Guoping Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6233986/publications.pdf

Version: 2024-02-01

126	27,811	79 h-index	129
papers	citations		g-index
189	189	189	35787
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP. Neuron, 2000, 28, 41-51.	3.8	2,833
2	Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature, 2002, 420, 788-794.	13.7	1,706
3	CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling. Cell, 2014, 159, 440-455.	13.5	1,566
4	Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature, 2011, 472, 437-442.	13.7	1,273
5	Next-Generation Optical Technologies for Illuminating Genetically Targeted Brain Circuits. Journal of Neuroscience, 2006, 26, 10380-10386.	1.7	708
6	Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature, 2007, 448, 894-900.	13.7	688
7	In Vivo Light-Induced Activation of Neural Circuitry in Transgenic Mice Expressing Channelrhodopsin-2. Neuron, 2007, 54, 205-218.	3.8	680
8	Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature, 2011, 480, 372-375.	13.7	637
9	Flow of Cortical Activity Underlying a Tactile Decision in Mice. Neuron, 2014, 81, 179-194.	3.8	622
10	Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nature Methods, 2011, 8, 745-752.	9.0	605
11	A transcription activator-like effector toolbox for genome engineering. Nature Protocols, 2012, 7, 171-192.	5.5	568
12	Acute Brain Slice Methods for Adult and Aging Animals: Application of Targeted Patch Clamp Analysis and Optogenetics. Methods in Molecular Biology, 2014, 1183, 221-242.	0.4	533
13	SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse. Neuron, 2019, 103, 217-234.e4.	3.8	518
14	SHANK proteins: roles at the synapse and in autism spectrum disorder. Nature Reviews Neuroscience, 2017, 18, 147-157.	4.9	508
15	Fast modulation of visual perception by basal forebrain cholinergic neurons. Nature Neuroscience, 2013, 16, 1857-1863.	7.1	489
16	A viral strategy for targeting and manipulating interneurons across vertebrate species. Nature Neuroscience, 2016, 19, 1743-1749.	7.1	396
17	Optogenetic Stimulation of Lateral Orbitofronto-Striatal Pathway Suppresses Compulsive Behaviors. Science, 2013, 340, 1243-1246.	6.0	365
18	Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature, 2021, 598, 111-119.	13.7	361

#	Article	IF	Citations
19	Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature, 2016, 530, 481-484.	13.7	347
20	A multimodal cell census and atlas of the mammalian primary motor cortex. Nature, 2021, 598, 86-102.	13.7	316
21	Genetic evidence that relative synaptic efficacy biases the outcome of synaptic competition. Nature, 2003, 424, 430-434.	13.7	287
22	Habenula "Cholinergic―Neurons Corelease Glutamate and Acetylcholine and Activate Postsynaptic Neurons via Distinct Transmission Modes. Neuron, 2011, 69, 445-452.	3.8	284
23	Sensory Integration in Mouse Insular Cortex Reflects GABA Circuit Maturation. Neuron, 2014, 83, 894-905.	3.8	282
24	Mice with Shank3 Mutations Associated with ASD and Schizophrenia Display Both Shared and Distinct Defects. Neuron, 2016, 89, 147-162.	3.8	279
25	The Primordial, Blue-Cone Color System of the Mouse Retina. Journal of Neuroscience, 2005, 25, 5438-5445.	1.7	256
26	Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles. Nature Neuroscience, 2011, 14, 1118-1120.	7.1	248
27	Calcium channel α2δ1 subunit mediates spinal hyperexcitability in pain modulation. Pain, 2006, 125, 20-34.	2.0	231
28	Brains, Genes, and Primates. Neuron, 2015, 86, 617-631.	3.8	231
29	Striatal circuits, habits, and implications for obsessive–compulsive disorder. Current Opinion in Neurobiology, 2015, 30, 59-65.	2.0	214
30	Imaging Neural Activity Using Thy1-GCaMP Transgenic Mice. Neuron, 2012, 76, 297-308.	3.8	207
31	Innovations present in the primate interneuron repertoire. Nature, 2020, 586, 262-269.	13.7	206
32	Cloning and functional analysis of tipE, a novel membrane protein that enhances drosophila para sodium channel function. Cell, 1995, 82, 1001-1011.	13.5	205
33	Dynamic Remodeling of Dendritic Arbors in GABAergic Interneurons of Adult Visual Cortex. PLoS Biology, 2005, 4, e29.	2.6	196
34	Autoimmunity to Gephyrin in Stiff-Man Syndrome. Neuron, 2000, 26, 307-312.	3.8	195
35	Neurobiology of social behavior abnormalities in autism and Williams syndrome. Nature Neuroscience, 2016, 19, 647-655.	7.1	179
36	Chd8 Mutation Leads to Autistic-like Behaviors and Impaired Striatal Circuits. Cell Reports, 2017, 19, 335-350.	2.9	177

#	Article	IF	CITATIONS
37	Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Brain Cell Biology, 2008, 36, 141-154.	3.5	176
38	Progressive NKCC1-Dependent Neuronal Chloride Accumulation during Neonatal Seizures. Journal of Neuroscience, 2010, 30, 11745-11761.	1.7	173
39	Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature, 2019, 570, 326-331.	13.7	172
40	Combining NGN2 Programming with Developmental Patterning Generates Human Excitatory Neurons with NMDAR-Mediated Synaptic Transmission. Cell Reports, 2018, 23, 2509-2523.	2.9	168
41	Anterior cingulate cortex dysfunction underlies social deficits in Shank3 mutant mice. Nature Neuroscience, 2019, 22, 1223-1234.	7.1	168
42	Thalamic reticular impairment underlies attention deficit in Ptchd1Y/â^ mice. Nature, 2016, 532, 58-63.	13.7	167
43	Multi-animal pose estimation, identification and tracking with DeepLabCut. Nature Methods, 2022, 19, 496-504.	9.0	165
44	AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nature Neuroscience, 2022, 25, 106-115.	7.1	162
45	Targeting Peripheral Somatosensory Neurons to Improve Tactile-Related Phenotypes in ASD Models. Cell, 2019, 178, 867-886.e24.	13.5	160
46	The Histone Deacetylase HDAC4 Connects Neural Activity to Muscle Transcriptional Reprogramming. Journal of Biological Chemistry, 2007, 282, 33752-33759.	1.6	156
47	Genetic Analysis of Collagen Q: Roles in Acetylcholinesterase and Butyrylcholinesterase Assembly and in Synaptic Structure and Function. Journal of Cell Biology, 1999, 144, 1349-1360.	2.3	155
48	Two-Photon Imaging Reveals Somatodendritic Chloride Gradient in Retinal ON-Type Bipolar Cells Expressing the Biosensor Clomeleon. Neuron, 2006, 49, 81-94.	3.8	154
49	Tmem119-EGFP and Tmem119-CreERT2 Transgenic Mice for Labeling and Manipulating Microglia. ENeuro, 2019, 6, ENEURO.0448-18.2019.	0.9	153
50	Striatopallidal dysfunction underlies repetitive behavior in Shank3-deficient model of autism. Journal of Clinical Investigation, 2017, 127, 1978-1990.	3.9	151
51	Cloning and Functional Characterization of a Novel Dopamine Receptor from <i>Drosophila melanogaster </i> . Journal of Neuroscience, 1996, 16, 3925-3933.	1.7	149
52	Single-neuron labeling with inducible Cre-mediated knockout in transgenic mice. Nature Neuroscience, 2008, 11, 721-728.	7.1	149
53	Îμ-Sarcoglycan, a Broadly Expressed Homologue of the Gene Mutated in Limb-Girdle Muscular Dystrophy 2D. Journal of Biological Chemistry, 1997, 272, 32534-32538.	1.6	144
54	Asynchronous Synapse Elimination in Neonatal Motor Units. Neuron, 2001, 31, 381-394.	3.8	140

#	Article	IF	Citations
55	Gephyrin-Independent Clustering of Postsynaptic GABAA Receptor Subtypes. Molecular and Cellular Neurosciences, 2001, 17, 973-982.	1.0	138
56	Differences in Cortical versus Subcortical GABAergic Signaling: A Candidate Mechanism of Electroclinical Uncoupling of Neonatal Seizures. Neuron, 2009, 63, 657-672.	3.8	133
57	Viral manipulation of functionally distinct interneurons in mice, non-human primates and humans. Nature Neuroscience, 2020, 23, 1629-1636.	7.1	133
58	Downregulation of NR3A-Containing NMDARs Is Required for Synapse Maturation and Memory Consolidation. Neuron, 2009, 63, 342-356.	3.8	131
59	Roles for Ephrins in Positionally Selective Synaptogenesis between Motor Neurons and Muscle Fibers. Neuron, 2000, 25, 295-306.	3.8	129
60	Modeling psychiatric disorders for developing effective treatments. Nature Medicine, 2015, 21, 979-988.	15.2	127
61	Visual Function in Mice with Photoreceptor Degeneration and Transgenic Expression of Channelrhodopsin 2 in Ganglion Cells. Journal of Neuroscience, 2010, 30, 8745-8758.	1.7	125
62	Glial Cell Line-Derived Neurotrophic Factor Administration in Postnatal Life Results in Motor Unit Enlargement and Continuous Synaptic Remodeling at the Neuromuscular Junction. Journal of Neuroscience, 2001, 21, 6136-6146.	1.7	122
63	Selective Activation of Cholinergic Basal Forebrain Neurons Induces Immediate Sleep-wake Transitions. Current Biology, 2014, 24, 693-698.	1.8	121
64	The Chloride Transporter Na+-K+-Cl- Cotransporter Isoform-1 Contributes to Intracellular Chloride Increases after In Vitro Ischemia. Journal of Neuroscience, 2006, 26, 1396-1406.	1.7	119
65	ChAT-ChR2-EYFP Mice Have Enhanced Motor Endurance But Show Deficits in Attention and Several Additional Cognitive Domains. Journal of Neuroscience, 2013, 33, 10427-10438.	1.7	119
66	Thrombospondin receptor $\hat{l}\pm2\hat{l}^2$ 1 promotes synaptogenesis and spinogenesis via postsynaptic Rac1. Journal of Cell Biology, 2018, 217, 3747-3765.	2.3	116
67	Postsynaptic requirement for Abl kinases in assembly of the neuromuscular junction. Nature Neuroscience, 2003, 6, 717-723.	7.1	115
68	Opportunities and challenges in modeling human brain disorders in transgenic primates. Nature Neuroscience, 2016, 19, 1123-1130.	7.1	115
69	Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD. Nature Neuroscience, 2020, 23, 520-532.	7.1	115
70	Neurobiology of obsessive–compulsive disorder: insights into neural circuitry dysfunction through mouse genetics. Current Opinion in Neurobiology, 2011, 21, 842-848.	2.0	113
71	CRISPR germline engineering—the community speaks. Nature Biotechnology, 2015, 33, 478-486.	9.4	110
72	Synapse Formation by Hippocampal Neurons from Agrin-Deficient Mice. Developmental Biology, 1999, 205, 65-78.	0.9	104

#	Article	IF	CITATIONS
73	Close Homolog of L1 Modulates Area-Specific Neuronal Positioning and Dendrite Orientation in the Cerebral Cortex. Neuron, 2004, 44, 423-437.	3.8	104
74	Distinct subnetworks of the thalamic reticular nucleus. Nature, 2020, 583, 819-824.	13.7	104
75	Functional Consequences of Mutations in Postsynaptic Scaffolding Proteins and Relevance to Psychiatric Disorders. Annual Review of Neuroscience, 2012, 35, 49-71.	5.0	103
76	Glutamatergic Synaptic Dysfunction and Obsessive-Compulsive Disorder. Current Chemical Genomics, 2008, 2, 62-75.	2.0	102
77	An Ultra-Sensitive Step-Function Opsin for Minimally Invasive Optogenetic Stimulation in Mice and Macaques. Neuron, 2020, 107, 38-51.e8.	3.8	99
78	PSD93 Regulates Synaptic Stability at Neuronal Cholinergic Synapses. Journal of Neuroscience, 2004, 24, 378-388.	1.7	96
79	Cortical Control of Affective Networks. Journal of Neuroscience, 2013, 33, 1116-1129.	1.7	94
80	Functional characterization of a neuropeptide F-like receptor from Drosophila melanogaster. European Journal of Neuroscience, 2003, 18, 227-238.	1.2	92
81	Neuronal deletion of Gtf2i, associated with Williams syndrome, causes behavioral and myelin alterations rescuable by a remyelinating drug. Nature Neuroscience, 2019, 22, 700-708.	7.1	92
82	Direct modulation of GFAP-expressing glia in the arcuate nucleus bi-directionally regulates feeding. ELife, $2016, 5, .$	2.8	91
83	A framework for the investigation of rare genetic disorders in neuropsychiatry. Nature Medicine, 2019, 25, 1477-1487.	15.2	90
84	Imaging synaptic inhibition in transgenic mice expressing the chloride indicator, Clomeleon. Brain Cell Biology, 2006, 35, 207-228.	3.5	89
85	Differential mRNA expression and protein localization of the SAP90/PSD-95-associated proteins (SAPAPs) in the nervous system of the mouse. Journal of Comparative Neurology, 2004, 472, 24-39.	0.9	88
86	<i>Sapap3</i> Deletion Causes mGluR5-Dependent Silencing of AMPAR Synapses. Journal of Neuroscience, 2011, 31, 16685-16691.	1.7	86
87	Circuit-Selective Striatal Synaptic Dysfunction in the Sapap3 Knockout Mouse Model of Obsessive-Compulsive Disorder. Biological Psychiatry, 2014, 75, 623-630.	0.7	85
88	Thalamic Reticular Dysfunction as a Circuit Endophenotype in Neurodevelopmental Disorders. Neuron, 2018, 98, 282-295.	3.8	84
89	The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.	13.7	84
90	Genome-scale neurogenetics: methodology and meaning. Nature Neuroscience, 2014, 17, 756-763.	7.1	82

#	Article	IF	Citations
91	Shank3 mutation in a mouse model of autism leads to changes in the S-nitroso-proteome and affects key proteins involved in vesicle release and synaptic function. Molecular Psychiatry, 2020, 25, 1835-1848.	4.1	82
92	Sapap3 Deletion Anomalously Activates Short-Term Endocannabinoid-Mediated Synaptic Plasticity. Journal of Neuroscience, 2011, 31, 9563-9573.	1.7	78
93	Cellular and synaptic network defects in autism. Current Opinion in Neurobiology, 2012, 22, 866-872.	2.0	78
94	Candidate genes and functional noncoding variants identified in a canine model of obsessive-compulsive disorder. Genome Biology, 2014, 15, R25.	13.9	78
95	Remotely controlled chemomagnetic modulation of targeted neural circuits. Nature Nanotechnology, 2019, 14, 967-973.	15.6	77
96	Synaptic dynamism measured over minutes to months: age-dependent decline in an autonomic ganglion. Nature Neuroscience, 2003, 6, 956-960.	7.1	73
97	Opportunities and limitations of genetically modified nonhuman primate models for neuroscience research. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24022-24031.	3.3	64
98	Learning From Animal Models of Obsessive-Compulsive Disorder. Biological Psychiatry, 2016, 79, 7-16.	0.7	63
99	Optogenetic Mapping of Cerebellar Inhibitory Circuitry Reveals Spatially Biased Coordination of Interneurons via Electrical Synapses. Cell Reports, 2014, 7, 1601-1613.	2.9	62
100	Impaired Dendritic Development and Memory in <i>Sorbs2</i> Knock-Out Mice. Journal of Neuroscience, 2016, 36, 2247-2260.	1.7	62
101	The Role of Muscle microRNAs in Repairing the Neuromuscular Junction. PLoS ONE, 2014, 9, e93140.	1.1	60
102	Normal Midbrain Dopaminergic Neuron Development and Function in miR-133b Mutant Mice. Journal of Neuroscience, 2012, 32, 10887-10894.	1.7	59
103	Integrating evolutionary and regulatory information with a multispecies approach implicates genes and pathways in obsessive-compulsive disorder. Nature Communications, 2017, 8, 774.	5.8	52
104	Ubiquilin-1 Regulates Nicotine-induced Up-regulation of Neuronal Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2005, 280, 34088-34095.	1.6	51
105	Thalamic subnetworks as units of function. Nature Neuroscience, 2022, 25, 140-153.	7.1	50
106	Development of transgenic animals for optogenetic manipulation of mammalian nervous system function: Progress and prospects for behavioral neuroscience. Behavioural Brain Research, 2013, 255, 3-18.	1.2	49
107	Efficient generation of Knock-in/Knock-out marmoset embryo via CRISPR/Cas9 gene editing. Scientific Reports, 2019, 9, 12719.	1.6	42
108	Abnormal mGluR-mediated synaptic plasticity and autism-like behaviours in Gprasp2 mutant mice. Nature Communications, 2019, 10, 1431.	5.8	39

#	Article	IF	CITATIONS
109	Efficient embryonic homozygous gene conversion via RAD51-enhanced interhomolog repair. Cell, 2021, 184, 3267-3280.e18.	13.5	37
110	Anterior thalamic dysfunction underlies cognitive deficits in a subset of neuropsychiatric disease models. Neuron, 2021, 109, 2590-2603.e13.	3.8	34
111	MyelTracer: A Semi-Automated Software for Myelin $\langle i \rangle g \langle i \rangle$ -Ratio Quantification. ENeuro, 2021, 8, ENEURO.0558-20.2021.	0.9	32
112	Targeting thalamic circuits rescues motor and mood deficits in PD mice. Nature, 2022, 607, 321-329.	13.7	32
113	Multiplex precise base editing in cynomolgus monkeys. Nature Communications, 2020, 11, 2325.	5 . 8	28
114	Effects of a patient-derived de novo coding alteration of CACNA11 in mice connect a schizophrenia risk gene with sleep spindle deficits. Translational Psychiatry, 2020, 10, 29.	2.4	25
115	Dichotomous parvalbumin interneuron populations in dorsolateral and dorsomedial striatum. Journal of Physiology, 2018, 596, 3695-3707.	1.3	24
116	Epitope-preserving magnified analysis of proteome (eMAP). Science Advances, 2021, 7, eabf6589.	4.7	22
117	Optogenetic Visualization of Presynaptic Tonic Inhibition of Cerebellar Parallel Fibers. Journal of Neuroscience, 2016, 36, 5709-5723.	1.7	20
118	Animal models for neuropsychiatric disorders: prospects for circuit intervention. Current Opinion in Neurobiology, 2017, 45, 59-65.	2.0	19
119	Windows of opportunity: timing in neurodevelopmental disorders. Current Opinion in Neurobiology, 2018, 48, 59-63.	2.0	19
120	Lateral orbitofrontal dysfunction in the <i>Sapap3</i> knockout mouse model of obsessive–compulsive disorder. Journal of Psychiatry and Neuroscience, 2019, 44, 120-131.	1.4	18
121	The dawn of non-human primate models for neurodevelopmental disorders. Current Opinion in Genetics and Development, 2020, 65, 160-168.	1.5	18
122	Combinatorial Targeting of Distributed Forebrain Networks Reverses Noise Hypersensitivity in a Model of Autism Spectrum Disorder. Neuron, 2019, 104, 488-500.e11.	3.8	17
123	Anterior thalamic circuits crucial for working memory. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118712119.	3.3	16
124	Striatal Magnetic Resonance Spectroscopy Abnormalities in Young Adult Sapap3 Knockout Mice. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2016, 1, 39-48.	1.1	14
125	Efficient production of cynomolgus monkeys with a toolbox of enhanced assisted reproductive technologies. Scientific Reports, 2016, 6, 25888.	1.6	8
126	<i>Sapap4</i> deficiency leads to postsynaptic defects and abnormal behaviors relevant to hyperkinetic neuropsychiatric disorder in mice. Cerebral Cortex, 2023, 33, 1104-1118.	1.6	2