
Michael A Mischna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6234598/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1242777.	12.6	687
2	Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1243480.	12.6	508
3	Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover. Science, 2014, 343, 1244797.	12.6	475
4	Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science, 2015, 350, aac7575.	12.6	471
5	Mars methane detection and variability at Gale crater. Science, 2015, 347, 415-417.	12.6	373
6	Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover. Science, 2013, 341, 1238937.	12.6	367
7	X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater. Science, 2013, 341, 1238932.	12.6	327
8	Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover. Science, 2013, 341, 263-266.	12.6	327
9	Martian Fluvial Conglomerates at Gale Crater. Science, 2013, 340, 1068-1072.	12.6	326
10	Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1245267.	12.6	323
11	Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow. Science, 2013, 341, 1239505.	12.6	280
12	Transient liquid water and water activity at Gale crater on Mars. Nature Geoscience, 2015, 8, 357-361.	12.9	277
13	Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1244734.	12.6	246
14	In Situ Radiometric and Exposure Age Dating of the Martian Surface. Science, 2014, 343, 1247166.	12.6	224
15	On the orbital forcing of Martian water and CO2cycles: A general circulation model study with simplified volatile schemes. Journal of Geophysical Research, 2003, 108, .	3.3	217
16	Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars. Science, 2013, 341, 1238670.	12.6	215
17	Influence of Carbon Dioxide Clouds on Early Martian Climate. Icarus, 2000, 145, 546-554.	2.5	162
18	Selection of the InSight Landing Site. Space Science Reviews, 2017, 211, 5-95.	8.1	150

#	Article	IF	CITATIONS
19	Large wind ripples on Mars: A record of atmospheric evolution. Science, 2016, 353, 55-58.	12.6	144
20	The origin and implications of clay minerals from Yellowknife Bay, Gale crater, Mars. American Mineralogist, 2015, 100, 824-836.	1.9	122
21	Curiosity's rover environmental monitoring station: Overview of the first 100 sols. Journal of Geophysical Research E: Planets, 2014, 119, 1680-1688.	3.6	112
22	Low Upper Limit to Methane Abundance on Mars. Science, 2013, 342, 355-357.	12.6	103
23	Sulfurâ€induced greenhouse warming on early Mars. Journal of Geophysical Research, 2008, 113, .	3.3	86
24	Pressure observations by the Curiosity rover: Initial results. Journal of Geophysical Research E: Planets, 2014, 119, 82-92.	3.6	84
25	Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission. Journal of Geophysical Research E: Planets, 2014, 119, 440-453.	3.6	80
26	Long-term evolution of transient liquid water on Mars. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	75
27	Mars Science Laboratory relative humidity observations: Initial results. Journal of Geophysical Research E: Planets, 2014, 119, 2132-2147.	3.6	75
28	Effects of obliquity and water vapor/trace gas greenhouses in the early martian climate. Journal of Geophysical Research E: Planets, 2013, 118, 560-576.	3.6	68
29	Observational evidence of a suppressed planetary boundary layer in northern Gale Crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover. Icarus, 2015, 249, 129-142.	2.5	66
30	Low Hesperian <i>P</i> _{CO2} constrained from in situ mineralogical analysis at Gale Crater, Mars. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2166-2170.	7.1	59
31	Assessment of Environments for Mars Science Laboratory Entry, Descent, and Surface Operations. Space Science Reviews, 2012, 170, 793-835.	8.1	58
32	O2 solubility in Martian near-surface environments and implications for aerobic life. Nature Geoscience, 2018, 11, 905-909.	12.9	57
33	Atmospheric modeling of Mars methane surface releases. Planetary and Space Science, 2011, 59, 227-237.	1.7	54
34	Water and chlorine content in the Martian soil along the first 1900 m of the Curiosity rover traverse as estimated by the DAN instrument. Journal of Geophysical Research E: Planets, 2014, 119, 1579-1596.	3.6	52
35	Development of a fast, accurate radiative transfer model for the Martian atmosphere, past and present. Journal of Geophysical Research, 2012, 117, .	3.3	50
36	Methane on Mars and Habitability: Challenges and Responses. Astrobiology, 2018, 18, 1221-1242.	3.0	50

#	Article	IF	CITATIONS
37	Methane bursts as a trigger for intermittent lake-forming climates on post-Noachian Mars. Nature Geoscience, 2017, 10, 737-740.	12.9	49
38	The sensitivity of solsticial pauses to atmospheric ice and dust in the MarsWRF General Circulation Model. Icarus, 2018, 311, 23-34.	2.5	40
39	The next frontier for planetary and human exploration. Nature Astronomy, 2019, 3, 116-120.	10.1	39
40	Martian atmospheric collapse: Idealized GCM studies. Icarus, 2015, 250, 553-569.	2.5	35
41	A reanalysis of water abundances in the Martian atmosphere at high obliquity. Geophysical Research Letters, 2005, 32, .	4.0	34
42	Fate of SO ₂ in the ancient Martian atmosphere: Implications for transient greenhouse warming. Journal of Geophysical Research, 2009, 114, .	3.3	34
43	Local variations of bulk hydrogen and chlorineâ€equivalent neutron absorption content measured at the contact between the Sheepbed and Gillespie Lake units in Yellowknife Bay, Gale Crater, using the DAN instrument onboard Curiosity. Journal of Geophysical Research E: Planets, 2014, 119, 1259-1275.	3.6	33
44	The Ashima/MIT Mars GCM and argon in the martian atmosphere. Icarus, 2012, 218, 1043-1070.	2.5	30
45	Demonstration of ensemble data assimilation for Mars using DART, MarsWRF, and radiance observations from MGS TES. Journal of Geophysical Research, 2011, 116, .	3.3	28
46	Neutron background environment measured by the Mars Science Laboratory's Dynamic Albedo of Neutrons instrument during the first 100 sols. Journal of Geophysical Research E: Planets, 2013, 118, 2400-2412.	3.6	28
47	Atmospheric movies acquired at the Mars Science Laboratory landing site: Cloud morphology, frequency and significance to the Gale Crater water cycle and Phoenix mission results. Advances in Space Research, 2015, 55, 2217-2238.	2.6	28
48	Data processing of the active neutron experiment DAN for a Martian regolith investigation. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 789, 114-127.	1.6	24
49	Hydrogen and chlorine abundances in the Kimberley formation of Gale crater measured by the DAN instrument on board the Mars Science Laboratory Curiosity rover. Journal of Geophysical Research E: Planets, 2016, 121, 836-845.	3.6	23
50	Warm early Mars surface enabled by high-altitude water ice clouds. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
51	The Vertical Dust Profile Over Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2017, 122, 2779-2792.	3.6	22
52	An initial assessment of the impact of postulated orbit-spin coupling on Mars dust storm variability in fully interactive dust simulations. Icarus, 2019, 317, 649-668.	2.5	20
53	Water equivalent hydrogen estimates from the first 200 sols of Curiosity's traverse (Bradbury) Tj ETQq1 1 0 experiment. Icarus, 2015, 262, 102-123.	.784314 r 2.5	gBT /Overlock 16
54	Synoptic measurements of Martian winds using the Hubble Space Telescope. Geophysical Research Letters, 1998, 25, 611-614.	4.0	13

#	Article	IF	CITATIONS
55	Effect of Mars Atmospheric Loss on Snow Melt Potential in a 3.5 Gyr Mars Climate Evolution Model. Journal of Geophysical Research E: Planets, 2018, 123, 794-806.	3.6	13
56	Replication of the historic record of martian global dust storm occurrence in an atmospheric general circulation model. Icarus, 2019, 317, 197-208.	2.5	12
57	Methane release on Early Mars by atmospheric collapse and atmospheric reinflation. Planetary and Space Science, 2020, 181, 104820.	1.7	12
58	Large eddy simulations of the Martian convective boundary layer: Towards developing a new planetary boundary layer scheme. Atmospheric Research, 2021, 250, 105381.	4.1	12
59	Orbit-spin coupling and the interannual variability of global-scale dust storm occurrence on Mars. Planetary and Space Science, 2017, 139, 37-50.	1.7	10
60	Numerical modeling of orbit-spin coupling accelerations in a Mars general circulation model: Implications for global dust storm activity. Planetary and Space Science, 2017, 141, 45-72.	1.7	9
61	Recent Climate Variations. , 2017, , 497-525.		8
62	Mars Methane Sources in Northwestern Gale Crater Inferred From Back Trajectory Modeling. Earth and Space Science, 2021, 8, e2021EA001915.	2.6	8
63	Results from the dynamic albedo of neutrons (DAN) passive mode experiment: Yellowknife Bay to Amargosa Valley (Sols 201–753). Icarus, 2018, 299, 513-537.	2.5	7
64	Atmospheric transport of subsurface, sporadic, time-varying methane releases on Mars. Icarus, 2019, 325, 39-54.	2.5	7
65	The role of atmospheric pressure on Mars surface properties and early Mars climate modeling. Icarus, 2020, 342, 113496.	2.5	7
66	Changing spatial distribution of water flow charts major change in Mars's greenhouse effect. Science Advances, 2022, 8, .	10.3	7
67	WindCam and MSPI: two cloud and aerosol instrument concepts derived from Terra/MISR heritage. Proceedings of SPIE, 2008, , .	0.8	6
68	Martian Dust. , 2022, , 637-666.		6
69	MOSAIC: A Satellite Constellation to Enable Groundbreaking Mars Climate System Science and Prepare for Human Exploration. Planetary Science Journal, 2021, 2, 211.	3.6	6
70	Orbital (Climatic) Forcing and Its Imprint on the Global Landscape. , 2018, , 3-48.		4
71	Mars Science Laboratory Dynamic Albedo of Neutrons passive mode data and results from sols 753 to 1292: Pahrump Hills to Naukluft Plateau. Icarus, 2019, 330, 75-90.	2.5	4
72	Pre- and Post-entry, Descent and Landing Assessment of the Martian Atmosphere for the Mars 2020 Rover. Planetary Science Journal, 2022, 3, 147.	3.6	4

#	Article	IF	CITATIONS
73	Studying of water consent in Mars' gale crater: The first results of the DAN experiment on the NASA curiosity rover. Doklady Physics, 2014, 59, 126-128.	0.7	3
74	Report of the Joint Workshop on Induced Special Regions. Life Sciences in Space Research, 2019, 23, 50-59.	2.3	3
75	Interâ€annual, seasonal and regional variations in the Martian convective boundary layer derived from GCM simulations with a semiâ€interactive dust transport model. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006965.	3.6	3
76	Thermal Forcing of the Nocturnal Near Surface Environment by Martian Water Ice Clouds. Journal of Geophysical Research E: Planets, 2021, 126, .	3.6	3
77	Strong seasonal and regional variations in the evaporation rate of liquid water on Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006867.	3.6	2
78	Transient liquid water and water activity at Gale crater on Mars. , 0, .		2
79	Use of evolutionary computation for isolating surface emissions from orbit. , 2009, , .		0
80	Observed diurnal variations in Mars Science Laboratory Dynamic Albedo of Neutrons passive mode data. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 892, 70-83.	1.6	0