Karen P Steel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6233142/publications.pdf Version: 2024-02-01

KADEN D STEEL

#	Article	IF	CITATIONS
1	Genome-wide Generation and Systematic Phenotyping of Knockout Mice Reveals New Roles for Many Genes. Cell, 2013, 154, 452-464.	28.9	449
2	A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction. Nature Communications, 2017, 8, 886.	12.8	116
3	<i>Tmc1</i> is necessary for normal functional maturation and survival of inner and outer hair cells in the mouse cochlea. Journal of Physiology, 2006, 574, 677-698.	2.9	101
4	Mouse screen reveals multiple new genes underlying mouse and human hearing loss. PLoS Biology, 2019, 17, e3000194.	5.6	84
5	Mosaic Complementation Demonstrates a Regulatory Role for Myosin VIIa in Actin Dynamics of Stereocilia. Molecular and Cellular Biology, 2008, 28, 1702-1712.	2.3	71
6	Presynaptic maturation in auditory hair cells requires a critical period of sensory-independent spiking activity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8720-8725.	7.1	70
7	A resource of targeted mutant mouse lines for 5,061 genes. Nature Genetics, 2021, 53, 416-419.	21.4	60
8	Using the Auditory Brainstem Response (ABR) to Determine Sensitivity of Hearing in Mutant Mice. Current Protocols in Mouse Biology, 2011, 1, 279-287.	1.2	59
9	MyosinVIIa Interacts with Twinfilin-2 at the Tips of Mechanosensory Stereocilia in the Inner Ear. PLoS ONE, 2009, 4, e7097.	2.5	55
10	Spinster Homolog 2 (Spns2) Deficiency Causes Early Onset Progressive Hearing Loss. PLoS Genetics, 2014, 10, e1004688.	3.5	54
11	Mechanotransduction is required for establishing and maintaining mature inner hair cells and regulating efferent innervation. Nature Communications, 2018, 9, 4015.	12.8	54
12	OSBPL2 encodes a protein of inner and outer hair cell stereocilia and is mutated in autosomal dominant hearing loss (DFNA67). Orphanet Journal of Rare Diseases, 2015, 10, 15.	2.7	52
13	Wbp2 is required for normal glutamatergic synapses in the cochlea and is crucial for hearing. EMBO Molecular Medicine, 2016, 8, 191-207.	6.9	41
14	Mcph1-Deficient Mice Reveal a Role for MCPH1 in Otitis Media. PLoS ONE, 2013, 8, e58156.	2.5	36
15	Alternative Splice Forms Influence Functions of Whirlin in Mechanosensory Hair Cell Stereocilia. Cell Reports, 2016, 15, 935-943.	6.4	33
16	Targeting of Slc25a21 Is Associated with Orofacial Defects and Otitis Media Due to Disrupted Expression of a Neighbouring Gene. PLoS ONE, 2014, 9, e91807.	2.5	30
17	The acquisition of mechanoâ€electrical transducer current adaptation in auditory hair cells requires myosin VI. Journal of Physiology, 2016, 594, 3667-3681.	2.9	30
18	S1PR2 variants associated with auditory function in humans and endocochlear potential decline in mouse. Scientific Reports, 2016, 6, 28964.	3.3	30

KAREN P STEEL

#	Article	IF	CITATIONS
19	A novel stereocilia defect in sensory hair cells of the deaf mouse mutant Tasmanian devil. European Journal of Neuroscience, 2002, 16, 1433-1441.	2.6	21
20	Mutanlallemand (mtl) and Belly Spot and Deafness (bsd) Are Two New Mutations of Lmx1a Causing Severe Cochlear and Vestibular Defects. PLoS ONE, 2012, 7, e51065.	2.5	21
21	Translational and interdisciplinary insights into presbyacusis: A multidimensional disease. Hearing Research, 2021, 402, 108109.	2.0	21
22	A reduction in Ptprq associated with specific features of the deafness phenotype of the miRâ€96 mutant mouse diminuendo. European Journal of Neuroscience, 2014, 39, 744-756.	2.6	19
23	Functional analysis of candidate genes from genome-wide association studies of hearing. Hearing Research, 2020, 387, 107879.	2.0	13
24	Headbobber: A Combined Morphogenetic and Cochleosaccular Mouse Model to Study 10qter Deletions in Human Deafness. PLoS ONE, 2013, 8, e56274.	2.5	7
25	Synaptojanin2 Mutation Causes Progressive High-frequency Hearing Loss in Mice. Frontiers in Cellular Neuroscience, 2020, 14, 561857.	3.7	7
26	Investigating the characteristics of genes and variants associated with self-reported hearing difficulty in older adults in the UK Biobank. BMC Biology, 2022, 20, .	3.8	7
27	Inner hair cell dysfunction in Klhl18 mutant mice leads to low frequency progressive hearing loss. PLoS ONE, 2021, 16, e0258158.	2.5	6
28	Targeted deletion of the RNA-binding protein Caprin1 leads to progressive hearing loss and impairs recovery from noise exposure in mice. Scientific Reports, 2022, 12, 2444.	3.3	6
29	Mutations in <i>MINAR2</i> encoding membrane integral NOTCH2-associated receptor 2 cause deafness in humans and mice. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	3
30	Grxcr1 regulates hair bundle morphogenesis and is required for normal mechanoelectrical transduction in mouse cochlear hair cells. PLoS ONE, 2022, 17, e0261530.	2.5	2
31	Identification and characterisation of spontaneous mutations causing deafness from a targeted knockout programme. BMC Biology, 2022, 20, 67.	3.8	Ο