breast cancer. International Journal of Cancer, 2016, 139, 1303-1317.	5.1	51
100	E-cadherin breast tumor expression, risk factors and survival: Pooled analysis of 5,933 cases from 12 studies in the Breast Cancer Association Consortium. Scientific Reports, 2018, 8, 6574.	3.3	51
101	Pathology of Tumors Associated With Pathogenic Germline Variants in 9 Breast Cancer Susceptibility Genes. JAMA Oncology, 2022, 8, e216744.	7.1	51
102	Comprehensive Mutation Analysis of <i>PMS2</i> in a Large Cohort of Probands Suspected of Lynch Syndrome or Constitutional Mismatch Repair Deficiency Syndrome. Human Mutation, 2016, 37, 1162-1179.	2.5	50
103	The <i>BRCA1</i> c. 5096G>A p.Arg1699Gln (R1699Q) intermediate risk variant: breast and ovarian cancer risk estimation and recommendations for clinical management from the ENIGMA consortium. Journal of Medical Genetics, 2018, 55, 15-20.	3.2	50
104	Sdhd and Sdhd/H19 Knockout Mice Do Not Develop Paraganglioma or Pheochromocytoma. PLoS ONE, 2009, 4, e7987.	2.5	49
105	Rare variants in XRCC2 as breast cancer susceptibility alleles: TableÂ1. Journal of Medical Genetics, 2012, 49, 618-620.	3.2	49
106	MicroRNA Related Polymorphisms and Breast Cancer Risk. PLoS ONE, 2014, 9, e109973.	2.5	49
107	Validation of the BOADICEA model and a 313-variant polygenic risk score for breast cancer risk prediction in a Dutch prospective cohort. Genetics in Medicine, 2020, 22, 1803-1811.	2.4	49
108	Association Between a Germline OCA2 Polymorphism at Chromosome 15q13.1 and Estrogen Receptor–Negative Breast Cancer Survival. Journal of the National Cancer Institute, 2010, 102, 650-662.	6.3	48

#	Article	IF	CITATIONS
109	Men at risk of being a mutation carrier for hereditary breast/ovarian cancer: an exploration of attitudes and psychological functioning during genetic testing. European Journal of Human Genetics, 2001, 9, 492-500.	2.8	47
110	Prediction of BRCA2-association in hereditary breast carcinomas using array-CGH. Breast Cancer Research and Treatment, 2012, 132, 379-389.	2.5	47
111	DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers. PLoS Genetics, 2014, 10, e1004256.	3.5	47
112	Body mass index and breast cancer survival: a Mendelian randomization analysis. International Journal of Epidemiology, 2017, 46, 1814-1822.	1.9	45
113	Functional analysis of genetic variants in the high-risk breast cancer susceptibility gene PALB2. Nature Communications, 2019, 10, 5296.	12.8	45
114	Rare Mutations in <i>RINT1</i> Predispose Carriers to Breast and Lynch Syndrome–Spectrum Cancers. Cancer Discovery, 2014, 4, 804-815.	9.4	44
115	Genetic predisposition to ductal carcinoma in situ of the breast. Breast Cancer Research, 2016, 18, 22.	5.0	43
116	Fractional allelic imbalance in human breast cancer increases with tetraploidization and chromosome loss. International Journal of Cancer, 1992, 50, 544-548.	5.1	42
117	Increased MUTYH mutation frequency among Dutch families with breast cancer and colorectal cancer. Breast Cancer Research and Treatment, 2010, 124, 635-641.	2.5	40
118	Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2. Human Molecular Genetics, 2015, 24, 2966-2984.	2.9	40
119	Breast Cancer Polygenic Risk Score and Contralateral Breast Cancer Risk. American Journal of Human Genetics, 2020, 107, 837-848.	6.2	39
120	Allelotype analysis of flow-sorted breast cancer cells demonstrates genetically related diploid and aneuploid subpopulations in primary tumors and lymph node metastases. , 2000, 28, 173-183.		38
121	MUTYH gene variants and breast cancer in a Dutch case–control study. Breast Cancer Research and Treatment, 2012, 134, 219-227.	2.5	38
122	Paraganglioma and pheochromocytoma upon maternal transmission of SDHDmutations. BMC Medical Genetics, 2014, 15, 111.	2.1	38
123	Identification and characterization of novel associations in the CASP8/ALS2CR12 region on chromosome 2 with breast cancer risk. Human Molecular Genetics, 2015, 24, 285-298.	2.9	38
124	Coding polymorphisms in Casp5, Casp8 and DR4 genes may play a role in predisposition to lung cancer. Cancer Letters, 2009, 278, 183-191.	7.2	37
125	Polymorphisms in a Putative Enhancer at the 10q21.2 Breast Cancer Risk Locus Regulate NRBF2 Expression. American Journal of Human Genetics, 2015, 97, 22-34.	6.2	37
126	Absence of evidence for a familial breast cancer susceptibility gene at chromosome 8p12-p22. Oncogene, 2000, 19, 4170-4173.	5.9	35

#	Article	IF	CITATIONS
127	Allele-specific regulation of FGFR2 expression is cell type-dependent and may increase breast cancer risk through a paracrine stimulus involving FGF10. Breast Cancer Research, 2011, 13, R72.	5.0	35
128	11q13 is a susceptibility locus for hormone receptor positive breast cancer. Human Mutation, 2012, 33, 1123-1132.	2.5	35
129	Addition of a 161-SNP polygenic risk score to family history-based risk prediction: impact on clinical management in non- <i>BRCA1/2</i> breast cancer families. Journal of Medical Genetics, 2019, 56, 581-589.	3.2	35
130	Assessing Associations between the AURKA-HMMR-TPX2-TUBG1 Functional Module and Breast Cancer Risk in BRCA1/2 Mutation Carriers. PLoS ONE, 2015, 10, e0120020.	2.5	34
131	Missense Variants in <i>ATM</i> in 26,101 Breast Cancer Cases and 29,842 Controls. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 2143-2151.	2.5	33
132	An intergenic risk locus containing an enhancer deletion in 2q35 modulates breast cancer risk by deregulating IGFBP5 expression. Human Molecular Genetics, 2016, 25, 3863-3876.	2.9	33
133	A large-scale assessment of two-way SNP interactions in breast cancer susceptibility using 46 450 cases and 42 461 controls from the breast cancer association consortium. Human Molecular Genetics, 2014, 23, 1934-1946.	2.9	32
134	Transcriptomeâ€wide association study of breast cancer risk by estrogenâ€receptor status. Genetic Epidemiology, 2020, 44, 442-468.	1.3	32
135	Characterization of Familial Non-BRCA1/2 Breast Tumors by Loss of Heterozygosity and Immunophenotyping. Clinical Cancer Research, 2006, 12, 1693-1700.	7.0	31
136	Association of breast cancer risk with genetic variants showing differential allelic expression: Identification of a novel breast cancer susceptibility locus at 4q21. Oncotarget, 2016, 7, 80140-80163.	1.8	31
137	Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus. Breast Cancer Research, 2016, 18, 64.	5.0	31
138	Classification and Clinical Management of Variants of Uncertain Significance in High Penetrance Cancer Predisposition Genes. Human Mutation, 2016, 37, 331-336.	2.5	31
139	The Dutch founder mutation SDHD.D92Y shows a reduced penetrance for the development of paragangliomas in a large multigenerational family. European Journal of Human Genetics, 2010, 18, 62-66.	2.8	30
140	Alternative splicing and ACMG-AMP-2015-based classification of PALB2 genetic variants: an ENIGMA report. Journal of Medical Genetics, 2019, 56, 453-460.	3.2	30
141	A network analysis to identify mediators of germline-driven differences in breast cancer prognosis. Nature Communications, 2020, 11, 312.	12.8	30
142	CHEK2*1100delC homozygosity in the Netherlands—prevalence and risk of breast and lung cancer. European Journal of Human Genetics, 2014, 22, 46-51.	2.8	29
143	Genetic susceptibility to radiation-induced breast cancer after Hodgkin lymphoma. Blood, 2019, 133, 1130-1139.	1.4	29
144	Exome Sequencing of Germline DNA from Non-BRCA1/2 Familial Breast Cancer Cases Selected on the Basis of aCGH Tumor Profiling. PLoS ONE, 2013, 8, e55734.	2.5	29

#	Article	IF	CITATIONS
145	The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer. Npj Breast Cancer, 2019, 5, 38.	5.2	28
146	A sporadic breast tumor with a somatically acquired complex genomic rearrangement inBRCA1. , 2000, 27, 295-302.		26
147	An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers. Breast Cancer Research, 2015, 17, 61.	5.0	26
148	Common germline polymorphisms associated with breast cancer-specific survival. Breast Cancer Research, 2015, 17, 58.	5.0	26
149	RAD51B in Familial Breast Cancer. PLoS ONE, 2016, 11, e0153788.	2.5	26
150	Functional Analysis Identifies Damaging <i>CHEK2</i> Missense Variants Associated with Increased Cancer Risk. Cancer Research, 2022, 82, 615-631.	0.9	26
151	Mutations in exons 5-8 of thep53 gene, independent of their type and location, are associated with increased apoptosis and mitosis in invasive breast carcinoma. , 1999, 189, 504-513.		25
152	Homozygosity for aCHEK2*1100delC mutation identified in familial colorectal cancer does not lead to a severe clinical phenotype. Journal of Pathology, 2005, 206, 198-204.	4.5	24
153	Fine-Scale Mapping of the 4q24 Locus Identifies Two Independent Loci Associated with Breast Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1680-1691.	2.5	24
154	Prediction and clinical utility of a contralateral breast cancer risk model. Breast Cancer Research, 2019, 21, 144.	5.0	24
155	Alternative mRNA splicing can attenuate the pathogenicity of presumed loss-of-function variants in BRCA2. Genetics in Medicine, 2020, 22, 1355-1365.	2.4	23
156	Polygenic risk modeling for prediction of epithelial ovarian cancer risk. European Journal of Human Genetics, 2022, 30, 349-362.	2.8	23
157	Models of parent-of-origin tumorigenesis in hereditary paraganglioma. Seminars in Cell and Developmental Biology, 2015, 43, 117-124.	5.0	22
158	Population distribution and ancestry of the cancer protective MDM2 SNP285 (rs117039649). Oncotarget, 2014, 5, 8223-8234.	1.8	22
159	Loss of maternal chromosome 11 is a signature event in SDHAF2, SDHD, and VHL-related paragangliomas, but less significant in SDHB-related paragangliomas. Oncotarget, 2017, 8, 14525-14536.	1.8	21
160	SNP-SNP interaction analysis of NF-κB signaling pathway on breast cancer survival. Oncotarget, 2015, 6, 37979-37994.	1.8	20
161	Fine scale mapping of the 17q22 breast cancer locus using dense SNPs, genotyped within the Collaborative Oncological Gene-Environment Study (COGs). Scientific Reports, 2016, 6, 32512.	3.3	19
162	The <i>BRCA2</i> c.68-7TÂ>ÂA variant is not pathogenic: A model for clinical calibration of spliceogenicity. Human Mutation, 2018, 39, 729-741.	2.5	19

#	Article	IF	CITATIONS
163	Etiology of hormone receptor positive breast cancer differs by levels of histologic grade and proliferation. International Journal of Cancer, 2018, 143, 746-757.	5.1	19
164	A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers. Nature Communications, 2021, 12, 1078.	12.8	19
165	Breast cancer risks associated with missense variants in breast cancer susceptibility genes. Genome Medicine, 2022, 14, 51.	8.2	19
166	No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer. Gynecologic Oncology, 2016, 141, 386-401.	1.4	18
167	Genomeâ€wide linkage scan in Dutch hereditary nonâ€BRCA1/2 breast cancer families identifies 9q21â€22 as a putative breast cancer susceptibility locus. Genes Chromosomes and Cancer, 2008, 47, 947-956.	2.8	16
168	2q36.3 is associated with prognosis for oestrogen receptor-negative breast cancer patients treated with chemotherapy. Nature Communications, 2014, 5, 4051.	12.8	16
169	Variant type is associated with disease characteristics in SDHB, SDHC and SDHD-linked phaeochromocytoma–paraganglioma. Journal of Medical Genetics, 2020, 57, 96-103.	3.2	16
170	The predictive ability of the 313 variant–based polygenic risk score for contralateral breast cancer risk prediction in women of European ancestry with a heterozygous BRCA1 or BRCA2 pathogenic variant. Genetics in Medicine, 2021, 23, 1726-1737.	2.4	16
171	Splicing predictions, minigene analyses, and <scp>ACMG</scp> â€ <scp>AMP</scp> clinical classification of 42 germline <scp><i>PALB2</i></scp> spliceâ€site variants. Journal of Pathology, 2022, 256, 321-334.	4.5	16
172	Parent-of-origin tumourigenesis is mediated by an essential imprinted modifier in <i>SDHD</i> -linked paragangliomas: <i>SLC22A18</i> and <i>CDKN1C</i> are candidate tumour modifiers. Human Molecular Genetics, 2016, 25, 3715-3728.	2.9	15
173	Common variants in breast cancer risk loci predispose to distinct tumor subtypes. Breast Cancer Research, 2022, 24, 2.	5.0	15
174	Inherited variants in the inner centromere protein (INCENP) gene of the chromosomal passenger complex contribute to the susceptibility of ER-negative breast cancer. Carcinogenesis, 2015, 36, 256-271.	2.8	14
175	Prediction of contralateral breast cancer: external validation of risk calculators in 20 international cohorts. Breast Cancer Research and Treatment, 2020, 181, 423-434.	2.5	14
176	Whole Gene Capture Analysis of 15 CRC Susceptibility Genes in Suspected Lynch Syndrome Patients. PLoS ONE, 2016, 11, e0157381.	2.5	12
177	Fine-Mapping of the 1p11.2 Breast Cancer Susceptibility Locus. PLoS ONE, 2016, 11, e0160316.	2.5	12
178	Functional Analysis of Missense Variants in the Putative Breast Cancer Susceptibility Gene <i>XRCC2</i> . Human Mutation, 2016, 37, 914-925.	2.5	12
179	Similar gene expression profiles of sporadic, PGL2-, and SDHD-linked paragangliomas suggest a common pathway to tumorigenesis. BMC Medical Genomics, 2009, 2, 25.	1.5	11
180	Comprehensive Functional Characterization and Clinical Interpretation of 20 Splice-Site Variants of the RAD51C Gene. Cancers, 2020, 12, 3771.	3.7	10

#	Article	IF	CITATIONS
181	RAD51D Aberrant Splicing in Breast Cancer: Identification of Splicing Regulatory Elements and Minigene-Based Evaluation of 53 DNA Variants. Cancers, 2021, 13, 2845.	3.7	10
182	Use of the BOADICEA Web Application in clinical practice: appraisals by clinicians from various countries. Familial Cancer, 2018, 17, 31-41.	1.9	9
183	Psychosocial problems in women attending French, German and Spanish genetics clinics before and after targeted or multigene testing results: an observational prospective study. BMJ Open, 2019, 9, e029926.	1.9	9
184	Mendelian randomisation study of smoking exposure in relation to breast cancer risk. British Journal of Cancer, 2021, 125, 1135-1145.	6.4	9
185	<i>PHIP</i> - a novel candidate breast cancer susceptibility locus on 6q14.1. Oncotarget, 2017, 8, 102769-102782.	1.8	9
186	Advances in paraganglioma–pheochromocytoma cell lines and xenografts. Endocrine-Related Cancer, 2020, 27, R433-R450.	3.1	8
187	Clinicians' use of breast cancer risk assessment tools according to their perceived importance of breast cancer risk factors: an international survey. Journal of Community Genetics, 2019, 10, 61-71.	1.2	7
188	Germline <i>DLST</i> Variants Promote Epigenetic Modifications in Pheochromocytoma-Paraganglioma. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 459-471.	3.6	6
189	Functional annotation of the 2q35 breast cancer risk locus implicates a structural variant in influencing activity of a long-range enhancer element. American Journal of Human Genetics, 2021, 108, 1190-1203.	6.2	6
190	Risk-Adjusted Cancer Screening and Prevention (RiskAP): Complementing Screening for Early Disease Detection by a Learning Screening Based on Risk Factors. Breast Care, 2022, 17, 208-223.	1.4	6
191	Information needs on breast cancer genetic and non-genetic risk factors in relatives of women with a BRCA1/2 or PALB2 pathogenic variant. Breast, 2021, 60, 38-44.	2.2	6
192	RNF12 is regulated by AKT phosphorylation and promotes TGF-β driven breast cancer metastasis. Cell Death and Disease, 2022, 13, 44.	6.3	6
193	Rare germline copy number variants (CNVs) and breast cancer risk. Communications Biology, 2022, 5, 65.	4.4	6
194	The association between cancer family history and ovarian cancer risk in BRCA1/2 mutation carriers: can it be explained by the mutation position?. European Journal of Human Genetics, 2018, 26, 848-857.	2.8	5
195	Two truncating variants in FANCC and breast cancer risk. Scientific Reports, 2019, 9, 12524.	3.3	5
196	Minigeneâ€based splicing analysis and <scp>ACMG</scp> / <scp>AMP</scp> â€based tentative classification of 56 <scp><i>ATM</i></scp> variants. Journal of Pathology, 2022, 258, 83-101.	4.5	5
197	Breast Cancer Susceptibility—Towards Individualised Risk Prediction. Current Genetic Medicine Reports, 2019, 7, 124-135.	1.9	4
198	SDHB variant type impacts phenotype and malignancy in pheochromocytoma-paraganglioma. Journal of Medical Genetics, 2021, , jmedgenet-2020-107656.	3.2	3

0

#	Article	IF	CITATIONS
199	Genetic clinicians' confidence in <scp>BOADICEA</scp> comprehensive breast cancer risk estimates and counselees' psychosocial outcomes: A prospective study. Clinical Genetics, 2022, 102, 30-39.	2.0	3
200	Hypothesis: Why Different Types of SDH Gene Variants Cause Divergent Tumor Phenotypes. Genes, 2022, 13, 1025.	2.4	3
201	The "Psychosocial Aspects in Hereditary Cancer―questionnaire in women attending breast cancer genetic clinics: Psychometric validation across French― German―and Spanishâ€language versions. European Journal of Cancer Care, 2020, 29, e13173.	1.5	2
202	Clustering of known low and moderate risk alleles rather than a novel recessive highâ€risk gene in non― BRCA1 /2 sib trios affected with breast cancer. International Journal of Cancer, 2020, 147, 2708-2716.	5.1	2
203	Germline HOXB13 mutations p.G84E and p.R217C do not confer an increased breast cancer risk. Scientific Reports, 2020, 10, 9688.	3.3	2
204	Germline variants and breast cancer survival in patients with distant metastases at primary breast cancer diagnosis. Scientific Reports, 2021, 11, 19787.	3.3	2
205	Assessment of psychosocial difficulties by genetic clinicians and distress in women at high risk of breast cancer: a prospective study. European Journal of Human Genetics, 2022, 30, 1067-1075.	2.8	2
206	Uncovering the Contribution of Moderate-Penetrance Susceptibility Genes to Breast Cancer by Whole-Exome Sequencing and Targeted Enrichment Sequencing of Candidate Genes in Women of European Ancestry. Cancers, 2022, 14, 3363.	3.7	2
207	Survey on Physicians' Knowledge and Training Needs in Genetic Counseling in Germany. Breast Care, 2021, 16, 389-395.	1.4	Ο

BRCA1/BRCA2 Germline Mutations and Breast Cancer Risk. , 2008, , 417-421.